留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码

陈阿丽 汪越胜 王艳锋 周红涛 袁思敏

陈阿丽, 汪越胜, 王艳锋, 周红涛, 袁思敏, 陈阿丽&汪越胜译. 声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码. 力学进展, 2022, 52(4): 948-1011 doi: 10.6052/1000-0992-22-031
引用本文: 陈阿丽, 汪越胜, 王艳锋, 周红涛, 袁思敏, 陈阿丽&汪越胜译. 声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码. 力学进展, 2022, 52(4): 948-1011 doi: 10.6052/1000-0992-22-031
Chen A L, Wang Y S, Wang Y F, Zhou H T, Yuan S M, Chen A L & Wang Y S trans. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 2022, 52(4): 948-1011 doi: 10.6052/1000-0992-22-031
Citation: Chen A L, Wang Y S, Wang Y F, Zhou H T, Yuan S M, Chen A L & Wang Y S trans. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 2022, 52(4): 948-1011 doi: 10.6052/1000-0992-22-031

声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码

doi: 10.6052/1000-0992-22-031
基金项目: 国家自然科学基金 (11972246, 11872101, 12021002, 11991031, 12122207和12072223) 资助项目.
详细信息
    作者简介:

    陈阿丽, 1981年7月出生,北京交通大学力学系教授,博士生导师。主要研究领域为弹性波动力学与控制,长期从事声子晶体、纳米层状有序结构及超表面的研究。发表国内外期刊学术论文30余篇,曾获中国力学学会全国徐芝纶力学优秀教师奖

    汪越胜,1965年4月出生,北京交通大学力学系教授,天津大学力学系讲席教授,博士生导师;长江学者特聘教授,国家杰出青年科学基金获得者,国家自然科学基金委创新研究群体负责人。主要研究领域为弹性波动力学与控制、功能材料力学等,发表国内外期刊学术论文300余篇,授权国家发明专利10余项。曾获北京市教学名师、先进工作者和优秀教师等称号,入选新世纪百千万人才工程国家级人选

    通讯作者:

    alchen@bjtu.edu.cn

    yswang@tju.edu.cn, yswang@tju.edu.cn

  • 中图分类号: O422

Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding

More Information
  • 摘要: 声学/弹性超表面是一类亚波长厚度的二维超材料, 具有很强的声波/弹性波操控能力, 在声学成像、通信、隐身、伪装、振动/噪声控制、能量收集、无损检测等领域具有潜在的应用. 本文主要综述了声学/弹性相位梯度超表面的最新发展, 包括设计原理、功能基元设计、波场操控及其应用、可调超表面设计, 以及新兴的数字编码超表面. 最后, 展望了该领域未来的研究方向.

     

  • 图  1  功能基元 (或单胞) 构成的可实现波前调控的相位梯度超表面. (a)反射型, (b)透射型

    图  2  超表面惠更斯−菲涅耳原理示意图

    图  3  平直超表面的广义斯涅尔定律. (a)二维情况, (b)三维情况

    图  4  曲面超表面的广义斯涅尔定律. (a)三维情况, (b)二维情况

    图  5  超表面设计流程

    图  6  单胞计算模型 (透射)

    图  7  (a)透射型空间卷曲基元(Li et al. 2012), (b)通过改变声通道长度实现波前调控(Zhao et al. 2018)

    图  8  透射型空间卷曲基元. (a)环形锯齿结构(Li et al. 2015b), (b)锥形空间卷曲结构(Xie Y B et al. 2014), (c)空腔共振增强的锯齿结构(Molerón et al. 2014), (d)具有阻抗匹配层的锯齿结构(Jia Z T et al. 2018), (e)类三明治锯齿结构(Zuo et al. 2018a), (f)带螺旋通道的螺旋结构(Zhu X F et al. 2016), (g)由锯齿狭缝组成的超表面(Tang et al. 2015), (h)V形刚性薄板形成的超表面基元(Lan et al. 2017a)

    图  9  反射型空间卷曲基元. (a)具有锯齿形通道的结构 (Li Y et al. 2013a), (b)锥形迷宫结构 (Wang W Q et al. 2016), (c)类直井基元构成的梳状超表面 (Zhu et al. 2015a)

    图  10  透射型共振基元. (a)由连接至直通道的亥姆霍兹共振腔串联组成的结构(Li et al. 2015a), (b)用以实现三维准直自加速声束的具有径向相位梯度的轴对称结构(Li & Assouar 2015), (c)用以生成涡旋波的具有周向相位梯度的圆柱形结构 (Jiang et al. 2016a), (d)亥姆霍兹共振腔串联结构(Han et al. 2018), (e)哑铃形共振基元(Dong et al. 2020), (f)薄膜型基元(Zhai et al. 2015), (g)薄膜型混合基元(Lan et al. 2018)

    图  11  反射型共振基元. (a)亥姆霍兹共振基元(Ding et al. 2015), (b)管状共振器(Zhu & Assouar 2019a), (c)无梯度设计 (左图) 和有梯度设计 (右图) 的亥姆霍兹共振腔串联基元(Li X S et al. 2019), (d)具有刚性背箱的薄膜型基元(Zhai et al. 2016), (e)带有附加质量的薄膜型基元(Chen et al. 2017a), (f)双层板状基元((Ma F Y et al. 2018)

    图  12  类亥姆霍兹共振基元构建的可实现水声转向的反射超表面(Zhou et al. 2021a). (a)超表面和类亥姆霍兹共振基元, (b)单个基元的相位调控, (c)组装的基元阵列的相位调控(水域由内部声场硬边界隔离以消除声干扰), (d)基于广义斯涅尔定律的超表面所调控的反射场(局部设计), (e)基于格栅衍射理论的超表面所调控的反射场 (非局部设计)

    图  13  水声功能基元. (a)板状基元(Chen Z et al.2020), (b)多质量共振基元(Zou H Z et al. 2020), (c)多层共振基元(Li P et al. 2020)

    图  14  五膜材料水声超表面. (a)附加重量处于六边形顶点的五模材料单元(Tian et al. 2015), (b)附加重量处于蜂窝壁中点的五模材料单元( Chen & Hu2019), (c)调控反射波的五模材料超表面(Zhang X D et al. 2020), (d)产生涡旋声波的五模材料超表面(Sun et al. 2021)

    图  15  弹性波透射型基元. (a)板状基元(Su et al. 2016), (b)复合板状基元(Zeng L H et al. 2019), (c)锯齿形基元(Liu et al. 2017), (d)具有刚度和质量调节子结构的组合共振基元(Lee et al. 2018), (e)具有水平和竖直谐振器的共振基元 (Lee et al. 2020), (f)嵌入共振体的共振基元(Zhu H F et al. 2018), (g)周期立柱阵列基元(Cao et al. 2018c), (h)随机分布立柱阵列基元 (Cao et al. 2020b), (i)仅由一排立柱构成的超表面(Wang et al. 2021a)

    图  16  弹性波反射型基元. (a)条状基元及超表面(Kim et al. 2020), (b)板边缘粘贴不同厚度条带构成的条状基元(Ruan et al. 2020)

    图  17  非局部基元. (a)空气通道连接的基元及由局部和非局部超表面调控的反射场对比( Quan &Alú 2019b), (b)具有非局部基元的弹性超表面(Zhu H F et al. 2020), (c)有修饰的周期排列散射体构建的非局部超表面(Schwan et al. 2018), (d)有修饰的圆柱体构建的非局部超表面(Quan et al. 2018), (e)球形亥姆霍兹共振腔构建的非局部超表面(Esfahlani et al. 2021)

    图  18  双各向异性基元. (a)直通道上连接不同亥姆霍兹共振腔的基元及其非对称性(Li J F et al. 2018), (b)具有解耦波参数的基元及透射和反射波的独立调控(Koo et al. 2016)

    图  19  拓扑优化基元. (a)具有不对称几何结构的空气声拓扑优化基元(Dong et al. 2022a), (b)同时调控弹性L波和T波的拓扑优化基元( Rong &Ye2020)

    图  20  组合基元. (a)由空间卷曲结构和直通道组合而成的基元(Tian et al. 2017), (b)相位和幅值的解耦调制(Tian et al.2017), (c)双通道组合基元(Zhu et al. 2021a)

    图  21  异常折射/反射. (a)回射(Shen C et al. 2018), (b)行波转表面波(Zhai et al. 2015), (c)波束分裂(Li J F et al. 2020), (d)P波和SV波模式分离(Rong &Ye 2020), (e)P波转SV波(Lee et al. 2020), (f)入射面以外的反射波调制(Li X S et al. 2019), (g)弧状超表面实现地毯隐身(Zhou et al. 2021b), (h)从曲面到平面的地表幻象(Li X S et al. 2020), (i)超薄Schroeder扩散器实现扩散散射(Zhu et al. 2017)

    图  22  波束聚焦和自弯曲. (a)Bessel 波束(Lan et al. 2017b), (b)三维非轴对称点聚焦(Li X S et al. 2020), (c)利用超表面实现能量收集(Qi &Assouar 2017), (d)自弯曲波束的自愈合特性(Zhu X F et al. 2016), (e)具有任意轨迹的二维瓶状波束(Chen et al. 2018d), (f)三维瓶状波束形成的能量空洞(Li X S et al. 2021)

    图  23  涡旋波. (a)由扭曲螺旋面组成的超表面产生m = 1的涡旋波(Esfahlani et al. 2017), (b)由非局部超表面产生的不同拓扑阶数的涡旋波(Hou et al. 2021), (c)具有非对称零压力中心的涡旋波(Jiang et al. 2020c)

    图  24  非对称传输的实现. (a)含多个超表面的声通道(Zhu et al. 2015b), (b)一个超表面和一个超材料构成的组合体系(Shen et al. 2016), (c)两个相位梯度超表面(Cao et al. 2018a), (d)单个有损透射超表面(Li et al. 2017), (e)单个有损反射超表面(Song et al. 2019), (f)考虑整数奇偶性的单个无损超表面(Fu et al. 2019b)

    图  25  基于超表面全息图实现的声全息. (a)不同频率折射波的多平面成像, (b)反射波声全息

    图  26  机械可重构基元设计. (a)移动滑块(Chen Z et al. 2019), (b)填充水改变腔体尺寸(Tian et al. 2019), (c)填充水改变反射通道的深度(Song et al. 2019c)

    图  27  利用旋转操作实现机械可重构基元和超表面. (a)扇形可调环状混合共振基元(Wang X L et al. 2020), (b)带有两个C形空腔的嵌套结构(Zhai et al. 2018), (c)带有可调钩槽的基元(Zhou H T et al. 2020), (d)离刚性壁一定距离具有Willis耦合效应的C形超原子(Chiang et al. 2020)

    图  28  基于螺丝与螺母工作原理的机械可重构基元或超表面. (a)透射型基元(Zhao et al. 2018), (b)反射型基元(Fan S W et al. 2019), (c)产生声涡旋的超表面 (Fan et al. 2020a), (d)具有可调吸收器可实现相位和幅值准解耦调制的基元(Fan et al. 2020c), (e)弹性波基元(Yuan et al. 2020a)

    图  29  整个超表面的方位调节. (a)旋转整个超表面(Li et al. 2017), (b)改变两个平行超表面之间的距离(Xia et al. 2018)

    图  30  通过施加偏场实现的可调基元和超表面. (a)数字电路控制的压电薄膜基元(Popa et al. 2015), (b)由两侧带压电传感器的铅层覆盖的空气腔构成的薄膜型基元(Li S L et al. 2021), (c)由压电片和环氧树脂基体所组成的基元构建的主动超表面(Shen et al. 2019), (d)由五个基本单胞组合而成的基元, 其中每个基本单胞通过在基板上粘贴一个连接负电容分流电路的压电换能器构成(Li S L et al. 2018), (e)由电压控制的磁性可调基元和超表面(Chen et al. 2017b)

