留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动生物力学发展现状及挑战

刘程林 郝卫亚 霍波

刘程林, 郝卫亚, 霍波. 运动生物力学发展现状及挑战. 力学进展, 2023, 53(1): 198-238 doi: 10.6052/1000-0992-22-030
引用本文: 刘程林, 郝卫亚, 霍波. 运动生物力学发展现状及挑战. 力学进展, 2023, 53(1): 198-238 doi: 10.6052/1000-0992-22-030
Liu C L, Hao W Y, Huo B. Advances and challenges in sports biomechanics. Advances in Mechanics, 2023, 53(1): 198-238 doi: 10.6052/1000-0992-22-030
Citation: Liu C L, Hao W Y, Huo B. Advances and challenges in sports biomechanics. Advances in Mechanics, 2023, 53(1): 198-238 doi: 10.6052/1000-0992-22-030

运动生物力学发展现状及挑战

doi: 10.6052/1000-0992-22-030
基金项目: 国家自然科学基金 (12102277) , 科技部重点研发计划“科技冬奥”专项, “国家科学化训练基地建设关键技术研究与示范”项目 (2018YFF0300800)资助. 感谢北京体育大学刘卉教授以及北京理工大学郭建峤博士对本文提出的修改建议.
详细信息
    作者简介:

    刘程林,博士,首都体育学院体育人工智能研究院副教授、硕士生导师。主持国家自然基金2项、北京市教委科技一般项目1项、国家体育总局科技助力项目1项,并参与国家重点研发计划项目、装备发展部预研项目、装备发展部快速转化项目、中央军委基础加强计划重点基础研究项目等多项课题研究工作。研究方向主要包括:运动疲劳对于神经肌肉协同控制的影响,疲劳状态下关节、肌肉损伤预测和分析,基于深度学习的人体姿态识别及其在运动技战术分析中的应用等。在《Biophysical Journal》等杂志发表SCI收录论文10余篇

    霍波, 博士, 教授, 博士生导师, 首都体育学院体育人工智能研究院院长, 运动生物力学研究中心首席专家. 作为项目负责人主持了科技部重点研发计划项目、国家自然科学基金项目多项. 2021年被体育总局评为“中国冰雪科学家”, 获得第六届中国创新挑战赛暨中关村第五届新兴领域专题赛优胜奖, 并指导学生获得省部级创新创业竞赛奖多项. 主要从事生物力学研究, 发现动态外力调控骨骼结构的新的细胞力学机制, 并研发了以骨骼肌肉动力学为核心的智能测试分析系统, 成功应用于多支国家队的北京冬奥备战训练, 助力相关运动员获得1金1银1铜的优异成绩. 发表杂志论文80余篇, 其中SCI收录论文50余篇. 出版学术专著1部、学科史1部, 参编专著7部 (章节) , 获批工信部规划教材1部

    通讯作者:

    liuchenglin@cupes.edu.cn

    huobo@cupes.edu.cn

  • 中图分类号: (O313)

Advances and challenges in sports biomechanics

More Information
  • 摘要: 狭义的运动生物力学特指人体运动中的生物力学, 主要解决竞技体育领域中如何提高运动成绩和减少运动损伤的问题. 随着相关学科的融合和发展, 当前运动生物力学的研究已扩展到与人类运动相关的生物学、医学、力学等学科领域. 近年来, 智能测试、大数据分析、人工智能等技术快速发展, 对运动生物力学实验、仿真方法产生了重要的影响, 在不断拓展和深化着该学科的研究内容和方向的同时, 也对运动生物力学发展提出了新的挑战. 本文综述了近年来运动生物力学领域的研究现状, 并指出了相关研究方向的关键问题及发展趋势: 在理论建模和模拟仿真计算方面, 肌肉本构理论及肌肉力计算准确性是重点和难点; 实验测试的新技术在竞技体育运动项目中的应用研究中扮演重要角色, 其中基于深度学习的人体关键点检测算法在解决竞技体育的非接触测量方面有突破性进展; 对于骨、韧带、软骨、肌肉等组织的宏观损伤机制认识不断清晰, 但对于其早期损伤预测以及跨尺度损伤发生机制的研究仍有待深入; 智能可穿戴装备、人工智能等新技术开始应用于运动生物力学研究及实践, 成为目前运动生物力学领域最具活力的研究方向之一. 本文的综述表明当前运动生物力学研究越来越向智能化、个体化、定量化发展, 并正在与相关学科不断交叉融合, 持续推进着体育、健康、医疗等领域的科技创新发展.

     

  • 图  1  典型的膝关节双刚体模型(Richard et al. 2016). (a) 膝关节模型的坐标系统Qi: 小腿 (i = 2) , 大腿 (i = 3) 以及膝关节, (b) 从上到下表示四种不同的膝关节模型: 无关节模型 (N) 、球形模型 (S) 、并联机构 (P) 和刚度矩阵 (M)

    图  2  基于人体运动分析的多体动力学模型. (a) 平面多刚体力学建模(King et al. 2019), (b) Anybody全人体肌骨模型 (AnyBody Technology Inc., Denmark), (c) OpenSim全人体模型(Raabe & Chaudhari 2016)

    图  3  基于Hill-Zajac假设的肌肉收缩力模型. (a) Hill-Zajac模型的基本假设及力学模型的抽象过程(Zajac 1989), (b) 肌腱力随肌腱长度变化关系的实验(Magnusson et al. 2001, Maganaris & Paul 2002)和模型结果(Blankevoort et al. 1991), (c) 肌肉力与肌纤维长度关系的实验(Gollapud & Lin 2009, Winters et al. 2011)和模型结果(Arnold et al. 2010), (d) 肌肉力与肌纤维收缩速度关系的实验(Joyce et al. 1969, MASHIMA 1984)和模型结果(Blankevoort et al. 1991)

    图  4  肌骨动力学模拟在实践中的应用. (a) 不同步态的关节受力分析(Lerner et al. 2015), 局部放大图显示膝关节模型结构, 右侧逻辑图显示模型结构间位置和运动关系, (b) 人工关节评估和优化(Chen et al. 2014), (c) 人机耦合外骨骼助力装备的设计, 从左至右分别为外骨骼装置照片、人-机耦合骨骼肌肉动力学分析和实验照片(Gordon et al. 2018), (d) 专项运动技术动作优化和损伤分析(Trasolini et al. 2022)

    图  5  动力学参数测量设备. (a) 足底压力鞋垫在大跳台训练中的应用, (b) 三维测力台在下肢评估中的应用, (c) 分布式足底压力测试系统 (Materialise Inc., Belgium), (d) 等速肌力测试系统

    图  6  冬季项目训练智能管理系统(霍波等2022a). 结合生理学、运动学、动力学等参数的检测实现对人体心肺系统、骨骼肌肉系统建模分析, 实现多维度、精细化、科学化的运动训练管理

    图  7  短跑的起跑过程中关键动作和对应时间(Bezodis et al. 2019b).

    图  8  膝关节在体建模和有限元分析流程(Jogi et al. 2021). (a) 人体膝关节核磁共振成像图 (单层), (b) 对核磁图像进行不同组织的分割并用Mimics创建三维几何体, (c) ANSYS对三维模型划分网格, (d) 针对不同软组织刚度取值, 有限元模型计算得到每位受试者的胫骨关节变形结果

    图  9  三维人体姿态公开数据集. (a) Human3.6M人体姿态数据采集方案和采集过程, (b) HumanEVA数据集采集过程, (c) MPI-INF-3DHP数据采集过程

  • 蔡旭旦, 毛丽娟, 张蓓等. 2021. 跨项目运动员越野滑雪长期训练运动能力变化——基于运动机能监控的研究. 体育科学, 41: 3-13 (Cai X D, Mao L J, Zhang B, et al. 2021. The development of physical capacity of talent-transferring athletes in long term cross-country skiing training — based on sports physiological evaluations. China Sport Science, 41: 3-13). doi: 10.16469/j.css.202108001
    曹武警. 2019. 步态自适应仿生膝关节假肢系统建模及智能控制方法研究. [博士论文]. 上海: 上海理工大学.

