留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热湍流研究的新十年: 从聚焦传统到延伸拓展

谢毅超 张路 丁广裕 陈鑫 郗恒东 夏克青

谢毅超, 张路, 丁广裕, 陈鑫, 郗恒东, 夏克青. 热湍流研究的新十年: 从聚焦传统到延伸拓展. 力学进展, 待出版 doi: 10.6052/1000-0992-22-024
引用本文: 谢毅超, 张路, 丁广裕, 陈鑫, 郗恒东, 夏克青. 热湍流研究的新十年: 从聚焦传统到延伸拓展. 力学进展, 待出版 doi: 10.6052/1000-0992-22-024
Xie Y C, Zhang L, Ding G Y, Chen X, Xi H D, Xia K Q. Progress in turbulent thermal convection in the past decade and outlook. Advances in Mechanics, in press doi: 10.6052/1000-0992-22-024
Citation: Xie Y C, Zhang L, Ding G Y, Chen X, Xi H D, Xia K Q. Progress in turbulent thermal convection in the past decade and outlook. Advances in Mechanics, in press doi: 10.6052/1000-0992-22-024

热湍流研究的新十年: 从聚焦传统到延伸拓展

doi: 10.6052/1000-0992-22-024
基金项目: 感谢国家自然科学基金 (12072144, 12002260, 92152104, 12125204) 、中国博士后科学基金 (2021M701579, 2021M702077) 、中央高校基本科研业务费 (xzy012021005) 和西安交通大学青年拔尖人才项目资助.
详细信息
    作者简介:

    谢毅超, 西安交通大学航天航空学院副教授、博士生导师. 2010-2016在香港中文大学分别获得硕士学位和博士学位, 2019年11月入职西安交通大学. 主要研究领域为磁流体湍流结构演化与输运、热湍流和高聚物湍流. 主持国家自然科学基金委《湍流结构的生成演化及作用机理》重大研究计划培育项目、青年科学基金和中央高校基本科研业务费等项目. 在Journal of Fluid Mechanics (6篇) , Physical Review Letters (2篇) 和《空气动力学学报》等期刊发表论文10篇

    通讯作者:

    yichao.xie@xjtu.edu.cn

    xiakq@sustech.edu.cn

  • 中图分类号: (O357.5)

Progress in turbulent thermal convection in the past decade and outlook

More Information
  • 摘要: 热湍流 (浮力驱动湍流) 作为一种典型的湍流现象, 广泛存在于自然界和工程应用中. Rayleigh-Bénard (RB) 湍流是从众多自然现象中抽象出来研究热湍流的经典模型, RB湍流的典型特征是系统中存在大尺度环流和羽流等不同尺度的湍流结构, 这些结构通过作用于边界层, 影响RB湍流的输运效率. 因此, 明确不同尺度湍流结构的生成、演化和作用机理, 对理解RB湍流的输运特性至关重要, 也是通过控制湍流结构调控输运效率的科学基础. 本文重点从湍流结构的时空演化规律、输运特性、湍流调控和热湍流在其他领域的拓展四个方面评述近十年来RB湍流研究所取得的新进展, 并对今后的研究方向做出展望.

     

  • 图  1  Rayleigh-Bénard (RB) 湍流示意图 (周全&夏克青2012)

    图  2  大尺环流反转过程. (a-c) 和 (e-g) 分别为直接数值模拟 (Ra = 108, Pr = 4.3) 和通过PIV实验测量 (Ra = 3.8 × 108, Pr = 4.3) 得到的大尺度环流反转过程, (d) 和 (h)分别为直接数值模拟和通过PIV实验测量得到的大尺度环流角动量随时间的变化曲线 (Sugiyama et al 2010)

    图  3  阴影法拍摄的圆盘对流腔体流场图像 (Ra = 6.2 × 109, Pr = 4.4). (a)大尺度环流长时间处于的稳定状态, (b)大尺度环流短暂出现的爆发状态 (Wang, Lai et al 2018)

    图  4  (a)实验测得的准二维矩形对流腔体中大尺度环流反转频率随Ra数的变化 (为了清晰显示, Pr = 5.7和Pr = 4.3的数据分别上移了10倍和100倍), (b)正常单环结构 (Ra = 7.94 × 108, Pr = 7.0), (c)反常单环结构(Ra=1.16 × 108, Pr = 7.0) (Chen et al., 2019)

    图  5  PIV测量得到的准二维矩形对流腔体中有角涡和无角涡的流场.(a)有角涡的流场 (Ra = 7.94 × 108, Pr = 7.0), (b)无角涡的流场 (Ra = 7.56 ×108, Pr = 7.0) (Chen, Wang & Xi 2020)

    图  6  (a)直接数值模拟所得的平均温度剖面 (空心圆) 与理论值 (实线) 的比较图, 虚线为PBP边界层理论的预测值, (b)大尺度环流方向的平均速度剖面比较图, 图例与(a)一致 (Ching et al 2019)

    图  7  剪切区和羽流发射区的温度涨落剖面. (a)阴影法观测得到的大尺度流动结构示意图, 其中A为大尺度环流主导的强剪切区, B 为羽流主导的发射区, (b)双对数坐标下的羽流区与剪切区温度涨落剖面, (c)半对数坐标下的羽流区与剪切区温度涨落剖面 (He & Xia 2019)

    图  8  单环与双环大尺度环流结构及输运效率与大尺度环流结构的关系. PIV测得的 (a)单环大尺度环流, (b)双环大尺度环流, (c) 双环大尺度环流消失后的单环大尺度环流, (d) Nu数随着大尺度湍流结构流态的变化规律, 其中|δφ|top,bot的绝对值代表不同高度大尺度环流的角向方位, 当|δφ|top,bot=0时对应于单环大尺度环流, 当|δφ|top,bot=180时对应于双环大尺度环流 (Xi & Xia 2018)

    图  9  空间约束对热湍流输运特性和湍流结构的影响. (a)不同Ra数时归一化的Nu数随着方腔对腔体宽高比Γ的变化规律, 这里Nu (Γ = 0.6)对应宽高比为Γ = 0.6时RB系统的Nu数, (b) Γ = 1/2对流腔体中的瞬时温度场和速度场, (c)Γ = 1/8对流腔体中的瞬时温度场和速度场 (Huang et al 2013)