    图  31  数字编码超表面. (a)平面1比特编码超表面的远场调控示意图, (b)编码位0和1组成的超表面实现波束分裂功能(Xie et al. 2017b), (c)以正向或反向排列用作逻辑位0或1的非对称基元(Zuo et al. 2019b), (d)用于Talbot自成像的无相位调控 (0型) 和有相位调控 (1-3型) 的编码声学超表面(Gao et al. 2020), (e)由亥姆霍兹共振基元构建的产生涡旋波的反射型3比特编码超表面(Zhang Y et al. 2019), (f)可调1比特编码超表面(Zuo et al. 2019a), (g)机电可编程声学数字编码超表面(Fakheri et al. 2021)

  • Ahn B, Lee H, Lee J S, Kim Y Y. 2019. Topology optimization of metasurfaces for anomalous reflection of longitudinal elastic waves. Comput. Methods Appl. Mech. Eng., 357: 112582. doi: 10.1016/j.cma.2019.112582
    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F. 2012. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano. Lett., 12: 1702-1706. doi: 10.1021/nl300204s
    Aieta F, Kabiri A, Genevet P, Yu N, Kats M A, et al. 2012. Reflection and refraction of light from metasurfaces with phase discontinuities. J. Nanophotonics, 6: 063532. doi: 10.1117/1.JNP.6.063532
    Anhӓuser A, Wunenburger R, Brasselet E. 2012. Acoustic rotational manipulation using orbital angular momentum transfer. Phys. Rev. Lett., 109: 034301. doi: 10.1103/PhysRevLett.109.034301
    Asadchy V S, Albooyeh M, Tcvetkova S N, Díaz-Rubio A, Ra'di Y, Tretyakov S A. 2016. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B, 94: 075142. doi: 10.1103/PhysRevB.94.075142
    Assouar B, Liang B, Wu Y, Li Y, Cheng J C, Jing Y. 2018. Acoustic metasurfaces. Nat. Rev. Mater., 3: 460-472. doi: 10.1038/s41578-018-0061-4
    Bai G D, Ma Q, Cao W K, Li R Q, Jing H B, et al. 2019. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces. Adv. Intell. Syst., 1: 1900038. doi: 10.1002/aisy.201900038
    Bakhtiari-Nejad M, Elnahhas A, Hajj M R, Shahab S. 2018. Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment. J. Appl. Phys., 124: 244901. doi: 10.1063/1.5048601
    Bar-Ziv U, Postan A, Segev M. 2015. Observation of shape-preserving accelerating underwater acoustic beams. Phys. Rev. B, 92: 100301(R). doi: 10.1103/PhysRevB.92.100301
    Baudoin M, Gerbedoen J C, Riaud A, Matar O B, Smagin N, Thomas J L. 2019. Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers. Sci. Adv., 5: eaav1967. doi: 10.1126/sciadv.aav1967
    Bernard S, Chikh-Bled F, Kourchi H, Chati F, Léon F. 2022. Broadband negative reflection of underwater acoustic waves from a simple metagrating: modeling and experiment. Phys. Rev. Appl., 17: 024059. doi: 10.1103/PhysRevApplied.17.024059
    Bok E, Park J J, Choi H, Han C K, Wright O B, Lee S H. 2018. Metasurface for water-to-air sound transmission. Phys. Rev. Lett., 120: 044302. doi: 10.1103/PhysRevLett.120.044302
    Brown M D. 2019. Phase and amplitude modulation with acoustic holograms. Appl. Phys. Lett., 115: 053701. doi: 10.1063/1.5110673
    Cai L, Wen J H, Yu D L, Lu Z M, Chen X, Zhao X. 2017. Beam steering of the acoustic metasurface under a subwavelength periodic modulation. Appl. Phys. Lett., 111: 201902. doi: 10.1063/1.5001954
    Cai X B, Huang Z D, Yang J. 2020. Traveling sound wave with transverse particle velocity in a metawaveguide by using a phase-reversible metasurface. Phys. Rev. Appl., 14: 054025. doi: 10.1103/PhysRevApplied.14.054025
    Cai Z R, Zhao S D, Huang Z D, Li Z, Su M, et al. 2019. Bubble architectures for locally resonant acoustic metamaterials. Adv. Funct. Mater., 29: 1906984. doi: 10.1002/adfm.201906984
    Cao L Y, Xu Y L, Assouar B, Yang Z C. 2018a. Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces. Appl. Phys. Lett., 113: 183506. doi: 10.1063/1.5050671
    Cao L Y, Yang Z C, Xu Y L. 2018b. Steering elastic SH waves in an anomalous way by metasurface. J. Sound Vib., 418: 1-14. doi: 10.1016/j.jsv.2017.12.032
    Cao L Y, Yang Z C, Xu Y L, Assouar B. 2018c. Deflecting flexural wave with high transmission by using pillared elastic metasurface. Smart Mater. Struct., 27: 075051. doi: 10.1088/1361-665X/aaca51
    Cao L Y, Yang Z C, Xu Y L, Chen Z L, Zhu Y F, et al. 2021. Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mech. Syst. Signal Process., 146: 107035. doi: 10.1016/j.ymssp.2020.107035
    Cao L Y, Yang Z C, Xu Y L, Fan S W, Zhu Y F, et al. 2020a. Flexural wave absorption by lossy gradient elastic metasurface. J. Mech. Phys. Solids, 143: 104052. doi: 10.1016/j.jmps.2020.104052
    Cao L Y, Yang Z C, Xu Y L, Fan S W, Zhu Y F, et al. 2020b. Disordered elastic metasurfaces. Phys. Rev. Appl., 13: 014054. doi: 10.1103/PhysRevApplied.13.014054
    Cao W K, Wu, L T, Zhang C, Ke J C, Cheng Q, Cui T J. 2019. A reflective acoustic meta-diffuser based on the coding meta-surface. J. Appl. Phys., 126: 194503. doi: 10.1063/1.5120111
    Cao W K, Zhang C, Wu L T, Guo K Q, Ke J C, et al. 2021. Tunable acoustic metasurface for three-dimensional wave manipulations. Phys. Rev. Appl., 15: 024026. doi: 10.1103/PhysRevApplied.15.024026
    Cao X, Jia C L, Miao H C, Kang G Z, Zhang Ch. 2021. Excitation and manipulation of guided shear-horizontal plane wave using elastic metasurfaces. Smart Mater. Struct., 30: 055013. doi: 10.1088/1361-665X/abf23e
    Chaplain G J, De Ponti J M 2022. The elastic spiral phase pipe. J. Sound Vib. , 523: 116718
    Chen A L, Tang Q Y, Zhao S D, Wang Y S. 2020. Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves. Sci. China-Phys. Mech. Astron., 63: 244611. doi: 10.1007/s11433-019-1498-2
    Chen A L, Wang X M, Wang Y S. 2021. Tunable control and functional switch of transmitted acoustic waves by an arch-shaped metasurface. Chin. J. Theor. Appl. Mech., 53: 789-801 (in Chinese).
    Chen C, Chen T N, Song A L, Song X P, Zhu J. 2020. Switchable asymmetric acoustic transmission based on topological insulator and metasurfaces. J. Phys. D:Appl. Phys., 53: 44LT01. doi: 10.1088/1361-6463/aba5c1
    Chen D C, Zhou Q X, Zhu X F, Xu Z, Wu D J. 2019a. Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits. Appl. Phys. Lett., 115: 083501. doi: 10.1063/1.5108687
    Chen D C, Zhu X F, Wei Q, Wu D J. 2018a. Bidirectional asymmetric acoustic focusing by two flat acoustic metasurfaces. Chin. Phys. B, 27: 124302. doi: 10.1088/1674-1056/27/12/124302
    Chen D C, Zhu X F, Wei Q, Wu D J, Liu X J. 2018b. Asymmetric phase modulation of acoustic waves through unidirectional metasurfaces. Appl. Phys. A, 124: 13. doi: 10.1007/s00339-017-1289-3
    Chen D C, Zhu X F, Wei Q, Wu D J, Liu X J. 2018c. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces. J. Appl. Phys., 123: 044503. doi: 10.1063/1.5010705
    Chen D C, Zhu X F, Wei Q, Wu D J, Liu X J. 2018d. Dynamic generation and modulation of acoustic bottle-beams by metasurfaces. Sci. Rep., 8: 12682. doi: 10.1038/s41598-018-31066-5
    Chen D C, Zhu X F, Wei Q, Yao J, Wu D J. 2020. Broadband tunable focusing lenses by acoustic coding metasurfaces. J. Phys. D: Appl. Phys., 53: 255501. doi: 10.1088/1361-6463/ab8247
    Chen D C, Zhu X F, Wu D J, Liu X J. 2019b. Broadband Airy-like beams by coded acoustic metasurfaces. Appl. Phys. Lett., 114: 053504. doi: 10.1063/1.5080202
    Chen H J. 2018. Anomalous reflection of acoustic waves in air with metasurfaces at low frequency. Adv. Cond. Matter Phys., 2018: 1-7.
    Chen H T, Taylor A J, Yu N F. 2016. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79: 076401. doi: 10.1088/0034-4885/79/7/076401
    Chen J, Rao J, Lisevych D, Fan Z. 2019. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl. Phys. Lett., 114: 104101. doi: 10.1063/1.5090956
    Chen S, Fan Y C, Y Fan, Sun K Y, Fu Q H, et al. 2021. Coiling-up space metasurface for high-efficient and wide-angle acoustic wavefront steering. Front. Mater., 8: 790987. doi: 10.3389/fmats.2021.790987
    Chen X, Liu P, Hou Z W, Pei Y M. 2017a. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range. Appl. Phys. Lett., 110: 161909. doi: 10.1063/1.4981898
    Chen X, Liu P, Hou Z W, Pei Y M. 2017b. Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale. Sci. Rep., 7: 9050. doi: 10.1038/s41598-017-09652-w
    Chen Y and Hu G K. 2019. Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl., 12: 044046. doi: 10.1103/PhysRevApplied.12.044046
    Chen Y Y, Li X P, Nassar H, Hu G K, Huang G L. 2018. A programmable metasurface for real time control of broadband elastic rays. Smart Mater. Struct., 27: 115011. doi: 10.1088/1361-665X/aae27b
    Chen Y, Liu X N, Xiang P, Hu G K. 2016. Pentamode material for underwater acoustic wave control. Adv. Mech., 46: 201609 (in Chinese).
    Chen Z, Shao S X, Negahban M, Li Z. 2019. Tunable metasurface for acoustic wave redirection, focusing and source illusion. J. Phys. D:Appl. Phys., 52: 395503. doi: 10.1088/1361-6463/ab2abd
    Chen Z, Yan F, Negahban M, Li Z. 2020. Resonator-based reflective metasurface for low-frequency underwater acoustic waves. J. Appl. Phys., 128: 055305. doi: 10.1063/5.0006523
    Chen Z, Yan F, Negahban M, Li Z. 2021. Extremely thin reflective metasurface for low-frequency underwater acoustic waves: sharp focusing, self-bending, and carpet cloaking. J. Appl. Phys., 130: 125304. doi: 10.1063/5.0041092
    Cheng B Z, Hou H, Gao N S. 2018. An acoustic metasurface with simultaneous phase modulation and energy attenuation. Mod. Phys. Lett. B, 32: 1850276
    Chiang Y K, Oberst S, Melnikov A, Quan L, Marburg S, Alù A, Powell D A. 2020. Reconfigurable acoustic metagrating for high efficiency anomalous reflection. Phys. Rev. Appl., 13: 064067. doi: 10.1103/PhysRevApplied.13.064067
    Chiang Y K, Quan L, Peng Y, Sepehrirahnama S, Oberst S, et al. 2021. Scalable metagrating for efficient ultrasonic focusing. Phys. Rev. Appl., 16: 064014. doi: 10.1103/PhysRevApplied.16.064014
    Chu Y Y, Wang Z H, Xu Z. 2020. Broadband high-efficiency controllable asymmetric propagation by pentamode acoustic metasurface. Phys. Lett. A, 384: 126230. doi: 10.1016/j.physleta.2019.126230
    Courtney C R P, Demore C E M, Wu H X, Grinenko A, Wilcox P D, et al. 2014. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. Appl. Phys. Lett., 104: 154103. doi: 10.1063/1.4870489
    Craig S R, Su X S, Norris A, Shi C Z. 2019. Experimental realization of acoustic bianisotropic gratings. Phys. Rev. Appl., 11: 061002. doi: 10.1103/PhysRevApplied.11.061002