    Cao W J. 2019. Research on modeling and intelligent control mechod for prosthesis system with gait adaptive bionic knee. [PhD Thesis]. Shanghai: Shanghai University of Technology.
    陈胜利, 张立. 2011. 表面肌电信号分析评价肌肉疲劳的有效性和敏感性. 武汉体育学院学报, 45: 71-77 (Chen S L, Zhang L. 2011. Efficiency and sensitivity of assessment of muscle fatigue by utilizing sEMG parameters. Journal of Wuhan Institute of Physical Education, 45: 71-77). doi: 10.3969/j.issn.1000-520X.2011.05.015
    褚子雯. 2020. 不同负重深蹲练习髋膝踝关节力量的理论计算与变化特征分析. [硕士论文]. 武汉: 武汉体育学院.

    Chu Z W. 2020. Theoretical calculation and variation analysis of hip, knee and ankle joint strength in different load squats. [Master Thesis]. Wuhan: Wuhan Institute of Physical Education.
    范洪彬, 孙有平, 季浏. 2016. 基于表面肌电贡献率的上肢不同力量素质指标年龄、性别通用性研究. 中国体育科技, 52: 83-97 (Fan H B, Sun Y P, Ji L. 2016. Age and gender universality research on different upper limbs strength indicators in physical fitness test based surface electromyography muscular contribution. China Sport Science and Technology, 52: 83-97). doi: 10.16470/j.csst.201605012
    冯勇, 周皓, 汪爱媛. 2020. 臀大肌及臀中肌功能与下肢应力性骨折的相关性分析//第十三届全国生物力学学术会议论文摘要汇编

    Feng Y, Zhou Z, Wang A Y. 2020. Correlation between gluteus maximus and gluteus medius muscle function and stress fracture of lower limbs//Proceedings of 13th National Conference on Biomechanics.
    高辉, 王晨艳, 李志等. 2021. 不同屈曲状态下固定轴和移动轴膝关节胫-股关节的生物力学变化. 太原理工大学学报, 52: 144-150 (Gao H, Wang C Y, Li Z, et al. 2021. Biomechanical changes of the tibial-femoral joint of the knee joint with fixed and moving axes under different flexion states. Journal of Taiyan University of Technology, 52: 144-150). doi: 10.16355/j.cnki.issn1007-9432tyut.2021.01.020
    郭峰, 张日辉. 2009. 优秀女子拳击运动员后手直拳技术动作上肢肌肉表面肌电分析. 沈阳体育学院学报, 28: 65-68 (Guo F, Zhang R H. 2009. Surface electromyography of upper extremity muscles for elite female boxers straight punches. Journal of Shenyang Sport University, 28: 65-68). doi: 10.3969/j.issn.1004-0560.2009.01.019
    郭建峤, 王言冰, 田强, 任革学, 胡海岩. 2022. 人体肌骨的多柔体系统动力学研究进展. 力学进展, 52: 253-310 (Guo J Q, Wang Y B, Tian Q, Ren G X, Hu H Y. 2022. Advances in flexible multibody dynamics of human musculoskeletal systems. Advances in Mechanics, 52: 253-310). doi: 10.6052/1000-0992-21-056
    黄琳, 蔡莉, 君洪梅等. 2021. 表面肌电图监测在脑炎后遗症儿童康复策略制定中的临床价值. 中国优生与遗传杂志, 29: 398-401 (Huang L, Cai L, Jun H M, et al. 2021. Guiding significance and clinical value of surface electromyography monitoring in the development of rehabilitation strategies for children with encephalitis sequelae. Chinese Journal of Eugenics and Genetics, 29: 398-401). doi: 10.13404/j.cnki.cjbhh.20210727.001
    霍波, 蒋量, 孙青等. 2022a. 冰雪运动对运动生物力学基础研究和应用技术的挑战. 北京体育大学学报, 45: 45-55 (Huo B, Jiang L, Sun Q, et al. 2022a. Challenges posed by winter sports to the fundamental research on biomechanics and applied technologies. Journal of Beijing Sport University, 45: 45-55). doi: 10.19582/j.cnki.11-3785/g8.2022.01.005
    霍波, 黄毅, 蒋量等. 2022b. 冬季运动项目训练智能管理系统. 实验技术与管理, 39: 6-11
    靳少康. 2021. 基于可穿戴传感的跌倒检测研究. [硕士论文]. 保定: 河北大学.

    Jin S K., 2021. Research on fall detection based on wearable sensor. [Master Thesis]. Baoding: Hebei University.
    李翰君, 刘卉, 张新, 于冰. 2014. 基于肌电和优化方法的关节肌力分布模型. 中国运动医学杂志, 32: 981-987 (Li H. J, Liu H, Zhang X, Yu B. 2014. EMG-Driven optimized muscle force distribution model. Chinese Journal of Sports Medicine, 32: 981-987). doi: 10.3969/j.issn.1000-6710.2014.10.007
    李翰君, 刘嘉, 叶奎刚, 于冰, 刘卉. 2020. 速度节奏对链球成绩的影响: 优秀运动员案例研究. 北京体育大学学报, 43: 108-115 (Li H J, Liu J, Ye K G, Yu B, Liu H. 2020. The impact of speed rhythm on hammer throw distance: a case study of an elite athlete. Journal of Beijing Sport University, 43: 108-115).
    刘卉, 李翰君, 曲毅等. 2021a. 无反光点人体运动自动捕捉人工智能系统的有效性. 北京体育大学学报, 44: 125-133 (Liu H, Li H J, Qu Y, et al. 2021a. Validity of an artificial intelligence system for markerless human movement automatic capture. Journal of Beijing Sport University, 44: 125-133).
    刘卉, 于冰, 张力文, 吴海军. 2021b. 竞技体育运动生物力学研究现状与趋势. 医用生物力学, 36: 491-501 (Liu H, Yu B, Zhang L W, Wu H J. 2021b. Research status and trends in competitive sports biomechanics. Journal of Medical Biomechanics, 36: 491-501).
    刘延柱. 2005. 腾空运动: 从猫空中转体谈起——物理与体育系列专题之八. 物理通报, 5: 48-49 (Liu Y Z. 2005. Flying Sports: talking about the cat's turning in the air - the eighth special topic of physics and sports series. Physics Bulletin, 5: 48-49). doi: 10.3969/j.issn.0509-4038.2005.01.017
    吕钢, 孙凯扬, 买毅强等. 2021. 空气动力学距离对标枪运动员吕会会投掷技术的个案研究. 中国体育科技, 57: 52-57 (Lü G, Sun K Y, Mai Y Q, et al. 2021. The effect of aerodynamic distance on the performance of javelin throwers: a case study on the throwing technique of an elite chinese women javelin thrower lyu huihui. China Sport Science and Technology, 57: 52-57).
    吕稼冰, 许建中, 田科, 李宇. 2017. 重度膝关节骨性关节炎与胫骨内翻、外翻畸形的关系. 河南医学研究, 27: 6 (Lü J B, Xu J Z, Tian K, Li Y. 2017. Relationship between severe knee osteoarthritis and tibial varus and valgus deformity. Henan Medical Research, 27: 6).
    蒲放, 樊瑜波. 2012. 康复辅具设计中的生物力学研究. 医用生物力学, 28: 363-365 (Pu F, Fan Y B. 2012. Biomechanical research for design of rehabilitation technical aids. Journal of Medical Biomechanics, 28: 363-365). doi: 10.16156/j.1004-7220.2013.04.003
    孙志成, 王彤. 2018. 三维运动分析系统在康复医学评估检测中的应用进展. 中国康复医学杂志, 33: 234-238 (Sun Z C, Wang T. 2018. Application of three-dimensional motion analysis system in rehabilitation medicine evaluation. Chinese Journal of Rehabilitation Medicine, 33: 234-238). doi: 10.3969/j.issn.1001-1242.2018.02.025
    王国杰, 苏炳添, 章碧玉, 彭秋艳, 邹吉玲. 2019. 优秀短跑运动员苏炳添的技术优化训练研究. 成都体育学院学报, 45: 82-87 (Wang G J, Su B T, Zhang B Y, Peng Q Y, Zou J L. 2019. Researchon the technical optimization training of the elite sprinter su bingtian. Journal of Chengdu Sport University, 45: 82-87). doi: 10.15942/j.jcsu.2019.06.015
    王丽珍, 樊瑜波. 2020. 过载性损伤与防护生物力学. 力学进展, 50: 202004 (Wang L Z, Fan Y B. 2020. The biomechanics of injury and prevention. Advances in Mechanics, 50: 202004). doi: 10.6052/1000-0992-19-020
    王清, 郝卫亚, 刘卉, 王向东, 刘颖. 2016. 运动生物力学学科发展现状及前景. 体育科研, 37: 91-95 (Wang Q, Hao W Y, Liu H, Wang X D, Liu Y. 2016. Development status and prospect of sports biomechanics. Sport Science Research, 37: 91-95). doi: 10.3969/j.issn.1006-1207.2016.05.018
    王晓辉, 王坤, 胡志勇, 田红亮. 2020. 假肢接受腔设计及界面应力的有限元分析. 中国组织工程研究, 24: 862-868 (Wang X H, Wang K, Hu Z Y, Tian H L. 2020. Design of prosthetic socket and finite element analysis of interface stress. Tissue Engineering Research in China, 24: 862-868). doi: 10.3969/j.issn.2095-4344.2442
    吴成亮, 郝卫亚, 庞乐. 2009. 踺子转体180°前手翻接直体前空翻转体类跳马动作的运动学分析. 中国体育科技, 45: 42-45 + 74 (Wu C L, Hao W Y, Pang L. 2009. Kinematical analysis on category of movement-round-off with1/2 twist and forward handspring and salto stretched with a twist. China Sport Science and Technology, 45: 42-45 + 74). doi: 10.3969/j.issn.1002-9826.2009.04.008
    吴成亮, 郝卫亚. 2021. 体操后空翻类落地动作的下肢关节负荷及其控制特征. 中国运动医学杂志, 40: 438-449 (Wu C L, Hao W Y. 2021. Research on lower-limb joint loading and motor control strategies on backward somersault landings in gymnastics. Chinese Journal of Sports Medicine, 40: 438-449). doi: 10.3969/j.issn.1000-6710.2021.06.004
    肖晓飞, 郝卫亚. 2019. 自由体操落地致膝损伤的生物力学因素分析. 中国运动医学杂志, 38: 169-175 (Xiao Y F, Hao W Y. 2019. A biomechanical factor analysis of knee injury of gymnasts during landing in floor exercise. Chinese Journal of Sports Medicine, 38: 169-175). doi: 10.3969/j.issn.1000-6710.2019.03.001
    杨金娟, 陈俊飞, 支子, 严翊. 2019. 肌腱力学生物学与运动性肌腱损伤病理机制研究进展. 中国运动医学杂志, 38: 901-906 (Yang J J, Chen J F, Zhi Z, Yan Y. 2019. Research progress in tendon mechanical biology and pathological mechanism of exercise-induced tendon injury. Chinese Journal of Sports Medicine, 38: 901-906). doi: 10.3969/j.issn.1000-6710.2019.10.012
    张力文. 2018. 两种踢球方式对踢球腿胭绳肌生物力学特征的影响. [硕士论文]. 北京: 北京体育大学.