    图  10  实验测量得到的圆环对流腔体中大尺度湍流结构. (a)时间平均后的四极矩湍流态空间结构, 红色代表顺时针流动, 蓝色代表逆时针流动 (b) 时间平均后的偶极矩湍流态空间结构, (c)Nu数随着Ra数的变化关系, 插入图为Nu的涨落σNu随着Ra数的变化关系 (Xie, Ding & Xia 2018)

    图  11  实验获得的粗糙壁面热湍流不同区间热输运特性, 此处粗糙元宽高比λ = 4.0. (a) Nu数和Ra数的标度律关系, 图中实线为拟合获得的标度律. (b) NuRa数标度律指数α (Nu ~ Raα) 和Re数与Ra数标度律指数β (Re ~ Raβ) 随着粗糙元宽高比λ的变化关系 (Xie & Xia 2017)

    图  12  引入振动调制的热湍流不同振动频率ω时的瞬时流动结构. (a) ω = 0, (b) ω = 1400, (c)归一化的Nu数随着振动频率ω的变化关系, 这里Nu(0)对应于ω = 0时RB系统的Nu数 (Wang, Zhou & Sun 2020)

    图  13  地转区间不同$ Ra/R{a}_{c} $条件下的温度脉动等值面. (a)为涡胞区间($ Ra/R{a}_{c}=1.2,Pr=7 $), (b)泰勒涡区间($ Ra/R{a}_{c}=3.5,Pr=7 $), (c)羽流区间 ($ Ra/R{a}_{c}=8.0,Pr=7 $), (d) 地转湍流区间 ($ Ra/R{a}_{c}=10.3,Pr=1 $), 图中的直接数值模拟上下边界均为无滑移条件, 旋转控制参数为$ Ek={10}^{-7} $ (Plumley et al 2016)

    图  14  归一化的泰勒涡均方位移随着归一化的时间的变化曲线 (Chong et al 2020)

    图  15  旋转热湍流不同宽高比Γ 的圆柱对流腔体的Nu数随Ra/Rac的变化关系, 插图为标度律指数γ 随着Γ 的变化关系. 图中Ek = 1.85 × 10−6, Pr = 4.38 (Lu et. al 2021)

    图  16  离心力效应对热湍流输运特性和湍流结构的影响. (a) 归一化的努赛尔数Nur=Nu/Nu(1/Ro = 1) 随着1/Ro的变化曲线, 三角形和五角星分别为为无偏心和偏心率d/R = 5.15时的Nur, 插图为实验装置示意图, (b)和(c)分别为PIV测量得到的无偏心及偏心率为$ d/R=3.5 $时, $ 1/Ro\approx 7.6 $对应的时均速度场垂直剖面图, 其颜色代表以cm/s为单位的垂直速度大小 (Hu et al 2021)

    图  17  混合边界RB湍流的Nu数. (a)长方体对流腔体, 图例表示导热板和绝热板的分布形式, 其中C表示导热板, A表示绝热板, (b)圆柱对流腔体, 图例的$ \xi $及分数表示绝热板占据的面积比, 中央绝热和边缘绝热分别表示绝热板置于冷板中心和边缘 (Wang et al 2017)

    图  18  混合率 (mixing rate) κρ随无量纲边界层厚度δ/D的变化; 插图为混合效率Rf随无量纲边界层厚度的变化 (Wang, Huang, Xia 2018)

    图  19  对流腔体中心区域时间平均的局域热流密度Jz随高聚物浓度c的变化曲线. (a)聚丙烯酰胺 (PAM) , (b) 聚氧化乙烯 (PEO) (Xie et al 2015)

    图  20  水汽输运努塞尔数Nue和热输运努塞尔数NuT随格拉晓夫数Gr变化曲线 (Zhang et al 2019)

    图  21  (a)含水平浮力热对流系统中垂直方向努塞尔数NuvRa数以及浮力比例Λ的变化规律, (b)该系统中垂向努塞尔数NuvPr数以及浮力比例Λ的变化规律, 图中的曲面表示新理论模型的预测值 (Zhang et al 2021)

    图  22  热湍流中央区域局部能量耗散率εu,c与局部努塞尔数Nuc的平衡关系实验验证.倒三角为直接测量得到的中央区域的局部努塞尔数Nuc, 其他图标为通过式9计算得到的Nuc数. 两种方法得到的Nuc数互相重叠在一起, 验证了εu,cNuc的平衡关系 (Ni et al 2011)