    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q. 2014. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3: e218. doi: 10.1038/lsa.2014.99
    Deng Z L, Li X P, Li G X. 2020. Metasurface holography. Synth. Lect. Mater. Opt., 1: 1-76.
    Díaz-Rubio A, Tretyakov S A. 2017. Acoustic metasurfaces for scattering-free anomalous reflection and refraction. Phys. Rev. B, 96: 125409. doi: 10.1103/PhysRevB.96.125409
    Díaz-Rubio A, Asadchy V S, Elsakka A, Tretyakov S A. 2017. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv., 3: e1602714. doi: 10.1126/sciadv.1602714
    Díaz-Rubio A, Li J F, Shen C, Cummer S A, Tretyakov S A. 2019. Power flow-conformal metamirrors for engineering wave reflections. Sci. Adv., 5: eaau7288. doi: 10.1126/sciadv.aau7288
    Ding C L, Chen H J, Zhai S L, Liu S, Zhao X P. 2015. The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere. J. Phys. D:Appl. Phys., 48: 045303. doi: 10.1088/0022-3727/48/4/045303
    Ding H, Fang X S, Jia B, Wang N Y, Cheng Q, Li Y. 2021. Deep learning enables accurate sound redistribution via nonlocal metasurfaces. Phys. Rev. Appl., 16: 064035. doi: 10.1103/PhysRevApplied.16.064035
    Ding Y, Statharas E C, Yao K, Huang M H. 2017. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl. Phys. Lett., 110: 241903. doi: 10.1063/1.4986472
    Donda K, Zhu Y F, Merkel A, Fan S W, Cao L Y, Wan S, Assouar B. 2021. Ultrathin acoustic absorbing metasurface based on deep learning approach. Smart Mater. Struct., 30: 085003. doi: 10.1088/1361-665X/ac0675
    Dong H W, Shen C, Zhao S D, Qiu W B, Zhou J, et al. 2022a. Achromatic metasurfaces with inversely customized dispersion for ultra-broadband acoustic beam engineering. Natl. Sci. Rev. , epub. https://doi.org/10.1093/nsr/nwac030
    Dong H W, Zhao S D, Oudich M, Shen C, Zhang Ch, et al. 2022b. Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption. Phys. Rev. Appl., 17: 044013. doi: 10.1103/PhysRevApplied.17.044013
    Dong Y B, Wang Y B, Sun J X, Ding C L, Zhai S L, Zhao X P. 2020. Transmission control of acoustic metasurface with dumbbell-shaped double-split hollow sphere. Mod. Phys. Lett. B, 34: 2050386. doi: 10.1142/S0217984920503868
    Dubois M, Shi C Z, Wang Y, Zhang X. 2017. A thin and conformal metasurface for illusion acoustics of rapidly changing profiles. Appl. Phys. Lett., 110: 151902. doi: 10.1063/1.4979978
    Esfahlani H, Karkar S, Lissek H, Mosig J R. 2016. Acoustic carpet cloak based on an ultrathin metasurface. Phys. Rev. B, 94: 014302. doi: 10.1103/PhysRevB.94.014302
    Esfahlani H, Lissek H, Mosig J R. 2017. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B, 95: 024312. doi: 10.1103/PhysRevB.95.024312
    Esfahlani H, Mazor Y, Alù A. 2021. Homogenization and design of acoustic Willis metasurfaces. Phys. Rev. B, 103: 054306. doi: 10.1103/PhysRevB.103.054306
    Fakheri M H, Rajabalipanah H, Abdolali A. 2021. Spatiotemporal binary acoustic metasurfaces. Phys. Rev. Appl., 16: 024062. doi: 10.1103/PhysRevApplied.16.024062
    Fan L J and Mei J. 2020. Metagratings for waterborne sound: Various functionalities enabled by an efficient inverse-design approach. Phys. Rev. Appl., 14: 044003. doi: 10.1103/PhysRevApplied.14.044003
    Fan S W, Wang Y F, Cao L Y, Zhu Y F, Chen A L, et al. 2020a. Acoustic vortices with high-order orbital angular momentum by a continuously tunable metasurface. Appl. Phys. Lett., 116: 163504. doi: 10.1063/5.0007351
    Fan S W, Zhao S D, Cao L Y, Zhu Y F, Chen A L, et al. 2020b. Reconfigurable curved metasurface for acoustic cloaking and illusion. Phys. Rev. B, 101: 024104. doi: 10.1103/PhysRevB.101.024104
    Fan S W, Zhao S D, Chen A L, Wang Y F, Assouar M B, Wang Y S. 2019. Tunable broadband reflective acoustic metasurface. Phys. Rev. Appl., 11: 044038. doi: 10.1103/PhysRevApplied.11.044038
    Fan S W, Zhu Y F, Cao L Y, Wang Y F, Chen A L, et al. 2020c. Broadband tunable lossy metasurface with decoupled amplitude and phase modulations for acoustic holography. Smart Mater. Struct., 29: 105038. doi: 10.1088/1361-665X/abaa98
    Fan X D, Liang B, Yang J, Cheng J C. 2019. Illusion for airborne sound source by a closed layer with subwavelength thickness. Sci. Rep., 9: 1750. doi: 10.1038/s41598-018-38424-3
    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C. 2016. Broadband convergence of acoustic energy with binary reflected phases on planar surface. Appl. Phys. Lett., 109: 243501. doi: 10.1063/1.4971795
    Fang X S, Wang X, Li Y. 2019. Acoustic splitting and bending with compact coding metasurfaces. Phys. Rev. Appl., 11: 064033. doi: 10.1103/PhysRevApplied.11.064033
    Fang Y, Zhang X, Zhou J. 2017. Sound transmission through an acoustic porous metasurface with periodic structures. Appl. Phys. Lett., 110: 171904. doi: 10.1063/1.4982633
    Faure C, Richoux O, Félix S, Pagneux V. 2016. Experiments on metasurface carpet cloaking for audible acoustics. Appl. Phys. Lett., 108: 064103. doi: 10.1063/1.4941810
    Fu Y Y, Cao Y Y, Xu Y D. 2019a. Multifunctional reflection in acoustic metagratings with simplified design. Appl. Phys. Lett., 114: 053502. doi: 10.1063/1.5083081
    Fu Y Y, Shen C, Cao Y Y, Gao L, Chen H Y, et al. 2019b. Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun., 10: 2326. doi: 10.1038/s41467-019-10377-9
    Fu Y Y, Shen C, Zhu X H, Li J F, Liu Y W, et al. 2020a. Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv., 6: eaba9876. doi: 10.1126/sciadv.aba9876
    Fu Y Y, Tao J Q, Song A L, Liu Y W, Xu Y D. 2020b. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 15: 52502. doi: 10.1007/s11467-020-0968-2
    Fushimi T, Yamamoto K, Ochiai Y. 2021. Acoustic hologram optimisation using automatic differentiation. Sci. Rep., 11: 12678. doi: 10.1038/s41598-021-91880-2
    Gao H, Gu Z M, Liang B, Zou X Y, Yang J, et al. 2016. Acoustic focusing by symmetrical self-bending beams with phase modulations. Appl. Phys. Lett., 108: 073501. doi: 10.1063/1.4941992
    Gao H, Gu Z M, Liang S J, An S W, Liu T, Zhu J. 2020. Coding metasurface for Talbot sound amplification. Phys. Rev. Appl., 14: 054067. doi: 10.1103/PhysRevApplied.14.054067
    Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, et al. 2015. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl., 4: e324. doi: 10.1038/lsa.2015.97
    Gao S X, Li Y B, Ma C R, Cheng Y, Liu X J. 2021. Emitting long-distance spiral airborne sound using low-profile planar acoustic antenna. Nat. Commun., 12: 2006. doi: 10.1038/s41467-021-22325-7
    Ge Y, Sun H X, Yuan S Q, Lai Y. 2018. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms. Appl. Phys. Lett., 112: 243502. doi: 10.1063/1.5025812
    Ge Y, Sun H X, Yuan S Q, Lai Y. 2019. Switchable omnidirectional acoustic insulation through open window structures with ultrathin metasurfaces. Phys. Rev. Mater., 3: 065203. doi: 10.1103/PhysRevMaterials.3.065203
    Gerard N JRK, Jing Y. 2020. Loss in acoustic metasurfaces: a blessing in disguise. MRS Commun., 10: 32-41. doi: 10.1557/mrc.2019.148
    Gerard N JRK, Li Y, Jing Y. 2018. Investigation of acoustic metasurfaces with constituent material properties considered. J. Appl. Phys., 123: 124905. doi: 10.1063/1.5007863
    Ghaffarivardavagh R, Nikolajczyk J, Holt R G, Anderson S, Zhang X. 2018. Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation. Nat. Commun., 9: 1349. doi: 10.1038/s41467-018-03839-z
    Giovampaola C D, Engheta N. 2014. Digital metamaterials. Nat. Mater., 13: 1115-1121. doi: 10.1038/nmat4082
    Gong K M, Wang X F, Ouyang H J, Mo J L. 2019. Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. J. Phys. D:Appl. Phys., 52: 385303. doi: 10.1088/1361-6463/ab2b85
    Gong Z, Baudoin M. 2019. Particle assembly with synchronized acoustic tweezers. Phys. Rev. Appl., 12: 024045. doi: 10.1103/PhysRevApplied.12.024045
    Gu J C, Lin W, Kan C X. 2020. Sound source localization using piezoelectric acoustic metasurfaces. Acoust. Aust., 48: 455-461. doi: 10.1007/s40857-020-00205-2
    Gu Z M, Fang X S, Liu T, Gao H, Liang S J, et al. 2021. Tunable asymmetric acoustic transmission via binary metasurface and zero-index metamaterials. Appl. Phys. Lett., 118: 113501. doi: 10.1063/5.0046756
    Guo X X, Gusev V E, Tournat V. 2019. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface. Phys. Rev. E, 99: 052209. doi: 10.1103/PhysRevE.99.052209
    Guo X X, Gusev V E, Bertoldi K, Tournat V. 2018. Manipulating acoustic wave reflection by a nonlinear elastic metasurface. J. Appl. Phys., 123: 124901. doi: 10.1063/1.5015952
    Guo Z Y, Liu H J, Zhou H, Zhou K Y, Wang S M, et al. 2019. High-order acoustic vortex field generation based on a metasurface. Phys. Rev. E, 100: 053315. doi: 10.1103/PhysRevE.100.053315
    Han L X, Yao Y W, Zhang X, Wu F G, Dong H F, et al. 2018. Acoustic metasurface for refracted wave manipulation. Phys. Lett. A, 382: 357-361. doi: 10.1016/j.physleta.2017.12.004
    He J J, Jiang X, Ta D A, Wang W Q. 2020. Experimental demonstration of underwater ultrasound cloaking based on metagrating. Appl. Phys. Lett., 117: 091901. doi: 10.1063/5.0021002
    He Q, Sun S L, Zhou L. 2019. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019: 1-16.
    Hertzberg Y, Navon G. 2011. Bypassing absorbing objects in focused ultrasound using computer generated holographic technique. Med. Phys., 38: 6407-6415. doi: 10.1118/1.3651464
    Hou Z L, Ding H, Wang N Y, Fang X S, Li Y. 2021. Acoustic vortices via nonlocal metagratings. Phys. Rev. Appl., 16: 014002. doi: 10.1103/PhysRevApplied.16.014002
    Hou Z L, Fang X S, Li Y, Assouar B. 2019. Highly efficient acoustic metagrating with strongly coupled surface grooves. Phys. Rev. Appl., 12: 034021. doi: 10.1103/PhysRevApplied.12.034021
    Hur S, Choi H, Yoon G H, Kim N W, Lee D G, Kim Y T. 2022. Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water. Sci. Rep., 12: 1485. doi: 10.1038/s41598-022-05547-7
    Hussein M I, Leamy M J, Ruzzene M. 2014. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. ASME Appl. Mech. Rev., 66: 040802. doi: 10.1115/1.4026911
    Jahdali R A, Wu Y. 2016. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett., 108: 031902. doi: 10.1063/1.4939932