    Zhang L W. 2018. Effects of two kicking methods on biomechanical characteristics of cochineal muscle of kicking leg. [Master Thesis]. Beijing: Beijing Sport University.
    张明, 樊瑜波, 王喜太. 2011. 康复工程中的生物力学问题. 医用生物力学, 26: 291-293 (Zhang M, Fan Y B, Wang X T. 2011. Biomechanical problems in rehabilitation engineering. Journal of Medical Biomechanics, 26: 291-293). doi: 10.3871/j.1004-7220.2011.4.293.
    张腾宇, 姚杰, 莫中军等. 2020. 假肢对线对大腿截肢者健侧膝关节内部接触力学特性的影响. 医用生物力学, 35: 428-435 (Zhang T Y, Yao J, Mo Z J, et al. 2020. Effects of prosthetic alignment on internal contact mechanical characteristics of intact knee joints for transfemoral amputees. Journal of Medical Biomechanics, 35: 428-435).
    赵博伦, 周兰姝. 2021. 基于表面肌电技术的脑卒中吞咽障碍评估研究进展. 中华物理医学与康复杂志, 43: 655-659 (Zhao B L, Zhou L S. 2021. Research progress on evaluation of dysphagia in stroke patients based on surface electromyography. Chinese Journal of Physical Medicine and Rehabilitation, 43: 655-659). doi: 10.3760/cma.j.issn.0254-1424.2021.07.019
    赵彦军, 李剑, 苏鹏, 马俪芳. 2020. 我国康复辅具创新设计与展望. 包装工程, 41: 14-22 (Zhao Y J, Li J, Su P, Ma L F. 2020. Innovative design and prospect of rehabilitation aids in China. Packaging Engineering, 41: 14-22). doi: 10.19554/j.cnki.1001-3563.2020.08.003
    甄洁, 肖涛, 李振, 时静宇, 王晨曦. 2021. 运动生物力学的国内外研究热点对比分析//第二十一届全国运动生物力学学术交流大会

    Zhen J, Xiao T, Li Z, Shi J Y, Wang C X. 2021. Comparative analysis of research hotspots of sports biomechanics at home and abroad//The 21st National Sports Biomechanics Conference.
    庄维友. 2018. 原地掷实心球最后用力阶段的表面肌电研究. [硕士论文]. 广州: 广州大学.