  • [1] Ahlers G, Bodenschatz E, Hartmann R, He X, Lohse D, Reiter P, Richard J A M S, Verzicco R, Wedi M, Weiss S., Zhang X, Zwirner L, Shishkina, O. 2022. Aspect ratio dependence of heat transfer in a cylindrical Rayleigh-Bénard cell,. Phys. Rev. Lett., 128: 084501. doi: 10.1103/PhysRevLett.128.084501
    [2] Ahlers G, Brown E, Nikolaenko A. 2006. The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh-Bénard convection,. J. Fluid Mech., 557: 347-367. doi: 10.1017/S0022112006009888
    [3] Ahlers G, Grossmann S, Lohse D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection,. Rev. Mod. Phys., 81: 503-537. doi: 10.1103/RevModPhys.81.503
    [4] Ahlers, G., Nikolaenko A. 2010. Effect of a polymer additive on heat transport in turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 104: 034503. doi: 10.1103/PhysRevLett.104.034503
    [5] Alards K M J, Rajaei H, Kunnen R P J, Toschi F, Clercx H J H. 2018. Directional change of tracer trajectories in rotating Rayleigh-Bénard convection,. Phys. Rev. E, 97: 063105. doi: 10.1103/PhysRevE.97.063105
    [6] Araujo F F, Grossmann S, Lohse D. 2005. Wind reversals in turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 95: 084502. doi: 10.1103/PhysRevLett.95.084502
    [7] Aurnou J M, Bertin V, Grannan A M, Horn S, Vogt T. 2018. Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns,. J. Fluid Mech., 846: 846-876. doi: 10.1017/jfm.2018.292
    [8] Bakhuis D, Ostilla-Mónico R, Van Der Poel E P, Verzicco R, Lohse D. 2018. Mixed insulating and conducting thermal boundary conditions in Rayleigh-Bénard convection,. J. Fluid Mech., 835: 491-511. doi: 10.1017/jfm.2017.737
    [9] Barkan R, Winters K B, Smith S G L. 2013. Rotating horizontal convection,. J. Fluid Mech., 723: 556-586. doi: 10.1017/jfm.2013.136
    [10] Behringer R P. 1985. Rayleigh-Bénard convection and turbulence in liquid helium,. Rev. Mod. Phys., 57: 657-687. doi: 10.1103/RevModPhys.57.657
    [11] Benzi R. 2005. Flow reversal in a simple dynamical model of turbulence,. Phys. Rev. Lett., 95: 024502. doi: 10.1103/PhysRevLett.95.024502
    [12] Benzi R, Ching E S C, De Angelis E. 2010. Effect of polymer additives on heat transport in turbulent thermal convection,. Phys. Rev. Lett., 104: 024502. doi: 10.1103/PhysRevLett.104.024502
    [13] Benzi R, Ching E S C, De Angelis E. 2016. Turbulent Rayleigh-Benard convection with polymers: Understanding how heat flux is modified,. Phys. Rev. E, 94: 063110. doi: 10.1103/PhysRevE.94.063110
    [14] Benzi, R, Ching, E S C. 2018. Polymers in Fluid Flows,. Annu. Rev. Conden. Matt. Phys., 9: 163-181. doi: 10.1146/annurev-conmatphys-033117-053913
    [15] Blass A, Zhu X, Verzicco R, Lohse D, Stevens R J A M 2020. Flow organization and heat transfer in turbulent wall sheared thermal convection. J. Fluid Mech. , 897: A22.
    [16] Boffetta G., Mazzino A., Musacchio S., Vozella, L. 2010. Polymer heat transport enhancement in thermal convection: the case of Rayleigh-Taylor turbulence,. Phys. Rev. Lett., 104: 184501. doi: 10.1103/PhysRevLett.104.184501
    [17] Boussinesq J. 1903. Theorie Analytique de la Chaleur (Gauthier-Villars, Paris). 2
    [18] Brown E, Ahlers G. 2007. Large-scale circulation model for turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 98: 134501. doi: 10.1103/PhysRevLett.98.134501
    [19] Brown E, Nikolaenko A, Ahlers G. 2005. Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 95: 084503. doi: 10.1103/PhysRevLett.95.084503
    [20] Brown R A. 1988. Theory of transport processes in single crystal growth from the melt,. AIChE Journal, 34: 881-911. doi: 10.1002/aic.690340602
    [21] Cai W, Wei T, Tang X, Liu Y, Li B, Li F. 2019. The polymer effect on turbulent Rayleigh-Bénard convection based on PIV experiments,. Exp. Therm. Fluid Sci., 103: 214-221. doi: 10.1016/j.expthermflusci.2019.01.011
    [22] Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A, Thomae S, Wu X Z, Zaleski S, Zanetti G. 1989. Scaling of hard thermal turbulence in Rayleigh-Bénard convection,. J. Fluid Mech., 204: 1-30. doi: 10.1017/S0022112089001643
    [23] Castillo-Castellanos A, Sergent A, Rossi M. 2016. Reversal cycle in square Rayleigh-Bénard cells in turbulent regime,. J. Fluid Mech., 808: 614-640. doi: 10.1017/jfm.2016.647
    [24] Chandra M, Verma M K. 2011. Dynamics and symmetries of flow reversals in turbulent convection,. Phys. Rev. E, 83: 067303. doi: 10.1103/PhysRevE.83.067303
    [25] Chandra M, Verma M K. 2013. Flow reversals in turbulent convection via vortex reconnections,. Phys. Rev. Lett., 110: 114503. doi: 10.1103/PhysRevLett.110.114503
    [26] Chandrakar K K, Cantrell W, Chang K, Ciochetto D, Niedermeier D, Ovchinnikov M, Shaw R A, Yang F. 2016. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions,. Proc. Natl. Acad. Sci., 113: 14243-14248. doi: 10.1073/pnas.1612686113
    [27] Chandrakar K K, Cantrell W, Krueger S, Shaw R A, Wunsch S. 2019. Supersaturation fluctuations in moist turbulent Rayleigh-Bénard convection: A two-scalar transport problem,. J. Fluid Mech., 884: A19.
    [28] Chandrasekhar S. 1961. Hydrodynamic and hydromagnetic stability. Oxford University Press.
    [29] Chen X, Huang S D, Xia K Q, Xi H D. 2019. Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection,. J. Fluid Mech., 877: R1. doi: 10.1017/jfm.2019.624
    [30] Chen X, Wang D P, Xi H D. 2020. Reduced flow reversals in turbulent convection in the absence of corner vortices,. J. Fluid Mech., 891: R5. doi: 10.1017/jfm.2020.202
    [31] 陈鑫, 郗恒东. 2022. 瑞利-伯纳德热湍流中的多湍流态现象. 空气动力学学报, 40: 147−155