    Jia H, Ke M Z, Li C H, Qiu C Y, Liu Z Y. 2013. Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves. Appl. Phys. Lett., 102: 153508. doi: 10.1063/1.4802254
    Jia Y R, Ji W Q, Wu D J, Liu X J. 2018. Metasurface-enabled airborne fractional acoustic vortex emitter. Appl. Phys. Lett., 113: 173502. doi: 10.1063/1.5051696
    Jia Z T, Li J F, Shen C, Xie Y B, Cummer S A. 2018. Systematic design of broadband path-coiling acoustic metamaterials. J. Appl. Phys., 123: 025101. doi: 10.1063/1.5009488
    Jiang M, Zhou H T, Li X S, Fu W X, Wang Y F, Wang Y S. 2022. Extreme transmission of elastic metasurface for deep subwavelength focusing. Acta Mech. Sin., 38: 121497. doi: 10.1007/s10409-021-09073-z
    Jiang X, He J J, Zhang C X, Zhao H L, Wang W Q, et al. 2022. Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. Sci. China-Phys. Mech. Astron., 65: 224311. doi: 10.1007/s11433-021-1784-3
    Jiang X, Li Y, Zhang L K. 2017. Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am., 141: EL363-EL368. doi: 10.1121/1.4979682
    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K. 2016a. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett., 117: 034301. doi: 10.1103/PhysRevLett.117.034301
    Jiang X, Li Y, Ta D, Wang W Q. 2020a. Ultrasonic sharp autofocusing with acoustic metasurface. Phys. Rev. B, 102: 064308. doi: 10.1103/PhysRevB.102.064308
    Jiang X, Liang B, Cheng J C, Qiu C W. 2018. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Adv. Mater., 30: 1800257. doi: 10.1002/adma.201800257
    Jiang X, Liang B, Zou X Y, Yang J, Yin L L, et al. 2016b. Acoustic one-way metasurfaces: asymmetric phase modulation of sound by subwavelength layer. Sci. Rep., 6: 28023. doi: 10.1038/srep28023
    Jiang X, Shi C, Wang Y, Smalley J, Cheng J, Zhang X. 2020b. Nonresonant metasurface for fast decoding in acoustic communications. Phys. Rev. Appl., 13: 014014. doi: 10.1103/PhysRevApplied.13.014014
    Jiang X, Ta D, Wang W Q. 2020c. Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface. Phys. Rev. Appl., 14: 034014. doi: 10.1103/PhysRevApplied.14.034014
    Jiang X, Zhao J J, Liu S L, Liang B, Zou X Y, et al. 2016c. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett., 108: 203501. doi: 10.1063/1.4949337
    Jiang Y Q, Liu Y L, Kou M Q, Li H B, Wu X P, et al. 2022. Multi-parameter independent manipulation for flexural wave by notched metasurface. Int. J. Mech. Sci., 214: 106928. doi: 10.1016/j.ijmecsci.2021.106928
    Jiménez N, Groby J P, García V R. 2021. Spiral sound-diffusing metasurfaces based on holographic vortices. Sci. Rep., 11: 10217. doi: 10.1038/s41598-021-89487-8
    Jiménez N, Sánchez-Morcillo V J, Picó R, Garcia-Raffi L M, Romero-Garcia V, Staliunas K. 2015. High-order acoustic Bessel beam generation by spiral gratings. Phys. Procedia, 70: 245-248. doi: 10.1016/j.phpro.2015.08.146
    Jiménez-Gambín S, Jiménez N, Camarena F. 2020. Transcranial focusing of ultrasonic vortices by acoustic holograms. Phys. Rev. Appl., 14: 054070. doi: 10.1103/PhysRevApplied.14.054070
    Jin Y B, Bonello B, Moiseyenko R P, Pennec Y, Boyko O, Djafari-Rouhani B. 2017. Pillar-type acoustic metasurface. Phys. Rev. B, 96: 104311. doi: 10.1103/PhysRevB.96.104311
    Jin Y B, Kumar R, Poncelet O, Mondain-Monval O, Brunet T. 2019. Flat acoustics with soft gradient-index metasurfaces. Nat. Commun., 10: 143. doi: 10.1038/s41467-018-07990-5
    Jin Y B, Wang W, Khelif A, Djafari-Rouhani B. 2021. Elastic metasurfaces for deep and robust subwavelength focusing and imaging. Phys. Rew. Appl., 15: 024005. doi: 10.1103/PhysRevApplied.15.024005
    Ju F F, Tian Y, Cheng Y, Liu X J. 2018. Asymmetric acoustic transmission with a lossy gradient-index metasurface. Appl. Phys. Lett., 113: 121901. doi: 10.1063/1.5032263
    Ju F F, Xiong W, Liu C, Cheng Y, Liu X J. 2019. Acoustic accelerating beam based on a curved metasurface. Appl. Phys. Lett., 114: 113507. doi: 10.1063/1.5087544
    Ju F F, Zou X, Qian S Y, Liu X J. 2021. Asymmetric acoustic retroflection with a non-Hermitian metasurface mirror. Appl. Phys,. Express, 14: 124001.
    Kim M S, Lee W R, Kim Y Y, Oh J H. 2018. Transmodal elastic metasurface for broad angle total mode conversion. Appl. Phys. Lett., 112: 241905. doi: 10.1063/1.5032157
    Kim M S, Lee W R, Park C Il, Oh J H. 2020. Elastic wave energy entrapment for reflectionless metasurface. Phys. Rev. Appl., 13: 054036. doi: 10.1103/PhysRevApplied.13.054036
    Kim S Y, Lee W, Lee J S, Kim Y Y. 2021. Longitudinal wave steering using beam-type elastic metagratings. Mech. Syst. Signal Process., 156: 107688. doi: 10.1016/j.ymssp.2021.107688
    Koo S, Cho C, Jeong J H, Park N. 2016. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space. Nat. Commun., 7: 13012. doi: 10.1038/ncomms13012
    Kumar S, Lee H P. 2020. Recent advances in acoustic metamaterials for simultaneous sound attenuation and air ventilation performances. Crystals, 10: 686. doi: 10.3390/cryst10080686
    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B. 1993. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett., 71: 2022-2025. doi: 10.1103/PhysRevLett.71.2022
    Lan J, Li Y F, Liu X Z. 2017a. Broadband manipulation of refracted wavefronts by gradient acoustic metasurface with V-shape structure. Appl. Phys. Lett., 111: 263501. doi: 10.1063/1.5005950
    Lan J, Li Y F, Xu Y, Liu X Z. 2017b. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz resonators. Sci. Rep., 7: 10587. doi: 10.1038/s41598-017-10781-5
    Lan J, Zhang X W, Liu X Z, Li Y F. 2018. Wavefront manipulation based on transmissive acoustic metasurface with membrane-type hybrid structure. Sci. Rep., 8: 14171. doi: 10.1038/s41598-018-32547-3
    Lawrence A J, Goldsberry B M, Wallen S P, Haberman M R. 2020. Numerical study of acoustic focusing using a bianisotropic acoustic lens. J. Acoust. Soc. Am., 148: EL365-EL370. doi: 10.1121/10.0002137
    Lee H, Lee J K, Seung H M, Kim Y Y. 2018. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering. J. Mech. Phys. Solids, 112: 577-593. doi: 10.1016/j.jmps.2017.11.025
    Lee S W, Oh J H. 2020. Single-layer elastic metasurface with double negativity for anomalous refraction. J. Phys. D:Appl. Phys., 53: 265301. doi: 10.1088/1361-6463/ab7fd6
    Lee S W, Seung H M, Choi W, Kim M, Oh J H. 2020. Broad-angle refractive transmodal elastic metasurface. Appl. Phys. Lett., 117: 213502. doi: 10.1063/5.0026928
    Lee S W, Shin Y J, Park H W, Seung H M, Oh J H. 2021. Full-wave tailoring between different elastic media: A double-unit elastic metasurface. Phys. Rev. Appl., 16: 064013. doi: 10.1103/PhysRevApplied.16.064013
    Lee T, Iizuka H. 2020. Sound propagation across the air/water interface by a critically coupled resonant bubble. Phys. Rev. B, 102: 104105. doi: 10.1103/PhysRevB.102.104105
    Li B, Hu Y B, Chen J L, Su G Y, Liu Y Q, et al. 2020. Efficient asymmetric transmission of elastic waves in thin plates with lossless metasurfaces. Phys. Rev. Appl., 14: 054029. doi: 10.1103/PhysRevApplied.14.054029
    Li C H, Ke M Z, Ye Y T, Xu S J, Qiu C Y, Liu Z Y. 2014. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges. Appl. Phys. Lett., 105: 023511. doi: 10.1063/1.4890721
    Li J, Pendry J B. 2008. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101: 203901. doi: 10.1103/PhysRevLett.101.203901
    Li J F, Díaz-Rubio A, Shen C, Jia Z T, Tretyakov S A, Cummer S A. 2019. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl., 11: 024016. doi: 10.1103/PhysRevApplied.11.024016
    Li J F, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A. 2018. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun., 9: 1342. doi: 10.1038/s41467-018-03778-9
    Li J F, Song A L, Cummer S A. 2020. Bianisotropic acoustic metasurface for surface-wave-enhanced wavefront transformation. Phys. Rev. Appl., 14: 044012. doi: 10.1103/PhysRevApplied.14.044012
    Li P, Chang Y F, Du Q J, Xu Z H, Liu M Y, Peng P. 2020. Continuously tunable acoustic metasurface with rotatable anisotropic three-component resonators. Appl. Phys. Express, 13: 025507. doi: 10.35848/1882-0786/ab6f27
    Li S L, Wu J W, Yao Y X, Tang J. 2021. Tunable reflected acoustic wave front modulated with piezoelectric metasurfaces. J. Phys. D:Appl. Phys., 54: 095102. doi: 10.1088/1361-6463/abc917
    Li S L, Xu J W, Tang J. 2018. Tunable modulation of refracted Lamb wave front facilitated by adaptived elastic metasurfaces. Appl. Phys. Lett., 112: 021903. doi: 10.1063/1.5011675
    Li W B, Meng F, Huang X D. 2020. Coding metalens with helical-structured units for acoustic focusing and splitting. Appl. Phys. Lett., 117: 021901. doi: 10.1063/5.0012784
    Li X S, Wang Y F, Wang Y S. 2022. Sparse binary metasurfaces for steering the flexural waves. Extreme Mech. Lett., 52: 101675. doi: 10.1016/j.eml.2022.101675
    Li X S, Wang Y F, Chen A L, Wang Y S. 2019. Modulation of out-of-plane reflected waves by using acoustic metasurfaces with tapered corrugated holes. Sci. Rep., 9: 15856. doi: 10.1038/s41598-019-52441-w
    Li X S, Wang Y F, Chen A L, Wang Y S. 2020. An arbitrarily curved acoustic metasurface for three-dimensional reflected wave-front modulation. J. Phys. D:Appl. Phys., 53: 195301. doi: 10.1088/1361-6463/ab7327
    Li X S, Zhou H T, Wang Y F, Wang Y S. 2021. Modulation of acoustic self-accelerating beams with tunable curved metasurfaces. Appl. Phys. Lett., 118: 023503. doi: 10.1063/5.0035286
    Li X, Zhou Y, Yang Z Z, Zou X Y, Cheng J C. 2022. Tunable acoustic metasurface based on PVDF/polyimide unimorph sheets. Appl. Phys. Express, 15: 014001. doi: 10.35848/1882-0786/ac414b
    Li Y, Assouar M B. 2015. Three-dimensional collimated self-accelerating beam through acoustic metascreen. Sci. Rep., 5: 17612. doi: 10.1038/srep17612
    Li Y, Jiang X, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C. 2014. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl., 2: 064002. doi: 10.1103/PhysRevApplied.2.064002
    Li Y, Jiang X, Liang B, Cheng J C, Zhang L. 2015a. Metascreen-based acoustic passive phased array. Phys. Rev. Appl., 4: 024003. doi: 10.1103/PhysRevApplied.4.024003