    Zhuang W Y. 2018. Surface Electromyography Study on the Final Force Stage of Solid Throwing in situ. [Master Thesis]. Guangzhou: Guangzhou University.
    Abidin D. 2021. A case study on player selection and team formation in football with machine learning. Turkish Journal of Electrical Engineering & Computer Sciences, 29: 1672-1691.
    Ackermann M, van der Bogert A J. 2010. Optimality principles for model-based prediction of human gait. Journal of Biomechanics, 43: 1055-1060. doi: 10.1016/j.jbiomech.2009.12.012
    Adrian M J, Cooper J M. 1989. Biomechanics of Human Movement. Vancouver, Washington: Benchmark Press.
    Alexander R M. 1976. Mechanics of bipedal locomotion. Perspectives in Experimental Biology, 1: 493-504.
    Alexander R M. 1995. Leg design and jumping technique for humans, other vertebrates and insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 347: 235-248. doi: 10.1098/rstb.1995.0024
    Alexander R M. 2003. Modelling approaches in biomechanics. Philosophical Transactions of the Royal Society B: Biological Sciences, 358: 1429-1435. doi: 10.1098/rstb.2003.1336
    Alt T, Severin J, Komnik I, et al. 2021. Nordic Hamstring Exercise training induces improved lower-limb swing phase mechanics and sustained strength preservation in sprinters. Scandinavian Journal of Medicine & Science in Sports, 31: 826-838. doi: 10.1111/sms.13909
    An K N, Kwak B M, Chao E Y, Morrey B F. 1984. Determination of muscle and joint forces: a new technique to solve the indeterminate problem. Journal of Biomechanical Engineering, 106: 364-367. doi: 10.1115/1.3138507
    Andersson E P, Govus A, Shannon O M, McGawley K. 2019. Sex differences in performance and pacing strategies during sprint skiing. Front in Physiology, 10: 295. doi: 10.3389/fphys.2019.00295
    Apte S, Prigent G, Stoggl T, et al. 2021. Biomechanical Response of the Lower Extremity to Running-Induced Acute Fatigue: A Systematic Review. Frontiers in Physiology, 12: 646042. doi: 10.3389/fphys.2021.646042
    Arnold E M, Ward S R, Lieber R L, Delp S L. 2010. A model of the lower limb for analysis of human movement. Annals of Biomedical Engineering, 38: 269-279. doi: 10.1007/s10439-009-9852-5
    Audu M L, Kirsch R F, Triolo R J. 2003. A computational technique for determining the ground reaction forces in human bipedal stance. J. Appl. Biomech, 19: 361-371.
    Bailey C A, Uchida T K, Nantel J, Graham R B. 2021. Validity and sensitivity of an inertial measurement unit-driven biomechanical model of motor variability for gait. Sensors (Basel), 21: 7690. doi: 10.3390/s21227690
    Balbinot G, Wiest M J, Li G, et al. 2022. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clinic Neurophysiology, 138: 61-73. doi: 10.1016/j.clinph.2022.02.028
    Li T, Cai W, Zhan J. 2017. Numerical investigation of swimmer’s gliding stage with 6-DOF movement. Plos One, 12(1): e0170894.
    Bartlett R. 1997. Introduction of Sports Biomechanics. London: E & FN Spon.
    Bartlett R M. 2009. The Aerodynamics of Javelin Flight-A Re-Evaluation//5th International Symposium on Biomechanics in Sports.
    Bartee H, Dowell, L. 1982. A cinematographical analysis of twisting about the longitudinal axis when performers are free of support. Journal of Human Movement Studies, 8: 41-54.
    Bassani T, Stucovitz E, Qian Z, Briguglio M, Galbusera F. 2017. Validation of the anybody full body musculoskeletal model in computing lumbar spine. Journal of Biomechanics, 58: 89-96. doi: 10.1016/j.jbiomech.2017.04.025
    Bates N A, Schilaty N D, Nagelli C V, Krych A J, Hewett T E. 2019. Multiplanar loading of the knee and its influence on anterior cruciate ligament and medial collateral ligament strain during simulated landings and noncontact tears. The American Journal of Sports Medicine, 47: 1844-1853. doi: 10.1177/0363546519850165
    Bezodis N E, Salo A I, Trewartha G. 2015. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur. J. Sport. Sci., 15: 118-124. doi: 10.1080/17461391.2014.928915
    Bezodis N E, Walton S P, Nagahara R. 2019a. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. J. Sports. Sci., 37: 560-567. doi: 10.1080/02640414.2018.1521713
    Bezodis N E, Willwacher S, Salo A I T. 2019b. The biomechanics of the track and field sprint start: a narrative review. Sports. Med., 49: 1345-1364. doi: 10.1007/s40279-019-01138-1
    Bhatia S, LaPrade C M, Ellman M B, et al. 2014. Meniscal root tears: significance, diagnosis, and treatment. 42: 3016-3030.
    Bianco N A, Patten C, Fregly B J. 2017. Can measured synergy excitations accurately construct unmeasured muscle excitations. Journal of Biomechanical Engineering, 140: 011011.
    Blankevoort, L, Kuiper J H, Huiskes R, Grootenboer H J. 1991. Articular contact in a three-dimensional model of the knee. Journal of Biomechanics, 24: 1019-1031. doi: 10.1016/0021-9290(91)90019-J
    Brown S H M, Potvin J R. 2005. constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates. Journal of Biomechanics, 745-754.
    Boden B P, Osbahr D C. 2000. High-risk stress fractures evaluation and treatment. Journal of the American Academy of Orthopaedic Surgeons, 8: 344-353. doi: 10.5435/00124635-200011000-00002
    Boden B P, Sheehan F T. 2021. Mechanism of non-contact ACL injury: OREF Clinical Research Award 2021. Journal of Orthopaedic Research, 40: 531-540.
    Bojanić I, Pećina H I, Pećina M. 2001. Stress fractures. Arh Hig Rada Toksikol, 52: 471-482.
    Bourque M O, Schneider K L, Calamari J E, et al. 2019. Combining physical therapy and cognitive behavioral therapy techniques to improve balance confidence and community participation in people with unilateral transtibial amputation who use lower limb prostheses: a study protocol for a randomized sham-control clinical trial. Trials, 20: 812. doi: 10.1186/s13063-019-3929-8
    Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A. 2015. Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors (Basel), 15: 18813-18833. doi: 10.3390/s150818813
    Buchanan T S, Lloyd D G, Manal K, et al. 2005. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Medicine & Science in Sports & Exercise, 37: 1911-1916.
    Butler R J, Crowell H P, Davis I M. 2003. Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18: 511-517. doi: 10.1016/S0268-0033(03)00071-8
    Cao Z, Hidalgo G, Simon T, Wei S-E, Sheikh Y. 2021. OpenPose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Patten Analysis and Machine Intelligence, 43: 172-186. doi: 10.1109/TPAMI.2019.2929257
    Chen S C, Hsieh H J, Lu T W, et al 2011. A method for estimating subject-specific body segment inertial parameters in human movement analysis. Gait Posture, 33(4): 695-700.
    Chen Z, Zhang X, Ardestani M M, et al. 2014. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc. Inst. Mech. Eng. H, 228: 564-575. doi: 10.1177/0954411914537476
    Cheng K B, Hubbard M. 2008. Role of arms in somersaulting from compliant surfaces: a simulation study of springboard standing dives. Hum. Mov. Sci., 27: 80-95. doi: 10.1016/j.humov.2007.05.004
    Choi A, Lee J M, Mun J H. 2013. Ground reaction forces predicted by using artifificial neural network during asymmetric movements. Int. J. Precis. Eng. Manuf., 14: 475-483.
    Chu S K, Rho M E. 2016. Hamstring injuries in the athlete: diagnosis, treatment, and return to play. Curr. Sports. Med. Rep., 15: 184-190. doi: 10.1249/JSR.0000000000000264
    Collins S H, Adamczyk PG, Ferris DP, et al. 2009. A simple method for calibrating force plates and force treadmills using an instrumented pole. Gait Posture, 29: 59-64. doi: 10.1016/j.gaitpost.2008.06.010
    Cossor J, Mason B. 2001. Swim Start Performances at The Sydney 2000 Olympic Games. ISBS - Conference Proceedings Archive.
    Danielsson A, Horvath A, Senorski V, et al. 2020. The mechanism of hamstring injuries - a systematic review. BMC Musculoskelet Disord, 21: 641. doi: 10.1186/s12891-020-03658-8