    CHEN X, XI H D. Multiple flow states in turbulent Rayleigh-Bénard convection. Acta Aerodynamica Sinica, 2022, 40: 147-155 (in Chinese). )
    [32] Cheng J S, Aurnou J M, Julien K, Kunnen R P J. 2018. A heuristic framework for next-generation models of geostrophic convective turbulence,. Geophys. Astrophys. Fluid Dyn., 112: 277-300. doi: 10.1080/03091929.2018.1506024
    [33] Cheng J S, Madonia M, Aguirre Guzmán A J, Kunnen R P J. 2020. Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection,. Phys. Rev. Fluids, 5: 113501. doi: 10.1103/PhysRevFluids.5.113501
    [34] Cheng J S, Stellmach S, Ribeiro A, Grannan A, King E M, Aurnou J M. 2015. Laboratory-numerical models of rapidly rotating convection in planetary cores,. Geophys. J. Int., 201: 1-17. doi: 10.1093/gji/ggu480
    [35] Cheng J P, Zhang H N, Cai W H, Li S N, Li F C. 2017. Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection,. Phys. Rev. E, 96: 013111. doi: 10.1103/PhysRevE.96.013111
    [36] Chilla F, Schumacher J. 2012. New perspectives in turbulent Rayleigh-Bénard convection,. Eur. Phys. J. E, 35: 58. doi: 10.1140/epje/i2012-12058-1
    [37] Ching E S C, Leung H S, Zwirner L, Shishkina O. 2019. Velocity and thermal boundary layer equations for turbulent Rayleigh-Bénard convection,. Phys. Rev. Research, 1: 033037. doi: 10.1103/PhysRevResearch.1.033037
    [38] Chong K L, Shi J Q, Ding G Y, Ding S S, Lu H Y, Zhong J Q, Xia K Q. 2020. Vortices as Brownian particles in turbulent flows,. Sci. Adv., 6: eaaz1110. doi: 10.1126/sciadv.aaz1110
    [39] Chong K L, Yang Y, Huang S D, Zhong J Q, Stevens R J A M, Verzicco R, Lohse D, Xia K Q. 2017. Confined Rayleigh-Bénard, rotating Rayleigh-Bénard, and double diffusive convection: a unifying view on turbulent transport enhancement through coherent structure manipulation,. Phys. Rev. Lett., 119: 064501. doi: 10.1103/PhysRevLett.119.064501
    [40] Ciliberto S, Cioni S, Laroche C. 1996. Large-scale flow properties of turbulent thermal convection,. Phys. Rev. E, 54: R5901-R5904. doi: 10.1103/PhysRevE.54.R5901
    [41] Ciliberto S, Laroche C. 1999. Random roughness of boundary increases the turbulent convection scaling exponent,. Phys. Rev. Lett., 82: 3998-4001. doi: 10.1103/PhysRevLett.82.3998
    [42] Cioni S, Ciliberto S, Sommeria J. 1997. Strongly turbulent RBC in mercury: comparison with results at moderate Prandtl numbers. J. Fluid Mech. , 335, s 111-140.
    [43] Cooper C M, Moresi L N, Lenardic A. 2013. Effects of continental configuration on mantle heat loss,. Geophys. Res. Lett., 40: 2647-2651. doi: 10.1002/grl.50547
    [44] Cross M C, Hohenberg P C. 1993. Pattern formation outside of equilibrium,. Rev. Mod. Phys., 65: 851-1112. doi: 10.1103/RevModPhys.65.851
    [45] Guzman D N, Frączek T, Reetz C, Sun C, Lohse D, Ahlers G. 2016. Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection,. J. Fluid Mech., 795: 60-95. doi: 10.1017/jfm.2016.178
    [46] Guzman D N, Xie Y, Chen S, David Fernandez Rivas, Sun C, Lohse D, Ahlers G. 2015. Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence,. J. Fluid Mech., 787: 331-366.
    [47] Daniels K E, Bodenschatz E. 2002. Defect turbulence in inclined layer convection,. Phys. Rev. Lett., 88: 034501. doi: 10.1103/PhysRevLett.88.034501
    [48] Daniels K E, Plapp B B, Bodenschatz E. Pattern formation in inclined layer convection. Phys. Rev. Lett. , 84: 5320-5323.
    [49] Daniels K E, Wiener R J, Bodenschatz E. 2003. Localized transverse bursts in inclined layer convection,. Phys. Rev. Lett., 91: 114501. doi: 10.1103/PhysRevLett.91.114501
    [50] de Wit X M, Guzmán A J, Madonia M, Cheng J S, Clercx H J H, Kunnen R P J. 2020. Turbulent rotating convection confined in a slender cylinder: the sidewall circulation,. Phys. Rev. Fluids, 5: 023502. doi: 10.1103/PhysRevFluids.5.023502
    [51] Deardorff J W. 1970. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection,. J. Atmos. Sci., 27: 1211-1213. doi: 10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2
    [52] Deusebio E, Boffetta G, Lindborg E, Musacchio S. 2014. Dimensional transition in rotating turbulence,. Phys. Rev. E, 90: 023005. doi: 10.1103/PhysRevE.90.023005
    [53] Ding G Y, Chong K L, Xia K Q. 2021. A comparative study of linear and step forcing temperature profiles in horizontal convection,. Europhys. Lett., 135: 24006. doi: 10.1209/0295-5075/ac29ef
    [54] Ding G Y, He Y H, Xia K Q. 2022. The effect of tidal force and topography on horizontal convection,. J. Fluid Mech., 932: A32. doi: 10.1017/jfm.2021.1021
    [55] Ding S S, Chong K L, Shi J Q, Ding G Y, Lu H Y, Xia K Q, Zhong J Q. 2021. Inverse centrifugal effect induced by collective motion of vortices in rotating thermal convection,. Nat. Commun., 12: 5585. doi: 10.1038/s41467-021-25838-3
    [56] du Puits R, Resagk C, Tilgner A. 2007. Structure of thermal boundary layer for turbulent Rayleigh-Bénard convection,. J. Fluid Mech., 572: 231-254. doi: 10.1017/S0022112006003569
    [57] du Puits R, Resagk C, Thess A. 2009. Structure of viscous boundary layers in turbulent Rayleigh- Bénard convection,. Phys. Rev. E, 80: 036318. doi: 10.1103/PhysRevE.80.036318
    [58] Du Y B, Tong P. 2000. Turbulent thermal convection in a cell with ordered rough boundaries,. J. Fluid Mech., 407: 57-84. doi: 10.1017/S0022112099007624
    [59] Ecke R E, Zhong F, Knobloch E. 1992. Hopf Bifurcation with Broken Reflection Symmetry in Rotating Rayleigh-Bénard Convection,. Europhys. Lett., 19: 177-182. doi: 10.1209/0295-5075/19/3/005