    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C. 2013a. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep., 3: 2546. doi: 10.1038/srep02546
    Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C. 2012. Acoustic focusing by coiling up space. Appl. Phys. Lett., 101: 233508. doi: 10.1063/1.4769984
    Li Y, Liang B, Zou X Y, Cheng J C. 2013b. Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett., 103: 063509. doi: 10.1063/1.4817925
    Li Y, Qi S B, Assouar M B. 2016. Theory of metascreen-based acoustic passive phased array. New J. Phys., 18: 043024. doi: 10.1088/1367-2630/18/4/043024
    Li Y, Ren Z W, Yuan X J, Chen M J, Cao W K, et al. 2019. Reflection phase dispersion editing generates wideband invisible acoustic Huygens's metasurface. J. Acoust. Soc. Am., 146: 166-171. doi: 10.1121/1.5116012
    Li Y, Shen C, Xie Y, Li J, Wang W, et al. 2017. Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett., 119: 035501. doi: 10.1103/PhysRevLett.119.035501
    Li Y, Yu G, Liang B, Zou X, Li G, et al. 2015b. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep., 4: 6830. doi: 10.1038/srep06830
    Liang B, Cheng J C, Qiu C W. 2018. Wavefront manipulation by acoustic metasurfaces: from physics and applications. Nanophotonics, 7: 1191-1205. doi: 10.1515/nanoph-2017-0122
    Liang D L, Hu G R, Ding N, Ma Q Y, Guo G P, et al. 2022. Quasi-Bessel acoustic-vortex beams constructed by the line-focused phase modulation for a ring-array of sectorial planar transducers. IEEE Trans. Ultrason. Ferr., 69: 377-385. doi: 10.1109/TUFFC.2021.3120285
    Liang Q X, Cheng Y, He J, Chang J K, Chen T N, Li D C. 2018. Ultra-broadband acoustic diode in open bend tunnel by negative reflective metasurface. Sci. Rep., 8: 16089. doi: 10.1038/s41598-018-34314-w
    Liang S J, Liu T, Gao H, Gu Z M, An S W, Zhu J. 2020. Acoustic metasurface by layered concentric structures. Phys. Rev. Res., 2: 043362. doi: 10.1103/PhysRevResearch.2.043362
    Liang Y, Hu Y, Song D H, Lou C B, Zhang X Z, et al. 2015. Image signal transmission with Airy beams. Opt. Lett., 40: 5686. doi: 10.1364/OL.40.005686
    Liang Z X, Li J. 2012. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett., 108: 114301. doi: 10.1103/PhysRevLett.108.114301
    Liao G X, Luan C C, Wang Z W, Liu J P, Yao X H, Fu J Z. 2021. Acoustic metamaterials a review of theories, structures, fabrication approaches, and applications. Adv. Mater. Technol., 6: 2000787. doi: 10.1002/admt.202000787
    Lin Q, Wang J Q, Cai F Y, Zhang R J, Zhao D G, Xia X X, Wang J P, Zheng H R. 2021. A deep learning approach for the fast generation of acoustic holograms. J. Acoust. Soc. Am., 149: 2312-2322. doi: 10.1121/10.0003959
    Lin Z B, Wang W, Xu W K, Yang T Z. 2022. Topology optimization of single-groove acoustic metasurfaces using genetic algorithms. Arch. Appl. Mech., 92: 961-969. doi: 10.1007/s00419-021-02084-z
    Lin Z B, Xu W K, Xuan C M, Qi W C, Wang W. 2021. Modular elastic metasurfaces with mass oscillators for transmitted flexural wave manipulation. J. Phys. D: Appl. Phys., 54: 255303. doi: 10.1088/1361-6463/abee47
    Lin Z, Guo X S, Tu J, Ma Q Y, Wu J R, Zhang D. 2015. Acoustic non-diffracting Airy beam. J. Appl. Phys., 117: 104503. doi: 10.1063/1.4914295
    Liu B Y, Jiang Y Y. 2018. Controllable asymmetric transmission via gap-tunable acoustic metasurface. Appl. Phys. Lett., 112: 173503. doi: 10.1063/1.5023852
    Liu B Y, Ren B, Zhao J J, Xu X D, Feng Y X, et al. 2017a. Experimental realization of all-angle negative refraction in acoustic gradient metasurface. Appl. Phys. Lett., 111: 221602. doi: 10.1063/1.5004005
    Liu B Y, Su Z X, Zeng Y, Wang Y T, Huang L L, Zhang S. 2021. Acoustic geometric-phase meta-array. New J. Phys., 23: 113026. doi: 10.1088/1367-2630/ac33f2
    Liu B Y, Zhao J J, Xu X D, Zhao W Y, Jiang Y Y. 2017b. All-angle negative reflection with an ultrathin acoustic gradient metasurface: Floquet-Bloch modes perspective and experimental verification. Sci. Rep., 7: 13852. doi: 10.1038/s41598-017-14387-9
    Liu B Y, Zhao W Y, Jiang Y Y. 2016. Full-angle negative reflection realized by a gradient acoustic metasurface. AIP Adv., 6: 115110. doi: 10.1063/1.4967430
    Liu J J, Liang B, Cheng J C. 2021. Focusing a two-dimensional acoustic vortex beyond diffraction limit on an ultrathin structured surface. Phys. Rev. Appl., 15: 014015. doi: 10.1103/PhysRevApplied.15.014015
    Liu J J, Liang B, Yang J, Yang J, Cheng J C. 2020. Generation of non-aliased two-dimensional acoustic vortex with enclosed metasurface. Sci. Rep., 10: 3827. doi: 10.1038/s41598-020-60836-3
    Liu M Y, Li P, Du Q J, Peng P. 2019. Reflected wavefront manipulation by acoustic metasurfaces with anisotropic local resonant units. EPL, 125: 54004. doi: 10.1209/0295-5075/125/54004
    Liu P, Chen X, Xu W D, Pei Y M. 2020. Magnetically controlled multifunctional membrane acoustic metasurface. J. Appl. Phys., 127: 185104. doi: 10.1063/1.5145289
    Liu T, Chen F, Liang S J, Gao H, Zhu J. 2019. Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation. Phys. Rev. Appl., 11: 034061. doi: 10.1103/PhysRevApplied.11.034061
    Liu Y C, Zhang X, Guo J H, Yang H, Han L X, et al. 2020. Tailoring of diversified sound vortices using curved impedance-matched acoustic metasurfaces. Mod. Phys. Lett. B, 34: 2050121.
    Liu Y L, Li H B, Zhang J, Liu X Y, Wu L K, et al. 2020. Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method. Int. J. Mech. Sci., 169: 105335. doi: 10.1016/j.ijmecsci.2019.105335
    Liu Y Q, Liang Z X, Liu F, Diba O, Lamb A, Li J. 2017. Source illusion devices for flexural Lamb waves using elastic metasurfaces. Phys. Rev. Lett., 119: 034301. doi: 10.1103/PhysRevLett.119.034301
    Liu Y, Li Y F, Liu X Z 2019. Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials. Chin. Phys. B, 28: 024301
    Liu Z Y, Zhang X X, Mao Y W, Zhu Z Z, Yang Z Y, et al. 2000. Locally resonant sonic materials. Science, 289: 1734-1736. doi: 10.1126/science.289.5485.1734
    Liu H L, Yang Z, Wang W, Xuan C M, Xu W K. 2022. Design of elastic wave metasurfaces based on lattice truss material. Arch. Appl. Mech., 92: 2137-2149. doi: 10.1007/s00419-022-02166-6
    Luo S S, Hao J J, Ye F J, Li J X, Ruan Y, Cui H Y, Liu W J, Chen L. 2021. Evolution of the electromagnetic manipulation: from tunable to programmable and intelligent metasurfaces. Micromachines, 12: 988. doi: 10.3390/mi12080988
    Luo Y C, Jia Y R, Yao J, Wu D J, Liu X J. 2020. Enhanced fractional acoustic vortices by an annulus acoustic metasurface with multi-layered rings. Adv. Mater. Technol., 5: 2000356.
    Ma F Y, Huang M, Xu Y C, Wu J H. 2018. Bilayer synergetic coupling double negative acoustic metasurface and cloak. Sci. Rep., 8: 5906. doi: 10.1038/s41598-018-24231-3
    Ma F Y, Xu Y C, Wu J H. 2019a. Pure solid acoustic metasurface with coating adapter. Appl. Phys. Express, 12: 054003. doi: 10.7567/1882-0786/ab130c
    Ma F Y, Xu Y C, Wu J H. 2019b. Shell-type acoustic metasurface and arc-shape carpet cloak. Sci. Rep., 9: 8076. doi: 10.1038/s41598-019-44619-z
    Ma G C, Fan X Y, Sheng P, Fink M. 2018. Shaping reverberating sound fields with an actively tunable metasurface. Proc. Natl. Acad. Sci. U. S. A., 115: 6638-6643. doi: 10.1073/pnas.1801175115
    Ma Z C, Holle A W, Melde K, Qiu T, Poeppel K, et al. 2020. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv. Mater., 32: 1904181. doi: 10.1002/adma.201904181
    Marzo A, Drinkwater B W. 2019. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. U. S. A., 116: 84-89. doi: 10.1073/pnas.1813047115
    Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S. 2015. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun., 6: 8661. doi: 10.1038/ncomms9661
    Mei J, Wu Y. 2014. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J. Phys., 16: 123007. doi: 10.1088/1367-2630/16/12/123007
    Melde K, Mark A G, Qiu T, Fischer P. 2016. Holograms for acoustics. Nature, 537: 518-522. doi: 10.1038/nature19755
    Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S. 2016. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun., 8: 14608.
    Milton G W and Cherkaev A V. 1995. Which elasticity tensors are realizable? ASME J. Eng. Mater. Technol., 117: 483-493.
    Mitri F G. 2016. Airy acoustical-sheet spinner tweezers. J. Appl. Phys., 120: 104901. doi: 10.1063/1.4962397
    Miyata K, Noguchi Y, Yamada T, Izui K, Nishiwaki S. 2018. Optimum design of a multi-functional acoustic metasurface using topology optimization based on Zwicker's loudness model. Comput. Methods Appl. Mech. Eng., 331: 116-137. doi: 10.1016/j.cma.2017.11.017
    Molerón M, Serra-Garcia M, Daraio C. 2014. Acoustic fresnel lenses with extraordinary transmission. Appl. Phys. Lett., 105: 114109. doi: 10.1063/1.4896276
    Molerón M, Serra-Garcia M, Daraio C. 2016. Visco-thermal effects in acoustic metamaterials: from total transmission to total reflection and high absorption. New. J. Phys., 18: 033003. doi: 10.1088/1367-2630/18/3/033003
    Noguchi Y, Yamada T. 2021. Level set-based topology optimization for graded acoustic metasurfaces using two-scale homogenization. Finite Elem. Anal. Des., 196: 103606
    Noguchi Y, Yamada T, Otomori M, Izui K, Nishiwaki S. 2015. An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization. Appl. Phys. Lett., 107: 221909. doi: 10.1063/1.4936997
    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J. 2018. Acoustic tweezers for the life sciences. Nat. Methods, 15: 1021-1028. doi: 10.1038/s41592-018-0222-9
    Park C Il, Piao C G, Lee H, Kim Y Y. 2021. Elastic complementary meta-layer for ultrasound penetration through solid/liquid/gas barriers. Int. J. Mech. Sci., 206: 106619. doi: 10.1016/j.ijmecsci.2021.106619
    Peng P, Xiao B M, Wu Y. 2014. Flat acoustic lens by acoustic grating with curled slits. Phys. Lett. A, 378: 3389-3392. doi: 10.1016/j.physleta.2014.09.042
    Peng X Y, Li J F, Shen C, Cummer S A. 2021. Efficient scattering-free wavefront transformation with power flow conformal bianisotropic acoustic metasurfaces. Appl. Phys. Lett., 118: 061902. doi: 10.1063/5.0033422