    De Smet A A, Mukherjee R. 2008. Clinical, MRI, and arthroscopic fifi ndings associated with failure to diagnose a lateral meniscal tear on knee MRI. AJR Am J Roentgenol, 190: 22-6. doi: 10.2214/AJR.07.2611
    Delp S L, Anderson F C, Arnold A S, et al. 2007. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54: 1940-1950. doi: 10.1109/TBME.2007.901024
    Delp S L, Loan J P, Hoy M G, et al. 1990a. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37: 757-767. doi: 10.1109/10.102791
    Delp S L, Loan J P, Hoy M G, et al. 1990b. An interactive graphics-based model of the lower extremity to study orthopedic surgical procedures. IEEE Trans. Biomed Eng., 37: 757-767.
    Deymier-Black A C, Yuan F, Singhal A, et al. 2012. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater, 8: 253-261. doi: 10.1016/j.actbio.2011.08.014
    Diraneyya M M, Ryu J, Abdel-Rahman E, et al. 2021. Inertial motion capture-based whole-body inverse dynamics. Sensors (Basel), 21: 7353. doi: 10.3390/s21217353
    Drillis R, Contini R, Bluestein M. 1964. Body segment parameters: A survey of measurement techniques. Artificial Limbs, 25: 44-66.
    Elfmark, O., G. Ettema, P. Jolstad and M. Gilgien 2022. "Kinematic Determination of the Aerial Phase in Ski Jumping." Sensors (Basel) 22(2).
    Fang H S, Xie S, Tai Y W, Lu C. 2017. RMPE: regional multi-person pose estimation//2017 IEEE International Conference on Computer Vision (ICCV), IEEE.
    Farley C T, Blickhan R, Saito J, et al. 1991. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology, 71: 2127-2132. doi: 10.1152/jappl.1991.71.6.2127
    Fasel B, Favre J, Chardonnens J, Gremion G, Aminian K. 2015. An inertial sensor-based system for spatio-temporal analysis in classic cross-country skiing diagonal technique. Journal of Biomechanics, 48(12): 3199-3205.
    Ferri-Caruana A, Mollà-Casanova S, Baquedano-Moreno M, Serra-Añó P. 2022. Electromyographic activity of posterior kinetic chain muscles during hamstring strengthening exercises. Physical Therapy in Sport, 55: 205-210. doi: 10.1016/j.ptsp.2022.04.008
    Fiacchi F, Zambianchi F, Digennaro V, et al. 2014. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living. The Knee, 21: S10-S14. doi: 10.1016/S0968-0160(14)50003-8
    Figgen M. 1989. Computer simulation of the two-dimensional flight phase of an athlete. In Proceedings of the XII International Congress of Biomechanics, Abstract 274. University of California, Los Angeles.
    Fiorentino N M, Rehorn M R, Chumanov E S, Thelen D G, Blemker S S. 2014. Computational models predict larger muscle tissue strains at faster sprinting speeds. Medicine & Science in Sports & Exercise, 46: 776-786.
    Fluit R, Andersen M S, Kolk S, et al. 2014. Prediction of ground reaction forces and moments during various activities of daily living. J Biomech, 47: 2321-2329. doi: 10.1016/j.jbiomech.2014.04.030
    Ganley K J, Powers C M. 2004. Anthropometric parameters in children: a comparison of values obtained from dual energy x-ray absorptiometry and cadaver-based estimates. Gait & Posture, 19: 133-140.
    Garner B A, Pandy M G. 2003. Estimation of musculotendon properties in the human upper limb. Ann. Biomed Eng., 31: 207-220. doi: 10.1114/1.1540105
    Gellaerts J, Bogdanov E, Dadashi F, Mariani B. 2018. In-field validation of an inertial sensor-based system for movement analysis and classification in ski mountaineering. Sensors, 18: 885. doi: 10.3390/s18030885
    Geng T, Jia X, Guo Y. 2021. Lower limb joint nursing and rehabilitation system based on intelligent medical treatment. J. Healthc. Eng., 2021: 6646977.
    Gheluwe B V. 1981. a biomechanical simulation model for airborne twist in backward somersaults. Journal of Human Moment Studies, 7: 1-22.
    Gollapud S K, Lin D C. 2009. Experimental determination of sarcomere force-length relationship in type-I human skeletal muscle fibers. Journal of biomechanics, 42: 2011-2016. doi: 10.1016/j.jbiomech.2009.06.013
    Gordon D F N, Henderson G, Vijayakumar S. 2018. Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions. Front Robot AI, 5: 61.
    Gorkovenko A V, Lehedza O V, Pilewska W, et al. 2019. Evaluation of the complexity of control of simple linear hand movements using principal component analysis. Neurophysiology, 51: 132-140. doi: 10.1007/s11062-019-09804-w
    Guimaraes J B, Chemin R N, Araujo F F, et al. 2022. Meniscal root tears: an update focused on preoperative and postoperative MRI findings. AJR Am J Roentgenol, 219: 269-278. doi: 10.2214/AJR.22.27338
    Guissard, N, Duchateau J, Hainaut K. 1992. EMG and mechanical changes during sprint starts at different front block obliquities. Med. Sci. Sports Exerc., 24: 1257-1263.
    Gunther M, Schmitt S, Wank V. 2007. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol. Cybern., 97: 63-79. doi: 10.1007/s00422-007-0160-6
    Guo J, Sun Y, Hao Y, Cui L, Ren G. 2020. A mass-flowing muscle model with shape restrictive soft tissues: correlation with sonoelastography. Biomechanics and Modeling in Mechanobiology, 19: 911-926. doi: 10.1007/s10237-019-01260-z
    Hanavan E P. 1964. A mathematical model of the human body. Technical Report AMRL-TR-64-102, AD-608-463, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio.
    Hansen, C. E., M. Stensvig, J. Wienecke, et al. 2021. Factors correlated with running economy among elite middle- and long-distance runners. Physiol Rep, 9(20): e15076.
    Harl M J, Steele J R. 1997. Biomechanics of the sprint start. Sports Med., 23: 11-20. doi: 10.2165/00007256-199723010-00002
    Harrison A, Graham D. 2006. An investigation of Schema theory applied to the biomechanics of the sprint start in athletics//26th International Symposium on Biomechanics in Sports. Salzburg Austria. 1.
    Hatze H. 1975. A new method for the simultaneous measurement of the movement of inertia, the damping coefficient and the location of the centre of mass of a body segment in situ. Eur. J. Appl. Physiol Occup. Physiol., 34: 217-226.
    Hay J G, Reid J G. 1988. Anatomy, Mechanics, and Human Motion. USA: Prentice Hall.
    Herrel A, Vasilopoulou-Kampitsi M, Bonneaud C. 2014. Jumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance. PeerJ, 2: e661. doi: 10.7717/peerj.661
    Hettinga F J, Konings M J, Cooper C E. 2016. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front. Physiol., 7: 619.
    Hicks J L, Uchida T K, Seth A, et al. 2015. Is my model good enough? best practices for verification and validation of musculoskeletal models and simulations of movement. Journal of Biomechanical Engineering, 137(2): 020905 (020924 pages).
    Higashihara A, Nagano Y, Ono T, Fukubayashi T. 2016. Relationship between the peak time of hamstring stretch and activation during sprinting. Eur. J. Sport Sci., 16: 36-41. doi: 10.1080/17461391.2014.973913
    Hill A V. 1938. The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B - Biol Sci, 126: 136-195.
    Hopper B J. 1973. The Mechanics of Human Movement. New York, American: Elsevier Pub. Co.
    Huang Y, Lai W P, Qian Q, et al. 2018. Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke. Biomed Eng Online, 17: 91. doi: 10.1186/s12938-018-0516-2
    Hyvarinen A, Oja E. 2000. Independent component analysis: algorithms and applications. Neural Networks, 13: 411-430. doi: 10.1016/S0893-6080(00)00026-5
    Ionescu C, Papava D, Olaru V, Sminchisescu C. 2014. Human3.6M: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7): 1325-1339.
    Jackson J N, Hass C J, Fregly B J. 2016. Development of a subject-specifific foot-ground contact model for walking. J. Biomech Eng., 138: 091002. doi: 10.1115/1.4034060
    Jogi S P, Thaha R, Rajan S, et al. 2021. Model for in-vivo estimation of stiffness of tibiofemoral joint using MR imaging and FEM analysis. J. Transl Med., 19: 310. doi: 10.1186/s12967-021-02977-1