    [60] Favier B, Knobloch E. 2020. Robust wall states in rapidly rotating Rayleigh-Bénard convection,. J. Fluid Mech., 895: R1. doi: 10.1017/jfm.2020.310
    [61] Frick P, Khalilov R, Kolesnichenko I, Mamykin A, Pakholkov V, Pavlinov A, Rogozhkin S. 2015. Turbulent convective heat transfer in a long cylinder with liquid sodium,. EuroPhys. Lett, 109: 14002. doi: 10.1209/0295-5075/109/14002
    [62] Funfschilling D, Ahlers G. 2004. Plume motion and large-scale circulation in a cylindrical Rayleigh-Bénard cell,. Phys. Rev. Lett., 92: 194502. doi: 10.1103/PhysRevLett.92.194502
    [63] Gasteuil Y, Shew W. L., Gibert M, Chillà F., Castaing B., Pinton J.-F. 2007. Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh-Bénard convection,. Phys. Rev. Lett., 99: 234302. doi: 10.1103/PhysRevLett.99.234302
    [64] Gayen B, Griffiths R W, Hughes G O, Saenz J A. 2013. Energetics of horizontal convection,. J. Fluid Mech., 716: R10. doi: 10.1017/jfm.2012.592
    [65] Gayen B, Griffiths R W, Hughes G O. 2014. Stability transitions and turbulence in horizontal convection,. J. Fluid Mech., 751: 698-724. doi: 10.1017/jfm.2014.302
    [66] Gayen B, Griffiths R W. 2022. Rotating horizontal convection,. Annu. Rev. Fluid Mech., 54: 105-132. doi: 10.1146/annurev-fluid-030121-115729
    [67] Glatzmaiers G A, Roberts P H. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal,. Nature, 377: 203-209. doi: 10.1038/377203a0
    [68] Grossmann S, Lohse D, Sun C. 2016. High-Reynolds Number Taylor-Couette Turbulence,. Annu. Rev. Fluid Mech., 48: 53-80. doi: 10.1146/annurev-fluid-122414-034353
    [69] Grossmann S, Lohse D. 2000. Scaling in thermal convection: A unifying view,. J. Fluid Mech., 407: 27-56. doi: 10.1017/S0022112099007545
    [70] Grossmann S, Lohse D. 2001. Thermal convection for large Prandtl number,. Phys. Rev. Lett., 86: 3316-3319. doi: 10.1103/PhysRevLett.86.3316
    [71] Grossmann S, Lohse D. 2002. Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection,. Phys. Rev. E, 66: 016305. doi: 10.1103/PhysRevE.66.016305
    [72] Grossmann S, Lohse D. 2004. Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes,. Phys. Fluids, 16: 4462-4472. doi: 10.1063/1.1807751
    [73] Guo, S X, Zhou S Q, Cen X R, Qu L, Lu Y Z, Sun L, Shang X D. 2014. The effect of cell tilting on turbulent thermal convection in a rectangular cell,. J. Fluid Mech., 762: 273-287.
    [74] Hartmann D L, Moy L A, Fu Q. 2001. Tropical convection and the energy balance at the top of the atmosphere,. J. Climate, 14: 4495-4511. doi: 10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2
    [75] Hazewinkel J, Paparella F, Young W R. 2012. Stressed horizontal convection,. J. Fluid Mech., 692: 317-331. doi: 10.1017/jfm.2011.514
    [76] He X, Funfschilling D, Nobach H, Bodenschatz E, Ahlers G. 2012. Transition to the ultimate state of turbulent Rayleigh-Benard convection,. Phys. Rev. Lett., 108: 024502. doi: 10.1103/PhysRevLett.108.024502
    [77] He Y H, Xia K Q. 2019. Temperature fluctuation profiles in turbulent thermal convection: a logarithmic dependence versus a power-law dependence,. Phys. Rev. Lett., 122: 014503. doi: 10.1103/PhysRevLett.122.014503
    [78] Hogg A M, Gayen B. 2020. Ocean gyres driven by surface buoyancy forcing,. Geophys. Res. Lett., 47: 1-10.
    [79] Horn S, Aurnou J M. 2018. Regimes of Coriolis-Centrifugal Convection,. Phys. Rev. Lett., 120: 204502. doi: 10.1103/PhysRevLett.120.204502
    [80] Horn S, Aurnou J M. 2019. Rotating convection with centrifugal buoyancy: Numerical predictions for laboratory experiments,. Phys. Rev. Fluids, 4: 073501. doi: 10.1103/PhysRevFluids.4.073501
    [81] Horn S, Schmid P J. 2017. Prograde, retrograde, and oscillatory modes in rotating Rayleigh-Bénard convection,. J. Fluid Mech., 831: 182-211.
    [82] Hu Y B, Huang S D, Xie Y C, Xia K Q. 2021. Centrifugal-force-induced flow bifurcations in turbulent thermal convection,. Phys. Rev. Lett., 127: 244501. doi: 10.1103/PhysRevLett.127.244501
    [83] Hu Y B, Xie Y C, Xia K Q. 2022. On the centrifugal effect in turbulent rotating thermal convection: onset and heat transport,. J. Fluid Mech., 938: R1. doi: 10.1017/jfm.2022.190
    [84] Huang R X. 1999. Mixing and energetics of the oceanic thermohaline circulation,. J. Phys. Oceanogr., 29: 727-746. doi: 10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2
    [85] Huang S D, Kaczorowski M, Ni R, Xia K Q. 2013. Confinement-induced heat-transport enhancement in turbulent thermal convection,. Phys. Rev. Lett., 111: 104501. doi: 10.1103/PhysRevLett.111.104501
    [86] Huang S D, Wang F, Xi H D, Xia K Q. 2015. Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection,. Phys. Rev. Lett., 115: 154502.
    [87] Huang S D, Xia K Q. 2016. Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection,. J. Fluid Mech., 794: 639-654. doi: 10.1017/jfm.2016.181
    [88] Hughes G O, Griffiths R W, Mullarney J C, Peterson W H. 2007. A theoretical model for horizontal convection at high Rayleigh number,. J. Fluid Mech., 581: 251-276. doi: 10.1017/S0022112007005630
    [89] Hughes G O, Griffiths R W. 2008. Horizontal convection,. Annu. Rev. Fluid Mech, 40: 185-208. doi: 10.1146/annurev.fluid.40.111406.102148
    [90] Hughes G O, Hogg A M C, Griffiths R W. 2009. Available potential energy and irreversible mixing in the meridional overturning circulation,. J. Phys. Oceanogr., 39: 3130-3146. doi: 10.1175/2009JPO4162.1