    Peng Y Y, Chen J H, Yang Z Z, Zou X Y, Tao C, Cheng J C. 2022a. Broadband tunable acoustic metasurface based on piezoelectric composite structure with two resonant modes. Appl. Phys. Express, 15: 014004. doi: 10.35848/1882-0786/ac444a
    Peng Y Y, Yang Z Z, Zhang Z L, Zou X Y, Tao C, Cheng J C. 2022b. Tunable acoustic metasurface based on tunable piezoelectric composite structure. J. Acoust. Soc. Am., 151: 838-845. doi: 10.1121/10.0009379
    Popa B I, Cummer S A. 2014. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun., 5: 3398. doi: 10.1038/ncomms4398
    Popa B I, Shinde D, Konneker A, Cummer S A. 2015. Active acoustic metamaterials reconfigurable in real time. Phys. Rev. B, 91: 220303
    Popa B I, Zhai Y X, Kwon H S. 2018. Broadband sound barriers with bianisotropic metasurfaces. Nat. Commun., 9: 5299. doi: 10.1038/s41467-018-07809-3
    Popa B I, Zigoneanu L, Cummer S A. 2013. Tunable active acoustic metamaterials. Phys. Rev. B, 88: 024303.
    Qi S, Assouar B. 2017. Acoustic energy harvesting based on multilateral metasurfaces. Appl. Phys. Lett., 111: 243506. doi: 10.1063/1.5003299
    Qi S, Li Y, Assouar B. 2017. Acoustic focusing and energy confinement based on multilateral metasurfaces. Phys. Rev. Appl., 7: 054006. doi: 10.1103/PhysRevApplied.7.054006
    Qian J, Wang Y, Xia J P, Ge Y, Yuan S Q, et al. 2020. Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms. Appl. Phys. Lett., 116: 223505. doi: 10.1063/5.0004579
    Qiu H, Li F X. 2020. Manipulation of shear horizontal guided wave with arbitrary wave fronts by using metasurfaces. J. Phys. D: Appl. Phys., 53: 285301. doi: 10.1088/1361-6463/ab850d
    Qiu H, Chen M T, Huan Q, Li F X. 2019. Steering and focusing of fundamental shear horizontal guided waves in plates by using multiple-strip metasurfaces. EPL, 127: 46004. doi: 10.1209/0295-5075/127/46004
    Quan L, Alù A. 2019a. Hyperbolic sound propagation over nonlocal acoustic metasurfaces. Phys. Rev. Lett., 123: 244303. doi: 10.1103/PhysRevLett.123.244303
    Quan L, Alù A. 2019b. Passive acoustic metasurface with unitary reflection based on nonlocality. Phys. Rev. Appl., 11: 054077. doi: 10.1103/PhysRevApplied.11.054077
    Quan L, Radi Y, Sounas D L, Alù A. 2018. Maximum Willis coupling in acoustic scatterers. Phys. Rev. Lett., 120: 254301. doi: 10.1103/PhysRevLett.120.254301
    Rong J J, Ye W J. 2020. Multifunctional elastic metasurface design with topology optimization. Acta Mater., 185: 382-399. doi: 10.1016/j.actamat.2019.12.017
    Rong J J, Ye W J, Zhang S Y, Liu Y J. 2020. Frequency-coded passive multifunctional elastic metasurfaces. Adv. Funct. Mater., 30: 2005285. doi: 10.1002/adfm.202005285
    Ruan Y D, Liang X, Hu C J. 2020. Retroreflection of flexural wave by using elastic metasurface. J. Appl. Phys., 128: 045116. doi: 10.1063/5.0005928
    Schwan L, Umnova O, Boutin C, Groby J P. 2018. Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions. J. Appl. Phys., 123: 091712. doi: 10.1063/1.5011385
    Shen C, Cummer S A. 2018. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces. Phys. Rev. Appl., 9: 054009. doi: 10.1103/PhysRevApplied.9.054009
    Shen C, Díaz-Rubio A, Li J F, Cummer S A. 2018. A surface impedance-based three-channel acoustic metasurface retroreflector. Appl. Phys. Lett., 112: 183503. doi: 10.1063/1.5025481
    Shen C, Xie Y B, Li J F, Cummer S A, Jing Y. 2016. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett., 108: 223502. doi: 10.1063/1.4953264
    Shen X H, Sun C T, Barnhart M V, Huang G L. 2018. Elastic wave manipulation by using a phase-controlling meta-layer. J. Appl. Phys., 123: 091708. doi: 10.1063/1.4996018
    Shen Y X, Zhu X F, Cai F Y, Ma T, Li F, Xia X X, et al. 2019. Active acoustic metasurface: complete elimination of grating lobes for high-quality ultrasound focusing and controllable steering. Phys. Rev. Appl., 11: 034009. doi: 10.1103/PhysRevApplied.11.034009
    Shi C Z, Dubois M, Wang Y, Zhang X. 2017. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. U. S. A., 114: 7250-7253. doi: 10.1073/pnas.1704450114
    Sigalas M M, Economou E N. 1992. Elastic and acoustic wave band structure. J. Sound Vib., 158: 377-382. doi: 10.1016/0022-460X(92)90059-7
    Siviloglou G A, Christodoulides D N. 2007. Accelerating finite energy Airy beams. Opt. Lett., 32: 979-981. doi: 10.1364/OL.32.000979
    Song A L, Chen T N, Wang X P, Wan L L. 2016. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal. J. Appl. Phys., 120: 085106. doi: 10.1063/1.4961659
    Song A L, Li J F, Peng X Y, Shen C, Zhu X H, Chen T N, Cummer S A. 2019. Asymmetric absorption in acoustic metamirror based on surface impedance engineering. Phys. Rev. Appl., 12: 054048. doi: 10.1103/PhysRevApplied.12.054048
    Song X P, Chen T N, Li R. 2021a. Frequency band-selected one-way topological edge mode via acoustic metamaterials and metasurface. J. Appl. Phys., 130: 085101. doi: 10.1063/5.0058546
    Song X P, Chen T N, Zhu J. 2019a. Acoustic reprogrammable metasurface for the multi-frequency tri-channel retroreflector. Appl. Phys. A, 125: 679. doi: 10.1007/s00339-019-2967-0
    Song X P, Chen T N, Huang W K, Chen C. 2021b. Frequency-selective modulation of reflected wave fronts using a four-mode coding acoustic metasurface. Phys. Lett. A, 394: 127145. doi: 10.1016/j.physleta.2021.127145
    Song X P, Chen T N, Zhu J, Ding W, Liang Q X, Wang X P. 2020. Broadband and broad-angle asymmetric acoustic transmission by unbalanced excitation of surface evanescent waves based on single-layer metasurface. Phys. Lett. A, 384: 126419. doi: 10.1016/j.physleta.2020.126419
    Song X P, Chen T N, Zhu J, He Y B, Zhang J Z. 2019b. A switchable sound tunnel by using an acoustic metasurface. J. Theor. Comput. Acoust., 27: 1950017. doi: 10.1142/S2591728519500178
    Song X P, Chen T N, Zhu J, He Y Q, Liu Z Q. 2019c. Broadband acoustic cloaking and disguising with full-rangle incident angles based on reconfigurable metasurface. Int. J. Mod. Phys. B, 33: 1950273. doi: 10.1142/S0217979219502734
    Su G Y, Liu Y Q. 2020. Amplitude-modulated binary acoustic metasurface for perfect anomalous refraction. Appl. Phys. Lett., 117: 221901. doi: 10.1063/5.0032509
    Su X S, Norris A N. 2016. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps. J. Acoust. Soc. Am., 139: 3386-3394. doi: 10.1121/1.4950770
    Su X S, Lu Z C, Norris A N. 2018. Elastic metasurface for splitting SV- and P-waves in elastic solids. J. Appl. Phys., 123: 091701. doi: 10.1063/1.5007731
    Su Y C, Ko L H. 2022. Acoustic wave splitting and wave trapping designs. ASME J. Vib. Acoust., 144: 034502. doi: 10.1115/1.4053713
    Su Y C, Chen T Y, Ko L H, Lu M H. 2020. Design of metasurfaces to enable shear horizontal wave trapping. J. Appl. Phys., 128: 175107. doi: 10.1063/5.0018872
    Sun H T, Wang J S, Cheng Y, Wei Q, Liu X J. 2016. Modulation of water surface waves with a coiling-up-space metasurface. AIP Adv., 6: 055017. doi: 10.1063/1.4950962
    Sun Z Y, Shi Y, Sun X C, Jia H, Jin Z K, et al. 2021. Underwater acoustic multiplexing communication by pentamode metasurface. J Phys. D: Appl. Phys., 54: 205303. doi: 10.1088/1361-6463/abe43e
    Tang H C, Chen Z S, Tang N, Li S F, Shen Y X, et al. 2018. Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks. Adv. Funct. Mater., 28: 1801127. doi: 10.1002/adfm.201801127
    Tang H C, Hao Z Q, Zang J F. 2019. Nonplanar acoustic metasurface for focusing. J. Appl. Phys., 125: 154901. doi: 10.1063/1.5082670
    Tang K, Qiu C Y, Lu J Y, Ke M Z, Liu Z Y. 2015. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. J. Appl. Phys., 117: 024503. doi: 10.1063/1.4905910
    Tang K, Qiu C, Ke M Z, Lu J, Ye Y, Liu Z Y. 2014. Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep., 4: 6517.
    Tang S, Ren B, Feng Y X, Song J, Jiang Y Y. 2021a. Asymmetric acoustic beam shaping based on monolayer binary metasurfaces. Appl. Phys. Express, 14: 085504. doi: 10.35848/1882-0786/ac15bf
    Tang S, Ren B, Feng Y X, Song J, Jiang Y Y. 2021b. The generation of acoustic Airy beam with selective band based on binary metasurfaces: customized on demand. Appl. Phys. Lett., 119: 071907. doi: 10.1063/5.0060032
    Tang S, Ren B, Feng Y X, Song J, Jiang Y Y. 2022. Broadband controllable asymmetric accelerating beam via bilayer binary acoustic metasurfaces. Ann. Phys. (Berlin), 534: 2100208. doi: 10.1002/andp.202100208
    Tang W P, Ren C Y. 2017. Total transmission of airborne sound by impedance-matched ultra-thin metasurfaces. J. Phys. D:Appl. Phys., 50: 105102. doi: 10.1088/1361-6463/aa5a86
    Tang W P, Ren C Y, Tong S S, Huang X C. 2019. Sandwich-like space-coiling metasurfaces for weak-dispersion high-efficiency transmission. Appl. Phys. Lett., 115: 134102. doi: 10.1063/1.5120494
    Tang Y G, Zhang Y, Xie B Y, Cheng H, Tian J G, Chen S Q. 2022. Transmission-reflection-integrated multifunctional continuously tunable metasurfaces for decoupled modulation of acoustic waves. Phys. Rev. Appl., 17: 044027. doi: 10.1103/PhysRevApplied.17.044027
    Tian Y, Wei Q, Cheng Y, Liu X J. 2017. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude. Appl. Phys. Lett., 110: 191901. doi: 10.1063/1.4983282
    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J. 2015. Broadband manipulation of acoustic wavefronts by pentamode metasurface. Appl. Phys. Lett., 107: 221906. doi: 10.1063/1.4936762
    Tian Z H, Yu L Y. 2019. Elastic phased diffraction gratings for manipulation of ultrasonic guided waves in solids. Phys. Rev. Appl., 11: 024052. doi: 10.1103/PhysRevApplied.11.024052
    Tian Z H, Shen C, Li J F, Reit E, Gu Y Y, et al. 2019. Programmable acoustic metasurfaces. Adv. Funct. Mater., 29: 1808489. doi: 10.1002/adfm.201808489
    Tong S S, Ren C Y, Tang W P. 2021. Asymmetric sandwich-like elements for bianisotropic acoustic metasurfaces. J. Phys. D:Appl. Phys., 54: 485101. doi: 10.1088/1361-6463/ac2113
    Van Damme B, Hannema G, Sales Souza L, Weisse B, Tallarico D, Bergamini A. 2021. Inherent non-linear damping in resonators with inertia amplification. Appl. Phys. Lett., 119: 061901. doi: 10.1063/5.0061826