    John C T, Anderson F C, Guendelman E. et al. 2007. Long Duration Muscle-Actuated Simulations of Walking at Multiple Speeds. American Society of Biomechanics, Stanford, California,USA.
    Johnson J E, Lee P, McIff T F, Toby E B, Fischer K J. 2014. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling. J. Biomech Eng., 136: 0410021-0410029.
    Joyce G C, Rack P M H, Westbury D R. 1969. The mechanical prop erties of cat soleus muscle during controlled lengthening and shortening movemen. Journal of Physiology, 204: 461-474. doi: 10.1113/jphysiol.1969.sp008924
    Kane T R, Scher M P. 1969. A dynamical explanation of the falling cat phenomenon. International Journal of Solids and Structures, 5: 667-670.
    Kasmi S, Zouhal H, Hammami R, et al. 2021. The effects of eccentric and plyometric training programs and their combination on stability and the functional performance in the post-ACL-surgical rehabilitation period of elite female athletes. Frontiers in Physiology, 12: 688385. doi: 10.3389/fphys.2021.688385
    Karatisidis A, Bellusci G, Schepers H M, et al. 2017. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors(Basel), 17: . doi: 10.3390/s17010075
    Kiel J, Kaiser K. (2022). Stress Reaction and Fractures. Treasure Island: StatPearls.
    Kiapour A M, Murray M M. 2014. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res., 3(2): 20-31.
    King M A, Kong P W, Yeadon M R. 2019. Maximising forward somersault rotation in springboard diving. J. Biomech, 85: 157-163. doi: 10.1016/j.jbiomech.2019.01.033
    King M A, Kong P W, Yeadon M R. 2022. Differences in the mechanics of takeoff in reverse and forward springboard somersaulting dives. Sports Biomech, 2: 1-13.
    Kleshnev V. 2016. The Biomechanics of Rowing. UK: Crowood Press.
    Knippenberg E, Verbrugghe J, Lamers I, et al. 2017. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy. J. Neuroeng. Rehabil., 14: 61. doi: 10.1186/s12984-017-0270-x
    Knoll K, Seidel I. 2015. Effective execution of the flight in quadruple jumps in figure skating//33th Conference of the International Society of Biomechanics in Sports, Poitiers, FRA.
    Kobayashi H, Kanamura T, Koshida S, et al. 2010. Mechanisms of the anterior cruciate ligament injury in sports activities: A twenty-year clinical research of 1, 700 athletes. J. Sports Sci. Med., 9: 669-675.
    Koga H, Nakamae A, Shima Y, et al. 2010. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med, 38: 2218-2225. doi: 10.1177/0363546510373570
    Krych A J, LaPrade M D, Hevesi M, et al. 2020. Investigating the Chronology of Meniscus Root Tears: Do Medial Meniscus Posterior Root Tears Cause Extrusion or the Other Way Around? Orthop. J. Sports Med., 8(11): 2325967120961368.
    Landis S E, Baker R T, Seegmiller J G. 2018. Non-contact anterior cruciate ligament and lower extremity injury risk prediction using functional movement screen and knee abduction moment: an epidemiological observation of female intercollegiate athletes. International Journal of Sports Physical Therapy, 13: 973-984. doi: 10.26603/ijspt20180973
    Lapham A C, Bartlett R M. 1995. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics. Journal of Sports Science, 13: 229-237. doi: 10.1080/02640419508732232
    Lee S J, Ren Y, Chang A H, et al. 2020. Plane dependent subject-specific neuromuscular training for knee rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 28: 1876-1883. doi: 10.1109/TNSRE.2020.3005119
    Lerner Z F, DeMers M S, Delp S L, Browning R C. 2015. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech, 48: 644-650. doi: 10.1016/j.jbiomech.2014.12.049
    Leng H, Reyes M J, Dong X N, Wang X. 2013. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone, 55: 288-291. doi: 10.1016/j.bone.2013.04.006
    Lloyd D G, Besier T. 2003. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 36: 765-76. doi: 10.1016/S0021-9290(03)00010-1
    Lieber R L, Fridén J. 2002. Mechanisms of muscle injury gleaned from animal models. American Journal of Physical Medicine and Rehabilitation, 81(11 SUPPL. ): S70-S79.
    Lieber R L, Fridén J. 1993. Muscle damage is not a function of muscle force but active muscle strain. Journal of Applied Physiology, 74: 520-526. doi: 10.1152/jappl.1993.74.2.520
    Liu H, Yu B. 2012. Effects of phase ratio and velocity conversion coefficient on the performance of the triple jump. J Sports Sci., 30: 1529-1536. doi: 10.1080/02640414.2012.713502
    Liu H, Mao D, Yu B. 2015. Effect of approach run velocity on the optimal performance of the triple jump. Journal of Sport and Health Science, 4: 347-352. doi: 10.1016/j.jshs.2015.07.001
    Liu X, Huang H, Ren S, Rong Q, Ao Y. 2020. Use of the normalcy index for the assessment of abnormal gait in the anterior cruciate ligament deficiency combined with meniscus injury. Comput Methods Biomech Biomed Engin., 23(14): 1102-1108.
    Liu X, Zhu Y, Huo H, et al. 2019. Design of Virtual Guiding Tasks With Haptic Feedback for Assessing the Wrist Motor Function of Patients With Upper Motor Neuron Lesions. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27: 984-994.
    Liu Y, Joseph G B, Foreman S C, et al. 2021. Determining a threshold of medial meniscal extrusion for prediction of knee pain and cartilage damage progression over 4 years: data from the osteoarthritis initiative. American Journal of Roentgenology, 216: 1318-1328. doi: 10.2214/AJR.20.23864
    Maganaris C N, Paul J P. 2002. Tensile properties of the in vivo human gastrocnemius tendon. Journal of Biomechanics, 35: 1639-1646. doi: 10.1016/S0021-9290(02)00240-3
    Magnusson S P, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M. 2001. Load–displacement properties of the human triceps surae aponeurosis in vivo. Journal of Physiology, 531: 277-288. doi: 10.1111/j.1469-7793.2001.0277j.x
    Magnusson S P, Langberg H, Kjaer M. 2010. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol, 6: 262-268. doi: 10.1038/nrrheum.2010.43
    Manal K, Buchanan T S. 2003. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. Journal of Biomechanics, 36: 1197-1202. doi: 10.1016/S0021-9290(03)00152-0
    Maniar N, Cole M H, Bryant A L, Opar D A. 2022. Muscle force contributions to anterior cruciate ligament loading. Sports Med., 52: 1737-1750. doi: 10.1007/s40279-022-01674-3
    Mann R V, Murphy A. 2018. The mechanics of sprinting and hurdling, CreateSpace Independent Publishing Platform.
    Markolf K L, Burchfield D M, Shapiro M M, et al. 1995. Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13: 930-935. doi: 10.1002/jor.1100130618
    Martikkala V, Oksa J, Viitasalo J T, & Luhtanen P. 1995. Evaluated muscular work in diving springboard takeoff//Proceedings of the XV Congress of the International Society of Biomechanics.
    Martin R B, Burr D B, Sharkey N A, Fyhrie D P. 2015. Mechanical properties of ligament and tendon//Skeletal Tissue Mechanics. New York: Springer.
    Mashima H. 1984. Force-velocity relation and contractility in striated muscles. Japanese Journal of Physiology, 34: 1-17.
    Matheny L M, Ockuly A C, Steadman J R, LaPrade R F. 2015. Posterior meniscus root tears: associated pathologies to assist as diagnostic tools. Knee Surg Sports Traumatol Arthrosc, 23: 3127-3131. doi: 10.1007/s00167-014-3073-7
    Matsushima A, Yoshida K, Genno H, et al. 2015. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias, 2: 9. doi: 10.1186/s40673-015-0028-9
    McMahon T A, Cheng G C. 1990. The mechanics of running: How does stiffness couple with speed. Journal of Biomechanics, 23(Suppl 1): 65-78.
    McGeer, Tad. Passive Dynamic Walking. The International Journal of Robotics Research, 9 (1990): 62-82.
    Merel J, Botvinick M, Wayne G. 2019. Hierarchical motor control in mammals and machines. Nat. Commun., 10: 5489. doi: 10.1038/s41467-019-13239-6
    Mehta D, Rhodin H, Casas D, et al. 2017. Monocular 3D human pose estimation in the wild using improved CNN supervision//2017 International Conference on 3D Vision (3DV).