    [91] Jiang H, Zhu X, Mathai V, Verzicco R, Lohse D, Sun C. 2018. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces,. Phys. Rev. Lett., 120: 044501. doi: 10.1103/PhysRevLett.120.044501
    [92] Jiang H, Zhu X, Wang D, Huisman S G, and Sun C. 2020. Supergravitational turbulent thermal convection,. Sci. Adv., 6: eabb8676. doi: 10.1126/sciadv.abb8676
    [93] Jiang L, Sun C, Calzavarini E. 2019. Robustness of heat transfer in confined inclined convection at high Prandtl number,. Phys. Rev. E, 99: 013108. doi: 10.1103/PhysRevE.99.013108
    [94] Jin T C, Wu J Z, Zhang Y Z, Liu Y L, Zhou Q. 2022. Shear-induced modulation on thermal convection over rough plates,. J. Fluid Mech., 936: A28. doi: 10.1017/jfm.2021.1111
    [95] Julien K, Aurnou J M, Calkins M A, Knobloch E, Marti P, Stellmach S, Vasil G M. 2016. A nonlinear model for rotationally constrained convection with Ekman pumping,. J. Fluid Mech., 798: 50-87. doi: 10.1017/jfm.2016.225
    [96] Julien K, Knobloch E, Plumley M. 2018. Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection,. J. Fluid Mech., 837: R4. doi: 10.1017/jfm.2017.894
    [97] Julien K, Knobloch E, Rubio A M, Vasil G M. 2012. Heat transport in low-Rossby-number Rayleigh-Bénard convection,. Phys. Rev. Lett., 109: 254503. doi: 10.1103/PhysRevLett.109.254503
    [98] Julien K, Knobloch E, Werne J. 1998. A new class of equations for rotationally constrained flows,. Theor. Comput. Fluid Dyn., 11: 251-261. doi: 10.1007/s001620050092
    [99] Kar P K, Kumar Y N, Das P K, Lakkaraju R. 2020. Thermal convection in octagonal-shaped enclosures,. Phys. Rev. Fluids, 5: 103501. doi: 10.1103/PhysRevFluids.5.103501
    [100] Kerswell R R. 2002. Elliptical Instability,. Annu. Rev. Fluid Mech., 34: 83-113. doi: 10.1146/annurev.fluid.34.081701.171829
    [101] King E M, Aurnou J M. 2013. Turbulent convection in liquid metal with and without rotation,. Proc. Natl. Acad. Sci., 110: 6688-6693. doi: 10.1073/pnas.1217553110
    [102] King E M, Stellmach S, Aurnou J M. 2012. Heat transfer by rapidly rotating Rayleigh–Bénard convection,. J. Fluid Mech., 691: 568-582. doi: 10.1017/jfm.2011.493
    [103] King E M, Stellmach S, Noir J, Hansen U, Aurnou J M. 2009. Boundary layer control of rotating convection systems,. Nature, 457: 301-304. doi: 10.1038/nature07647
    [104] Kraichnan R H. 1962. Turbulent thermal convection at arbitrary Prandtl number,. Phys. Fluids, 5: 1374-1389. doi: 10.1063/1.1706533
    [105] Krishnamurti R, Howard L N. 1981. Large-scale flow generation in turbulent convection,. Proc. Natl. Acad. Sci., 78: 1981-1985. doi: 10.1073/pnas.78.4.1981
    [106] Lakkaraju R, Stevens R J, Oresta P, Verzicco R, Lohse D, Prosperetti A. 2013. Heat transport in bubbling turbulent convection,. Proc. Natl. Acad. Sci., 110: 9237-9242. doi: 10.1073/pnas.1217546110
    [107] Landau L D, Lifshitz E M. 1987. Fluid Mechanics. Oxford: Pergamon.
    [108] Li X M, Huang S D, Ni R, Xia K Q. 2021. Lagrangian velocity and acceleration measurements in plume-rich regions of turbulent Rayleigh-Bénard convection,. Phys. Rev. Fluids, 6: 053503. doi: 10.1103/PhysRevFluids.6.053503
    [109] Li Y Z, Chen X, Xu A, Xi H D. 2022. Counter-flow orbiting of the vortex centre in turbulent thermal convection,. J. Fluid Mech., 935: A19. doi: 10.1017/jfm.2022.11
    [110] Lim Z L, Chong K L, Ding G Y, Xia K Q. 2019. Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing,. J. Fluid Mech., 870: 519-542. doi: 10.1017/jfm.2019.232
    [111] Liot O, Seychelles F, Zonta F, Chibbaro S, Coudarchet T, Gasteuil Y, Pinton J F, Salort J, Chillà F. 2016. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection,. J. Fluid Mech., 794: 655-675. doi: 10.1017/jfm.2016.190
    [112] Lohse D, Xia K Q. 2010. Small-scale properties of turbulent Rayleigh-Bénard Convection,. Annu. Rev. Fluid Mech., 42: 335-364. doi: 10.1146/annurev.fluid.010908.165152
    [113] Lu H Y, Ding G Y, Shi J Q, Xia K Q, Zhong J Q. 2021. Heat transport scaling and transition in geostrophic rotating convection with varying aspect ratio,. Phys. Rev. Fluids, 6: L071501. doi: 10.1103/PhysRevFluids.6.L071501
    [114] Malkus M V R. 1954. The heat transport and spectrum of thermal turbulence,. Proc. R. Soc. London, Ser. A, 225: 196-212. doi: 10.1098/rspa.1954.0197
    [115] Marshall J, Schott F. 1999. Open-ocean convection: observations, theory, and models,. Rev. Geophys., 37: 1-64. doi: 10.1029/98RG02739
    [116] Mathai V, Calzavarini E, Brons J, Sun C, Lohse D. 2016. Microbubbles and microparticles are not faithful tracers of turbulent acceleration,. Phys. Rev. Lett., 117: 024501. doi: 10.1103/PhysRevLett.117.024501
    [117] Mullarney J C, Griffiths R W, Hughes G O. 2004. Convection driven by differential heating at a horizontal boundary,. J. Fluid Mech., 516: 181-209. doi: 10.1017/S0022112004000485
    [118] Ni R, Huang S D, Xia K Q. 2011. Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection,. Phys. Rev. Lett., 107: 174503. doi: 10.1103/PhysRevLett.107.174503
    [119] Ni R, Huang S D, Xia K Q. 2012. Lagrangian acceleration measurements in convective thermal turbulence,. J. Fluid Mech., 692: 395-419. doi: 10.1017/jfm.2011.520
    [120] Ni R, Huang S D, Xia K Q. 2015. Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection,. J. Fluid Mech., 778: R5. doi: 10.1017/jfm.2015.433
    [121] 倪明玖. 2010. 磁约束核聚变关键能量转换部件的磁流体力学研究. 力学与实践, 32: 1-9 (NI M J. 2010. Magnetohydrodynamics relevant to liquid blanket of fusion,. Mechanics in Engineering, 32: 1-9 (in Chinese)).