    Wang H P, Gao W J, Zhu R R, Wang Z H, Xu Z W, Zheng B. 2019. Ultrathin acoustic metasurface holograms with arbitrary phase control. Appl. Sci., 9: 3585. doi: 10.3390/app9173585
    Wang Q Y, del Hougne P, Ma G C. 2022. Controlling the spatiotemporal response of transient reverberating sound. Phys. Rev. Appl., 17: 044007. doi: 10.1103/PhysRevApplied.17.044007
    Wang T, Ke M Z, Li W P, Yang Q, Qiu C Y, Liu Z Y. 2016. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett., 109: 123506. doi: 10.1063/1.4963185
    Wang W Q, Xie Y B, Popa B I, Cummer S A. 2016. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface. J. Appl. Phys., 120: 195103. doi: 10.1063/1.4967738
    Wang W, Iglesias J, Jin Y B, Djafari-Rouhani B, Khelif A. 2021a. Experimental realization of a pillared metasurface for flexural wave focusing. APL Mater., 9: 051125. doi: 10.1063/5.0052278
    Wang W, Tan Y, Liang B, Ma G C, Wang S B, Cheng J C. 2021b. Generalized momentum conservation and Fedorov-Imbert linear shift of acoustic vortex beams at a metasurface. Phys. Rev. B, 104: 174301. doi: 10.1103/PhysRevB.104.174301
    Wang X L, Yang J, Liang B, Cheng J C. 2020. Tunable annular acoustic metasurface for transmitted wavefront modulation. Appl. Phys. Express, 13: 014002. doi: 10.7567/1882-0786/ab59a5
    Wang X P, Wan L L, Chen T N, Liang Q X, Song A L. 2016a. Broadband acoustic diode by using two structured impedance-matched acoustic metasurfaces. Appl. Phys. Lett., 109: 044102. doi: 10.1063/1.4960019
    Wang X P, Wan L L, Chen T N, Song A L, Du X W. 2016b. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces. AIP Adv., 6: 065320. doi: 10.1063/1.4954750
    Wang X P, Wan L L, Chen T N, Song A L, Wang F. 2016c. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses. J. Appl. Phys., 120: 014902. doi: 10.1063/1.4954326
    Wang X, Fang X S, Mao D X, Jing Y, Li Y. 2019. Extremely asymmetrical acoustic metasurface mirror at the exceptional point. Phys. Rev. Lett., 123: 214302. doi: 10.1103/PhysRevLett.123.214302
    Wang X, Mao D X, Li Y. 2017. Broadband acoustic skin cloak based on spiral metasurfaces. Sci. Rep., 7: 11604. doi: 10.1038/s41598-017-11846-1
    Wang Y F, Wang Y Z, Wu B, Chen W Q, Wang Y S. 2020. Tunable and active phononic crystals and metamaterials. ASME Appl. Mech. Rev., 72: 040801. doi: 10.1115/1.4046222
    Wang Y H, Cheng Y, Liu X J. 2019. Modulation of acoustic waves by a broadband metagrating. Sci. Rep., 9: 7271. doi: 10.1038/s41598-019-43850-y
    Wang Y, Qian J, Xia J P, Ge Y, Yuan S Q, Sun H X, Liu X J. 2021. Acoustic Bessel vortex beam by quasi-three-dimensional reflected metasurfaces. Micromachines, 12: 1388. doi: 10.3390/mi12111388
    Weng J K, Ding Y J, Hu C B, Zhu X F, Liang B, Yang J, Cheng J C. 2020. Meta-neural-network for real-time and passive deep-learning-based object recognition. Nat. Commun., 11: 6309. doi: 10.1038/s41467-020-19693-x
    Weng J K, Zhu Y F, Liang B, Yang J, Cheng J C. 2021. Wavelength-dependent multi-functional wavefront manipulation for reflected acoustic waves. Appl. Phys. Express, 13: 094003.
    Wu X X, Xia X X, Tian J X, Liu Z Y, Wen W J. 2016. Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length. Appl. Phys. Lett., 108: 163502. doi: 10.1063/1.4947437
    Wunenburger R, Lozano J I V, Brasselet E. 2015. Acoustic orbital angular momentum transfer to matter by chiral scattering. New J. Phys., 17: 103022. doi: 10.1088/1367-2630/17/10/103022
    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y. 2018. Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces. Phys. Rev. Appl., 10: 014016. doi: 10.1103/PhysRevApplied.10.014016
    Xia M, Zhang X, Wu F G, Wang L C, Liu Y C, Chen Z H, Yao Y W. 2020. Broadband high-quality airy beams via lossy acoustic gradient-index metasurfaces. Solid State Commun., 308: 113810. doi: 10.1016/j.ssc.2019.113810
    Xia R Y, Yi J L, Chen Z, Li Z. 2019. In situ steering of shear horizontal waves in a plate by a tunable electromechanical resonant elastic metasurface. J. Phys. D:Appl. Phys., 53: 095302.
    Xie B Y, Cheng H, Tang K, Liu Z Y, Chen S Q, Tian J G. 2017a. Multiband asymmetric transmission of airborne sound by coded metasurfaces. Phys. Rev. Appl., 7: 024010. doi: 10.1103/PhysRevApplied.7.024010
    Xie B Y, Tang K, Cheng H, Liu Z Y, Chen S Q, Tian J G. 2017b. Coding acoustic metasurfaces. Adv. Mater., 29: 1603507. doi: 10.1002/adma.201603507
    Xie H F, Hou Z L. 2021. Nonlocal metasurface for acoustic focusing. Phys. Rev. Appl., 15: 034054. doi: 10.1103/PhysRevApplied.15.034054
    Xie S H, Fang X S, Li P Q, Huang S B, Peng Y G, Shen Y X, Li Y, Zhu X F. 2020. Tunable double-band perfect absorbers via acoustic metasurfaces with nesting helical tracks. Chin. Phys. Lett., 37: 054301. doi: 10.1088/0256-307X/37/5/054301
    Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, et al. 2016. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep., 6: 35437. doi: 10.1038/srep35437
    Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, Cummer S A. 2014. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun., 5: 5553. doi: 10.1038/ncomms6553
    Xu M X, Lee P V S, Collins D J. 2022. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Lab Chip, 22: 90-99. doi: 10.1039/D1LC00711D
    Xu W K, Zhang M, Lin Z B, Liu C L, Qi W C, Wang W. 2019a. Anomalous refraction manipulation of Lamb waves using single-groove metasurfaces. Phys. Scr., 94: 105807. doi: 10.1088/1402-4896/ab2b01
    Xu W K, Zhang M, Ning J Y, Wang W, Yang T Z. 2019b. Anomalous refraction control of mode-converted elastic wave using compact notch-structured metasurface. Mater. Res. Express, 6: 065802. doi: 10.1088/2053-1591/ab0dc8
    Xu Z H, Li P, Liu M Y, Du Q J, Guo Y F, Peng P. 2022. An ultrathin acoustic metasurface composed of an anisotropic three component resonator. Appl. Phys. Express, 15: 027004. doi: 10.35848/1882-0786/ac4a0e
    Xu Z K, Qin L, Xu W, Fang S H, Wang J Y. 2021. Design approach of perforated labyrinth based acoustic metasurface for selective acoustic levitation manipulation. Sci. Rep., 11: 7619. doi: 10.1038/s41598-021-87179-x
    Yan P Y, Zhu X F, Chen D, Wu D J. 2021. Perfect multiple splitting with arbitrary power distribution by acoustic metasurfaces. Europhys. Lett., 134: 48003. doi: 10.1209/0295-5075/134/48003
    Yang X W, Kweun M, Kim Y Y. 2019. Monolayer metamaterial for full mode-converting transmission of elastic waves. Appl. Phys. Lett., 115: 071901. doi: 10.1063/1.5109758
    Yang X Y, Fei C L, Li D, Li Z X, Sun X H, Hou S, Feng W, Yang Y T. 2019. Analysis of dynamic high-frequency acoustic field control by metasurfaces lens. AIP Adv., 9: 115119. doi: 10.1063/1.5124119
    Yaw Z, Zhou W J, Chen Z Y, Lim C W. 2021. Stiffness tuning of a functional-switchable active coding elastic metasurface. Int. J. Mech. Sci., 207: 106654. doi: 10.1016/j.ijmecsci.2021.106654
    Ye L P, Qiu C Y, Lu J Y, Tang K, Jia H, et al. 2016. Making sound vortices by metasurfaces. AIP Adv., 6: 085007. doi: 10.1063/1.4961062
    Yilmaz C, Hulbert G M, Kikuchi N. 2007. Phononic band gaps induced by inertial amplification in periodic media. Phys. Rev. B., 76: 054309. doi: 10.1103/PhysRevB.76.054309
    Yu G K, Qiu Y P, Li Y, Wang X L, Wang N. 2021. Underwater acoustic stealth by a broadband 2-bit coding metasurface. Phys. Rev. Appl., 15: 064064. doi: 10.1103/PhysRevApplied.15.064064
    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. 2011. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334: 333-337. doi: 10.1126/science.1210713
    Yuan B G, Cheng Y, Liu X J. 2015. Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure. Appl. Phys. Express, 8: 027301. doi: 10.7567/APEX.8.027301
    Yuan M, Cao Z P, Luo J, Ohayon R. 2018. Acoustic metastructure for effective low-frequency acoustic energy harvesting. J. Low Freq. Noise Vib. Act. Control, 37: 1015-1029. doi: 10.1177/1461348418794832
    Yuan S M, Chen A L, Wang Y S. 2020a. Switchable multifunctional fish-bone elastic metasurface for transmitted flexural wave modulation. J. Sound Vib., 470: 115168. doi: 10.1016/j.jsv.2019.115168
    Yuan S M, Chen A L, Cao L Y, Zhang H W, Fan S W, et al. 2020b. Tunable multifunctional fish-bone elastic metasurface for wavefront manipulation of transmitted in-plane waves. J. Appl. Phys., 128: 224502. doi: 10.1063/5.0029045
    Yuan S M, Ma T X, Chen A L, Wang Y S. 2018. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves. AIP Adv., 8: 035026. doi: 10.1063/1.5011194
    Zahra S, Ma L, Wang W J, Li J, Chen D X, et al. 2021. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front. Phys., 8: 593411. doi: 10.3389/fphy.2020.593411
    Zeng J F, Zhang X, Wu F G, Han L X, Wang Q, et al. 2019. Phase modulation of acoustic vortex beam with metasurfaces. Phys. Lett. A, 383: 2640-2644. doi: 10.1016/j.physleta.2019.05.027
    Zeng L H, Zhang J, Liu Y L, Zhao Y X, Hu N. 2019. Asymmetric transmission of elastic shear vertical waves in solids. Ultrasonics, 96: 34-39. doi: 10.1016/j.ultras.2019.03.016
    Zeng L S, Shen Y X, Fang X S, Li Y, Zhu X F. 2021. Experimental realization of ultrasonic retroreflection tweezing via metagratings. Ultrasonics, 117: 106548. doi: 10.1016/j.ultras.2021.106548
    Zeng Y, Cao L Y, Zhu Y F, Wang Y F, Du Q J, Wang Y S, Assouar B. 2021. Coupling the first and second attenuation zones in seismic metasurface. Appl. Phys. Lett., 119: 013501. doi: 10.1063/5.0054606
    Zhai S L, Chen H J, Ding C L, Shen F L, Luo C R, Zhao X P. 2015. Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces. Appl. Phys. A, 120: 1283-1289. doi: 10.1007/s00339-015-9379-6
    Zhai S L, Ding C L, Chen H J, Shen F L, Luo C R, Zhao X P. 2016. Anomalous manipulation of acoustic wavefront with an ultrathin planar metasurface. ASME J. Vib. Acoust., 138: 041019. doi: 10.1115/1.4033258
    Zhai S L, Song K, Ding C L, Wang Y B, Dong Y B, Zhao X P. 2018. Tunable acoustic metasurface with high-Q spectrum splitting. Materials, 11: 1976. doi: 10.3390/ma11101976
    Zhang C, Cao W K, Wu L T, Ke J C, Jing Y, et al. 2021. A reconfigurable active acoustic metalens. Appl. Phys. Lett., 118: 133502. doi: 10.1063/5.0045024