    Meyer E G, Haut R C. 2008. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J. Biomech, 41: 3377-3383. doi: 10.1016/j.jbiomech.2008.09.023
    Milanese C, Bertucco M, Zancanaro C. 2014. The effects of three different rear knee angles on kinematics in the sprint start. Biol. Sport, 31: 209-215. doi: 10.5604/20831862.1111848
    Mills K, Hunt M A, Leigh R, Ferber R. 2013. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking. Clin. Biomech(Bristol, Avon), 28: 713-724.
    Nakamura Y. 1990. Advanced robotics: Redundancy and optimization. Boston, MA, US: Addison-Wesley Longman Publishing Co., Inc.
    Nazari G, Bobos P, MacDermid J C, et al. 2018. Psychometric properties of the zephyr bioharness device: a systematic review. BMC Sports Sci. Med. Rehabil. 10(6): 10.1186/s13102-13018-10094-13104.
    Nilsson J, Thorstensson A, Halbertsma, J. 1985. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiologica Scandinavica, 123: 457-475. doi: 10.1111/j.1748-1716.1985.tb07612.x
    Niu, H, Liu C, Li A, et al. 2012. Relationship between triphasic mechanical properties of articular cartilage and osteoarthritic grade. Science China Life Science, 55: 444-451. doi: 10.1007/s11427-012-4326-7
    Nouredanesh M, Godfrey A, Powell D, Tung J. 2022. Egocentric vision-based detection of surfaces: towards context-aware free-living digital biomarkers for gait and fall risk assessment. J. Neuroeng Rehabil, 19: 79. doi: 10.1186/s12984-022-01022-6
    Noyes F R, Butler D L, Grood E S, Zernicke R F, Hefzy M S. 1984. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Joint Surg. Arm., 66: 344-352. doi: 10.2106/00004623-198466030-00005
    Nyman J S, Roy A, Reyes M J, Wang X. 2009. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J. Biomed Mater Res. A, 89: 521-529.
    Oh S E, Choi A, Mun J H. 2013. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech, 46: 2372-2380. doi: 10.1016/j.jbiomech.2013.07.036
    Oh Y K, Lipps D B, Ashton-Miller J A, et al. 2012. What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med, 40: 574-583.
    Õunpuu, S. 1994. The Biomechanics Of Walking And Running. Clinics in Sports Medicine, 13(4): 843-863.
    Palisch A R, Winters R R, Willis M H. et al. 2016. Posterior root meniscal tears: preoperative, intraoperative, and postoperative imaging for transtibial pullout repair. RadioGraphics, 36: 1792-1806. doi: 10.1148/rg.2016160026
    Pamies-Vila R, Font-Llagunes J M, Cuadrado J, Alonso F J. 2012. Analysis of different uncertainties in the inverse dynamic analysis of human gait. Mech., Mach.. Theory, 58: 153-164.
    Paul G, Bishop C, Arakilo M, Thewlis D. 2010. A simulation to describe the effects of in- shoe orthoses//3-D Analysis of Human Movement (3DMA 2010).
    Pauli C A, Keller M, Taylor W R, Lorenzetti S. 2016. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. Journal of Strength and Conditioning Research, 30: 643-652. doi: 10.1519/JSC.0000000000001166
    Pollock A, Baer G, Campbell P, et al. 2014. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev., 4: CD001920.
    Prilutsky B I, Petrova L N, Raitsin L M. 1996. Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion. Journal of Biomechanics, 29: 405-415. doi: 10.1016/0021-9290(95)00083-6
    Raabe M E, Chaudhari A M W. 2016. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation. J. Biomech, 49: 1238-1243. doi: 10.1016/j.jbiomech.2016.02.046
    Randhawa A, Wakeling J M. 2015. Multidimensional models for predicting muscle structure and fascicle pennation. J. Theor Biol., 382: 57-63. doi: 10.1016/j.jtbi.2015.06.001
    Rao G, Amarantini D, Berton E, et al. 2006. Inflfluence of body segments' parameters estimation models on inverse dynamics solutions during gait. J. Biomech, 39: 1531-1536.
    Ren L, Jones R K, Howard D. 2008. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech, 41: 2750-2759. doi: 10.1016/j.jbiomech.2008.06.001
    Richards J G 1999. The measurement of human motion: a comparison of commercially available systems. Hum. Mov. Sci., 18: 589–602.
    Rho J-Y, Kuhn-Spearing L, Zioupos P. 1998. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20: 92-102.
    Richard V, Lamberto G, Lu T W, Cappozzo A, Dumas R. 2016. Knee kinematics estimation using multi-body optimisation embedding a knee joint stiffness matrix: a feasibility study. PLoS One, 11: e0157010. doi: 10.1371/journal.pone.0157010
    Riemer R, Hsiao-Wecksler E T, Zhang X D. 2008. Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait. Gait Posture, 27: 578-588. doi: 10.1016/j.gaitpost.2007.07.012
    Robert T, Causse J, Monnier G. 2013. Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers. J. Biomech, 46: 2220-2227. doi: 10.1016/j.jbiomech.2013.06.037
    Rossi A, Pappalardo L, Cintia P, et al. 2018. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS One, 13: e0201264. doi: 10.1371/journal.pone.0201264
    Rubio-Peiroten A, Garcia-Pinillos F, Jaen-Carrillo D, et al. 2021. Relationship between connective tissue morphology and lower-limb stiffness in endurance runners. a prospective study. Int. J. Environ. Res. Public Health., 18:8453.
    Sandbakk Ø, Hegge A M, Losnegard T, et al. 2016. The physiological capacity of the world's highest ranked female cross-country skiers. Med. Sci. Sports Exerc., 48: 1091-1100. doi: 10.1249/MSS.0000000000000862
    Sanders R H, Gibson B J. 2000. Technique and timing in the womens forward two and one half somersault pike and mens three and one half somersault pike 3m springboard dives. Journal of Science and Medicine in Sport, 3: 434-448. doi: 10.1016/S1440-2440(00)80009-2
    Sant G L, Ates F, Brasseur J L, Nordez A. 2015. Elastogra phy study of hamstring behaviors during passive stretching. PLoS One, 10: e0139272. doi: 10.1371/journal.pone.0139272
    Sartori M, Reggiani M, Farina D, Lloyd D G. 2012. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One, 7: e52618. doi: 10.1371/journal.pone.0052618
    Sartori M, Farina D, Lloyd D G. 2014. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. Journal of Biomechanics, 47: 3613-21. doi: 10.1016/j.jbiomech.2014.10.009
    Sasaki S, Koga H, Krosshaug T, Kaneko S, Fukubayashi T. 2018. Kinematic analysis of pressing situations in female collegiate football games: New insight into anterior cruciate ligament injury causation. Sc, JMed Sci Sports, 28: 1263-1271. doi: 10.1111/sms.13018
    Scharer C, Lehmann T, Naundorf F, Taube W, Hubner K. 2019. The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics. PLoS One, 14: e0213310. doi: 10.1371/journal.pone.0213310
    Schilaty N D, Bates N A, Kruisselbrink S, Krych A J, Hewett T E. 2020. Linear discriminant analysis successfully predicts knee injury outcome from biomechanical variables. China Sport Science and Technology, 48: 2447-2455. doi: 10.1177/0363546520939946
    Schilaty N D, McPherson A L, Nagai T, Bates N A. 2022. Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury. Eur. J. Sport Sci., 1-11.
    Schmiedmayer H B, Kastner J. 1999. Parameters inflfluencing the accuracy of the point of force application determined with piezoelectric force plates. J. Biomech, 32: 1237-1242. doi: 10.1016/S0021-9290(99)00109-8
    Schwartz M H, Rozumalski A. 2005. A new method for estimating joint parameters from motion data. J. Biomech, 38: 107-116.
    Sessa S, Zecca M, Lin Z, et al. 2013. A methodology for the performance evaluation of inertial measurement units. Journal of Intelligent & Robotic Systems volume, 71: 143-157.
    Sharma P, Maffulli N. 2006. Biology of tendon injury: healing, modeling and remodeling. J. Musculoskelet Neuronal Interact., 6: 181-190.
    Shayestehpour H, Rasmussen J, Galibarov P, Wong C. 2021. An articulated spine and ribcage kinematic model for simulation of scoliosis deformities. Multibody System Dynamics, 53: 115-134. doi: 10.1007/s11044-021-09787-9