    NI M J. 2010. Magnetohydrodynamics relevant to liquid blanket of fusion. Mechanics in Engineering, 32: 1−9 (in Chinese))
    [122] Nieves D, Rubio A M, Julien K. 2014. Statistical classification of flow morphology in rapidly rotating Rayleigh-Bénard convection. Phys. Fluids, 26: 086602.
    [123] Noto D, Tasaka Y, Yanagisawa T, Murai Y. 2019. Horizontal diffusive motion of columnar vortices in rotating Rayleigh-Bénard convection,. J. Fluid Mech., 871: 401-426. doi: 10.1017/jfm.2019.313
    [124] Oberbeck A. 1879. Über die wärmeleitung der flüssigkeiten bei berücksichtigung der strömungen infolge von temperaturdifferenzen,. Ann. Phys. Chem., 243: 271-292. doi: 10.1002/andp.18792430606
    [125] Ostilla-Mónico R, Amritkar A. 2020. Regime crossover in Rayleigh-Bénard convection with mixed boundary conditions,. J. Fluid Mech., 903: A39. doi: 10.1017/jfm.2020.623
    [126] Ovsyannikov M, Krasnov D, Emran M S, Schumacher J. 2016. Combined effects of prescribed pressure gradient and buoyancy in boundary layer of turbulent Rayleigh–Bénard convection,. European Journal of Mechanics - B/Fluids, 57: 64-74. doi: 10.1016/j.euromechflu.2016.02.001
    [127] Paparella F, Young W R. 2002. Horizontal convection is non-turbulent,. J. Fluid Mech., 466: 205-214. doi: 10.1017/S0022112002001313
    [128] Pauluis O, Schumacher J. 2011. Self-aggregation of clouds in conditionally unstable moist convection,. Proc. Natl. Acad. Sci., 108: 12623-12628. doi: 10.1073/pnas.1102339108
    [129] Plumley M, Julien K, Marti P, Stellmach S. 2016. The effects of Ekman pumping on quasi-geostrophic Rayleigh-Bénard convection,. J. Fluid Mech., 803: 51-71. doi: 10.1017/jfm.2016.452
    [130] Plumley M, Julien K, Marti P, Stellmach S. 2017. Sensitivity of rapidly rotating Rayleigh-Bénard convection to Ekman pumping,. Phys. Rev. Fluids., 2: 094801. doi: 10.1103/PhysRevFluids.2.094801
    [131] Qiu X L, Xia K Q, Tong P. 2005. Experimental study of the velocity boundary layer near a rough conducting surface in turbulent thermal convection,. J. Turb., 6: N30. doi: 10.1080/14685240500460733
    [132] Rajaei H, Joshi P, Alards K M J, Kunnen R P J, Toschi F, Clercx H J H. 2016. Transitions in turbulent rotating convection: A Lagrangian perspective,. Phys. Rev. E, 93: 043129. doi: 10.1103/PhysRevE.93.043129
    [133] Reiter P, Shishkina O. 2020. Classical and symmetrical horizontal convection: detaching plumes and oscillations,. J. Fluid Mech., 892: R1. doi: 10.1017/jfm.2020.211
    [134] Roche P E, Castaing B, Chabaud B, Hebral B. 2001. Observation of the 1/2 power law in Rayleigh-Bénard convection,. Phys. Rev. E, 63: 045303. doi: 10.1103/PhysRevE.63.045303
    [135] Rossby H T. 1965. On thermal convection driven by non-uniform heating from below: an experimental study,. Deep Sea Res. Oceanogr. Abstr., 12: 9-16. doi: 10.1016/0011-7471(65)91336-7
    [136] Rubio A M, Julien K, Knobloch E, Weiss J B. 2014. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection,. Phys. Rev. Lett., 112: 144501. doi: 10.1103/PhysRevLett.112.144501
    [137] Rusaouën E, Liot O, Castaing B, Salort J, Chillà F. 2018. Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries,. J. Fluid Mech., 837: 443-460. doi: 10.1017/jfm.2017.852
    [138] Sakai S. 1997. The horizontal scale of rotating convection in the geostrophic regime,. J. Fluid Mech., 333: 85-95. doi: 10.1017/S0022112096004168
    [139] Schaeffer N, Jault D, Nataf H C, Fournier A. 2017. Turbulent geodynamo simulations: a leap towards Earth’s core,. Geophys. J. Intl, 211: 1-29. doi: 10.1093/gji/ggx265
    [140] Schindler F, Eckert S, Zürner T, Schumacher J, Vogt T. 2022. Collapse of coherent large scale flow in strongly turbulent liquid metal convection,. Phys. Rev. Lett., 128: 164501. doi: 10.1103/PhysRevLett.128.164501
    [141] Schneide C., Pandey A., Padberg-Gehle K. Schumacher J. 2018. Probing turbulent superstructures in Rayleigh-Bénard convection by Lagrangian trajectory clusters,. Phys. Rev. Fluids, 3: 113501. doi: 10.1103/PhysRevFluids.3.113501
    [142] Schumacher J, Sreenivasan K R. 2020. Colloquium: Unusual dynamics of convection in the Sun,. Rev. Mod. Phys., 92: 041001. doi: 10.1103/RevModPhys.92.041001
    [143] Shang X D, Qiu X L, Tong P, Xia K Q. 2003. Measured local heat transport in turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 90: 074501. doi: 10.1103/PhysRevLett.90.074501
    [144] Sheard G J, Hussam W K, Tsai T. 2016. Linear stability and energetics of rotating radial horizontal convection,. J. Fluid Mech., 795: 1-35. doi: 10.1017/jfm.2016.193
    [145] Shen Y, Tong P, Xia K Q. 1996. Turbulent convection over rough surfaces,. Phys. Rev. Lett., 76: 908-911. doi: 10.1103/PhysRevLett.76.908