    Zhang H K, Zhang W X, Liao Y H, Zhou X M, Li J F, et al. 2020. Creation of acoustic vortex knots. Nat. Commun., 11: 3956. doi: 10.1038/s41467-020-17744-x
    Zhang H, Wei Z, Fan L, Qu J, Zhang S Y. 2016. Tunable sound transmission at impedance-mismatched fluidic interface assisted by a composite waveguide. Sci. Rep., 6: 34688. doi: 10.1038/srep34688
    Zhang J, Su X S, Liu Y L, Zhao Y X, Jing Y, Hu N. 2019. Metasurface constituted by thin composite beams to steer flexural waves in thin plates. Int. J. Solids Struc., 162: 14-20. doi: 10.1016/j.ijsolstr.2018.11.025
    Zhang J, Su X S, Pennec Y, Jing Y, Liu X F, Hu N. 2018a. Wavefront steering of elastic shear vertical waves in solids via a composite-plate-based metasurface. J. Appl. Phys., 124: 164505. doi: 10.1063/1.5049515
    Zhang J, Tian Y, Cheng Y, Liu X J. 2020a. Acoustic holography using composite metasurfaces. Appl. Phys. Lett., 116: 030501. doi: 10.1063/1.5132629
    Zhang J, Yang Y, Zhu B P, Li X J, Jin J, et al. 2018b. Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Appl. Phys. Lett., 113: 243502. doi: 10.1063/1.5058079
    Zhang J, Zhang X B, Xu F L, Ding X Y, Deng M X, et al. 2020b. Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. J. Sound Vib., 481: 115440. doi: 10.1016/j.jsv.2020.115440
    Zhang N L, Zhao S D, Dong H W, Wang Y S, Zhang Ch. 2022. Reflection-type broadband acoustic coding metasurfaces for acoustic focusing and splitting. Appl. Phys. Lett., 120: 142201. doi: 10.1063/5.0087339
    Zhang P, Li T C, Zhu J, Zhu X F, Yang S, et al. 2014. Generation of acoustic self-bending and bottle beams by phase engineering. Nat. Commun., 5: 4316. doi: 10.1038/ncomms5316
    Zhang S Z, Shu S W, Bian X H. 2022. Tunability for anomalous refraction of flexural wave in a magneto-elastic metasurface by magnetic field and pre-stress. Appl. Phys. Express, 15: 027003. doi: 10.35848/1882-0786/ac4925
    Zhang X D, Chen H, Zhao Z G, Zhao A G, Cai X, Wang L. 2020. Experimental demonstration of a broadband waterborne acoustic metasurface for shifting reflected waves. J. Appl. Phys., 127: 174902. doi: 10.1063/1.5139008
    Zhang X, Ma J Y, Li M Y, You Z, Wang X Y, et al. 2022. Kirigami-based metastructures with programmable multistability. Proc. Natl. Acad. Sci., 119: e2117649119. doi: 10.1073/pnas.2117649119
    Zhang Y, Cheng H, Tian J G, Chen S Q. 2020. Frequency-selected bifunctional coding acoustic metasurfaces. Phys. Rev. Appl., 14: 064057. doi: 10.1103/PhysRevApplied.14.064057
    Zhang Y, Xie B Y, Liu W W, Cheng H, Chen S Q, Tian J G. 2019. Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces. Appl. Phys. Lett., 114: 091905. doi: 10.1063/1.5087636
    Zhao J J, Li B W, Chen Z N, Qiu C W. 2013a. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci. Rep., 3: 2537. doi: 10.1038/srep02537
    Zhao J J, Li B W, Chen Z N, Qiu C W. 2013b. Redirection of sound waves using acoustic metasurface. Appl. Phys. Lett., 103: 151604. doi: 10.1063/1.4824758
    Zhao J Y, Chremmos I D, Song D H, Christodoulides D N, Efremidis N K, Chen Z G. 2015. Curved singular beams for three-dimensional particle manipulation. Sci. Rep., 5: 12086. doi: 10.1038/srep12086
    Zhao S D, Chen A L, Wang Y S, Zhang Ch. 2018. Continuously tunable acoustic metasurface for transmitted wavefront modulation. Phys. Rev. Appl., 10: 054066. doi: 10.1103/PhysRevApplied.10.054066
    Zhao S D, Dong H W, Miao X B, Wang Y S, Zhang Ch. 2022. Broadband programmable coding metasurfaces with 2-bit manipulations. Phys. Rev. Appl., 17: 034019. doi: 10.1103/PhysRevApplied.17.034019
    Zhao S P, Hu Y X, Lu J, Qiu X J, Cheng J C, Burnett I. 2014. Delivering sound energy along an arbitrary convex trajectory. Sci. Rep., 4: 6628.
    Zhao Y P, Liu J J, Liang B, Cheng J C. 2020. An ultrathin planar acoustic metasurface diffuser with narrowband uniform reflection. AIP Adv., 10: 085122. doi: 10.1063/5.0011243
    Zheng M Y, Park C Il, Liu X N, Zhu R, Hu G K, Kim Y Y. 2020. Non-resonant metasurface for broadband elastic wave mode splitting. Appl. Phys. Lett., 116: 171903. doi: 10.1063/5.0005408
    Zheng Z, Zhang B F, Chen H, Ding J P, Wang H T. 2011. Optical trapping with focused Airy beams. Appl. Optics, 50: 43-49. doi: 10.1364/AO.50.000043
    Zhou H T, Fan S W, Li X S, Fu W X, Wang Y F, Wang Y S. 2020. Tunable arc-shaped acoustic metasurface carpet cloak. Smart Mater. Struct. , 29: 065016
    Zhou H T, Fu W X, Li X S, Wang Y F, Wang Y S. 2022. Loosely coupled reflective impedance metasurfaces: Precise manipulation of waterborne sound by top ology optimization. Mech. Syst. Signal Process., 177: 109228. doi: 10.1016/j.ymssp.2022.109228
    Zhou H T, Fu W X, Wang Y F, Wang Y S. 2021a. High-efficiency ultrathin nonlocal waterborne acoustic metasurface. Phys. Rev. Appl., 15: 044046. doi: 10.1103/PhysRevApplied.15.044046
    Zhou H T, Fu W X, Wang Y F, Wang Y S, Laude V, Zhang Ch. 2021b. Ultra-broadband passive acoustic metasurface for wide-angle carpet cloaking. Mater. Des., 199: 109414. doi: 10.1016/j.matdes.2020.109414
    Zhou Q X, Zhang J, Ren X M, Xu Z, Liu X J. 2020. Multi-bottle beam generation using acoustic holographic lens. Appl. Phys. Lett., 116: 133502. doi: 10.1063/5.0003379
    Zhu H F, Semperlotti F. 2016. Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett., 117: 034302. doi: 10.1103/PhysRevLett.117.034302
    Zhu H F, Patnaik S, Walsh T F, Jared B H, Semperlotti F. 2020. Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality. Proc. Natl. Acad. Sci. U. S. A., 117: 26099-26108. doi: 10.1073/pnas.2004753117
    Zhu H F, Walsh T F, Semperlotti F. 2018. Total internal reflection elastic metasurfaces-design and application to structural vibration isolation. Appl. Phys. Lett., 113: 221903. doi: 10.1063/1.5052538
    Zhu H F, Walsh T F, Jared B H, Semperlotti F. 2022. On the broadband vibration isolation performance of nonlocal total-internal-reflection metasurfaces. J Sound Vib., 522: 116670. doi: 10.1016/j.jsv.2021.116670
    Zhu X F, Lau S K. 2019a. Perfect anomalous reflection and refraction with binary acoustic metasurfaces. J. Appl. Phys., 126: 224504. doi: 10.1063/1.5124040
    Zhu X F, Lau S K. 2019b. Reflected wave manipulation via acoustic metamaterials with decoupled amplitude and phase. Appl. Phys. A, 125: 392. doi: 10.1007/s00339-019-2687-5
    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C. 2016. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun., 7: 11731. doi: 10.1038/ncomms11731
    Zhu X H, Li J F, Shen C, Peng X Y, Song A L, Li L Q, Cummer S A. 2020. Non-reciprocal acoustic transmission via space-time modulated membranes. Appl. Phys. Lett., 116: 034101. doi: 10.1063/1.5132699
    Zhu Y F, Assouar B. 2019a. Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B, 99: 174109. doi: 10.1103/PhysRevB.99.174109
    Zhu Y F, Assouar B. 2019b. Systematic design of multiplexed-acoustic-metasurface hologram with simultaneous amplitude and phase modulations. Phys. Rev. Mater., 3: 045201. doi: 10.1103/PhysRevMaterials.3.045201
    Zhu Y F, Fan X D, Liang B, Yang J, Yang J, Yin L L, Cheng J C. 2016. Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing. AIP Adv., 6: 121702. doi: 10.1063/1.4968607
    Zhu Y F, Gerard N J, Xia X X, Stevenson G C, Cao L Y, Fan S W, Spadaccini C M, Jing Y, Assouar B. 2021a. Systematic design and experimental demonstration of transmission-type multiplexed acoustic meta-holograms. Adv. Funct. Mater., 31: 2101947. doi: 10.1002/adfm.202101947
    Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F, Cheng J C. 2018. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun., 9: 1632. doi: 10.1038/s41467-018-04103-0
    Zhu Y F, Merkel A, Donda K, Fan S W, Assouar B. 2021b. Nonlocal acoustic metasurface for ultrabroadband sound absorption. Phys. Rev. B, 103: 064102. doi: 10.1103/PhysRevB.103.064102
    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, et al. 2015a. Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci. Rep., 5: 10966. doi: 10.1038/srep10966
    Zhu Y F, Zou X Y, Liang B, Cheng J C. 2015b. Acoustic one-way open tunnel by using metasurface. Appl. Phys. Lett., 107: 113501. doi: 10.1063/1.4930300
    Zhu Y F, Zou X Y, Liang B, Cheng J C. 2015c. Broadband unidirectional transmission of sound in unblocked channel. Appl. Phys. Lett., 106: 173508. doi: 10.1063/1.4919537
    Zhu Y F, Fan X, Liang B, Cheng J C, Jing Y. 2017. Ultrathin acoustic metasurface-based Schroeder diffuser. Phys. Rev. X, 7: 021034.
    Zou H Z, Li P, Peng P. 2020. An ultra-thin acoustic metasurface with multiply resonant units. Phys. Lett. A, 384: 126151. doi: 10.1016/j.physleta.2019.126151
    Zou H Z, Xu Y L, Li P, Peng P. 2022. Reflected continuously tunable acoustic metasurface with rotatable space coiling-up structure. Phys. Lett. A, 426: 127891. doi: 10.1016/j.physleta.2021.127891
    Zou Z G, Lirette R, Zhang L K. 2020. Orbital angular momentum reversal and asymmetry in acoustic vortex beam reflection. Phys. Rev. Lett., 125: 074301. doi: 10.1103/PhysRevLett.125.074301
    Zuo S Y, Cheng Y, Liu X J. 2019a. Tunable perfect negative reflection based on an acoustic coding metasurface. Appl. Phys. Lett., 114: 203505. doi: 10.1063/1.5093700
    Zuo S Y, Tian Y, Cheng Y, Deng M X, Hu N, Liu X J. 2019b. Asymmetric coding metasurfaces for the controllable projection of acoustic images. Phys. Rev. Mater., 3: 065204. doi: 10.1103/PhysRevMaterials.3.065204
    Zuo S Y, Tian Y, Wei Q, Cheng Y, Liu X J. 2018a. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude. J. Appl. Phys., 123: 091704. doi: 10.1063/1.5004617
    Zuo S Y, Wei Q, Cheng Y, Liu X J. 2017. Mathematical operations for acoustic signals based on layered labyrinthine metasurfaces. Appl. Phys. Lett., 110: 011904. doi: 10.1063/1.4973705
    Zuo S Y, Wei Q, Tian Y, Cheng Y, Liu X J. 2018b. Acoustic analog computing system based on labyrinthine metasurfaces. Sci. Rep., 8: 10103. doi: 10.1038/s41598-018-27741-2
  • 加载中
图(31)
计量
  • 文章访问数:  3462
  • HTML全文浏览量:  1860
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2022-07-04
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-12-29

目录

    /

    返回文章
    返回