    Sherry M A, Johnston T S, Heiderscheit B C. 2015. Rehabilitation of acute hamstring strain injuries. Clin. Sports Med., 34: 263-284. doi: 10.1016/j.csm.2014.12.009
    Shourijeh M S, McPhee J. 2015. Foot-ground contact modeling within human gait simulations: from Kelvin-Voigt to hyper-volumetric models. Multibody System Dynamics, 35: 393-407. doi: 10.1007/s11044-015-9467-6
    Sigal L, Balan A, Black M J. 2010. HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision, 87: 1-2. doi: 10.1007/s11263-009-0293-2
    Silver F H, Christiansen D L, Snowhill P B, Chen Y. 2000. Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers. Connect Tissue Res., 41: 155-164. doi: 10.3109/03008200009067667
    Slawinski J, Bonnefoy A, Leveque J M, et al. 2010. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J. Strength Cond. Res., 24: 896-905. doi: 10.1519/JSC.0b013e3181ad3448
    Slawinski J, Dumas R, Cheze L, et al. 2012. 3D kinematic of bunched, medium and elongated sprint start. Int. J. Sports Med., 33: 555-560. doi: 10.1055/s-0032-1304587
    Suderman A L, Krishnamoorthy B, Vasavada A N. 2012. Neck muscle paths and moment arms are significantly affected by wrapping surface parameters. Comput Methods Biomech Biomed Engin., 15: 735-744. doi: 10.1080/10255842.2011.558085
    Sueda S, Kaufman A, Pai D K. 2008. Musculotendon Simulation for Hand Animation. ACM Transaction on Graphics, 27: 1-8.
    Suzuki Y, Inoue T, Nomura T. 2018. A simple algorithm for assimilating marker-based motion capture data during periodic human movement into models of multi-rigid-body systems. Front Bioeng Biotechnol, 6: 141. doi: 10.3389/fbioe.2018.00141
    Takagi H, Nakashima M, Sato Y, Matsuuchi K, Sanders R H. 2016. Numerical and experimental investigations of human swimming motions. J. Sports Sci., 34: 1564-1580. doi: 10.1080/02640414.2015.1123284
    Tarlochan R, Ramesh S, Hillberry B M. 2002. Dynamic Analysis of The Human Knee. Biomedical Engineering: Applications, Basis and Communications, 14: 122-126.
    Thelen D G, Anderson F C. 2006. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech, 39: 1107-1115. doi: 10.1016/j.jbiomech.2005.02.010
    Thompson W K, Caldwell E E, Newby N J, et al. 2014. Integrated Biomechanical Modeling of Lower Body Exercises on the Advanced Resistive Exercise Device (ARED) Using LifeMOD//44th International Conference on Environmental Systems 13-17.
    Trasolini N A, Nicholson K F, Mylott J, et al. 2022. Biomechanical analysis of the throwing athlete and its impact on return to sport. Arthrosc. Sports Med. Rehabil., 4: e83-e91. doi: 10.1016/j.asmr.2021.09.027
    Tresch M C, Cheung V C, Ad'Avella. 2006. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol, 95: 2199-2212.
    Vecchio A D, Úbeda A, Sartori M, et al. 2018. Central nervous system modulates the neuromechanical delay in a broad range for the control of muscle force. Journal of Applied Physiology, 125: 1404-1410. doi: 10.1152/japplphysiol.00135.2018
    Vercher-Martinez A, Giner E, Arango C, Fuenmayor F J. 2015. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone. J. Mech. Behav. Biomed. Mater., 42: 243-256. doi: 10.1016/j.jmbbm.2014.11.022
    Virmavirta M, Isolehto J, Komi P, et al. 2009. Take-off analysis of the Olympic ski jumping competition (HS-106 m). Journal of Biomechanics, 42: 1095-1101. doi: 10.1016/j.jbiomech.2009.02.026
    Walter J R, Gunther M, Haeufle D F B, Schmitt S. 2021. A geometry-and muscle-based control architecture for synthesising biological movement. Biol. Cybern., 115: 7-37. doi: 10.1007/s00422-020-00856-4
    Wang X, Nyman J S. 2007. A novel approach to assess post-yield energy dissipation of bone in tension. Journal of Biomechanics, 40: 674-677. doi: 10.1016/j.jbiomech.2006.02.002
    Wang Y, Yan S, Zeng J, Zhang K. 2020. The biomechanical effect of different posterior tibial slopes on the tibiofemoral joint after posterior-stabilized total knee arthroplasty. J. Orthop. Surg. Res., 15: 320. doi: 10.1186/s13018-020-01851-y
    Waterval N F J, Nollet F, Harlaar J, Brehm M A. 2019. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level. J. Neuroeng. Rehabil., 16: 120. doi: 10.1186/s12984-019-0600-2
    Wellman A D, Coad S C, Goulet G C, Mclellan C P. 2016. Quantification of competitive game demands of NCAA division i college football players using global positioning systems. J. Strength Cond. Res., 30: 11-19. doi: 10.1519/JSC.0000000000001206
    Werkhausen A, Cronin N J, Albracht K, et al. 2019. Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running. Peer J., 7: e6764. doi: 10.7717/peerj.6764
    Winter D A. (2009). Biomechanics and Motor Control of Human Movement. New Jersey: John Wiley & Sons, Inc.
    Winters J M. 1995. An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models. Journal of Biomechanical Engineering, 23: 359-374.
    Winters T M, Takahashi M, Lieber R L, Ward S R. 2011. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. Journal of Biomechanics, 44: 109-115. doi: 10.1016/j.jbiomech.2010.08.033
    Wolfsperger F, Meyer F, Gilgien M. 2021. The snow-friction of freestyle skis and snowboards predicted from snow physical quantities. Frontiers in Mechanical Engineering, 7: 28722.
    Yeadon M R. 1990. The simulation of aerial movement--II. A mathematical inertia model of the human body. Journal of Biomechanics, 23(1): 67-74.
    Yeadon M R. 1993. The biomechanics of twisting somersaults. Part IV: Partitioning performances using the tilt angle. J. Sports Sci., 11(3): 219-225.
    Yeadon M R, Hiley M J. 2014. The control of twisting somersaults. Journal of Biomechanics, 47: 1340-1347. doi: 10.1016/j.jbiomech.2014.02.006
    Yeh I C, Chang C M, Chen K C, Hong W C, Lu Y H. 2015. The influence of functional fitness and cognitive training of physical disabilities of institutions. Scientific World Journal, 2015: 686498.
    Yin P, Li J S, Kernkamp W A, et al. 2017. Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion. Clin Biomech(Bristol, Avon), 49: 101-106.
    Yu B, Hay J G. 1996. Optimum phase ratio in the triple jump. Journal of Biomechanics, 29: 1283-1289. doi: 10.1016/0021-9290(96)00048-6
    Yuan Z M, Li M, Ji C Y, et al. 2019. Steady hydrodynamic interaction between human swimmers. J. R. Soc. Interface, 16: 20180768. doi: 10.1098/rsif.2018.0768
    Zajac F E. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17: 359-411.
    Zatsiorsky V M. 2000. biomechanics in sport. Oxford, Blackwell Science.
    Zhang J, Pan T, Liu Y, Wang J H. 2010. Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells (TSCs) and TSC-related cellular production of collagen. J. Orthop. Res., 28: 1178-1183. doi: 10.1002/jor.21123
    Zhang J, Wang J H. 2010. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J. Orthop. Res., 28: 639-643. doi: 10.1002/jor.21046
    Zhang X, Yue Z, Wang J. 2017. Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol, 2017: 3731802.
    Zonnino A, Sergi F. 2020. Model-based estimation of individual muscle force based on measurements of muscle activity in forearm muscles during isometric tasks. IEEE Transactions on Biomedical Engineering, 67: 134-145. doi: 10.1109/TBME.2019.2909171
    Zoppirolli C, Hébert-Losier K, Holmberg H-C, Pellegrini B. 2020. Biomechanical determinants of cross-country skiing performance a systematic review. Journal of Sports Sciences, 38(1): 2127-2148.
    Zou Y, Libanori A, Xu J, Nashalian A, Chen J. 2020. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research (Wash D C), 2020: 7158953.
    Øiestad B E, Engebretsen L, Storheim K, Risberg M A. 2009. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am. J. Sports Med., 37: 1434-1443. doi: 10.1177/0363546509338827
  • 加载中
图(9)
计量
  • 文章访问数:  4039
  • HTML全文浏览量:  1367
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 录用日期:  2022-10-17
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回