    [146] Shew W L, Gasteuil Y, Gibert M, Metz P, Pinton J F. 2007. Instrumented tracer for Lagrangian measurements in Rayleigh-Bénard convection,. Rev. Sci. Instrum., 78: 065105. doi: 10.1063/1.2745717
    [147] Shi N, Emran M S, Schumacher J. 2012. Boundary layer structure in turbulent Rayleigh-Bénard convection,. J. Fluid Mech., 706: 5-33. doi: 10.1017/jfm.2012.207
    [148] Shishkina O, Grossmann S, Lohse D. 2016. Heat and momentum transport scalings in horizontal convection,. Geophys. Res. Lett., 43: 1219-1225. doi: 10.1002/2015GL067003
    [149] Shishkina O, Horn S, Emran M S, Ching E S C. 2017. Mean temperature profiles in turbulent thermal convection,. Phys. Rev. Fluids, 2: 113502. doi: 10.1103/PhysRevFluids.2.113502
    [150] Shishkina O, Horn S, Wagner S, Ching E S C. 2015. Thermal boundary layer equation for turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 114: 114302. doi: 10.1103/PhysRevLett.114.114302
    [151] Shishkina O, Horn S. 2016. Thermal convection in inclined cylindrical containers,. J. Fluid Mech., 790: R3. doi: 10.1017/jfm.2016.55
    [152] Shishkina O, Thess A. 2009. Mean temperature profiles in turbulent Rayleigh-Bénard convection of water,. J. Fluid Mech., 633: 449-460. doi: 10.1017/S0022112009990528
    [153] Shishkina O, Wagner S. 2016. Prandtl-number dependence of heat transport in laminar horizontal convection,. Phys. Rev. Lett., 116: 024302. doi: 10.1103/PhysRevLett.116.024302
    [154] Shishkina O. 2017. Mean flow structure in horizontal convection,. J. Fluid Mech., 812: 525-540. doi: 10.1017/jfm.2016.866
    [155] Shishkina, O, Horn S, and Wagner S. 2013. Falkner-skan boundary layer approximation in Rayleigh-Bénard convection,. J. Fluid Mech., 730: 442-463. doi: 10.1017/jfm.2013.347
    [156] Shraiman B I, Siggia E D. 1990. Heat transport in high-Rayleigh-number convection,. Phys. Rev. A, 42: 3650-3653. doi: 10.1103/PhysRevA.42.3650
    [157] Siggers J H, Kerswell R R, Balmoforth N J. 2004. Bounds on horizontal convection,. J. Fluid Mech., 517: 55-70. doi: 10.1017/S0022112004000497
    [158] Siggia E D. 1994. High Rayleigh Number convection,. Annu. Rev. Fluid Mech., 26: 137-168. doi: 10.1146/annurev.fl.26.010194.001033
    [159] Sohail T, Gayen B, Hogg A M C. 2018. Convection enhances mixing in the southern ocean,. Geophys. Res. Lett., 45: 4198-4207. doi: 10.1029/2018GL077711
    [160] Sprague M, Julien K, Knobloch E, Werne J. 2006. Numerical simulation of an asymptotically reduced system for rotationally constrained convection,. J. Fluid Mech., 551: 141-174. doi: 10.1017/S0022112005008499
    [161] Sreenivasan K R, Bershadskii A, Niemela J J. 2002. Mean wind and its reversal in thermal convection,. Phys. Rev. E, 65: 056306. doi: 10.1103/PhysRevE.65.056306
    [162] Stellmach S, Lischper M, Julien K, Vasil G, Cheng J S, Ribeiro A, King E M, Aurnou J M. 2014. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics,. Phys. Rev. Lett., 113: 254501. doi: 10.1103/PhysRevLett.113.254501
    [163] Sterl S, Li H M, Zhong J Q. 2016. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection,. Phys. Rev. Fluids, 1: 084401. doi: 10.1103/PhysRevFluids.1.084401
    [164] Stevens R J A M, Zhong J Q, Clercx H J H, Ahlers G, Lohse D. 2009. Transitions between turbulent states in rotating Rayleigh-Bénard convection,. Phys. Rev. Lett., 103: 024503. doi: 10.1103/PhysRevLett.103.024503
    [165] Stevens R J A M, Zhou Q, Grossmann S, Verzicco R, Xia K Q, Lohse D. 2012. Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample,. Phys. Rev. E, 85: 027301. doi: 10.1103/PhysRevE.85.027301
    [166] Stevens, R J A M, Erwin P van der Poel, Grossmann S, Lohse D. 2013. The unifying theory of scaling in thermal convection: the updated prefactors,. J. Fluid Mech., 730: 295-308. doi: 10.1017/jfm.2013.298
    [167] Stringano G, Pascazio G, Verzicco R. 2006. Turbulent thermal convection over grooved plates,. J. Fluid Mech., 557: 307-336. doi: 10.1017/S0022112006009785
    [168] Stringano G, Verzicco R. 2006. Mean flow structure in thermal convection in a cylindrical cell of aspect ratio one half,. J. Fluid Mech., 548: 1-16. doi: 10.1017/S0022112005007378
    [169] Sugiyama K, Ni R, Stevens R J, Cheng T S, Zhou S Q, Xi H D, Sun C, Grossmann S, Xia K Q, Lohse D. 2010. Flow reversals in thermally driven turbulence,. Phys. Rev. Lett., 105: 034503. doi: 10.1103/PhysRevLett.105.034503
    [170] Sun C, Xi H D, Xia K Q. 2005. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5,. Phys. Rev. Lett., 95: 074502. doi: 10.1103/PhysRevLett.95.074502
    [171] Tisserand J C, Creyssels M, Gasteuil Y, Pabiou H, Gibert M, Csataing B, Chilla F. 2011. Comparison between rough and smooth plates within the same Rayleigh–Bénard cell,. Phys. Fluids, 23: 015105. doi: 10.1063/1.3540665
    [172] Toppaladoddi S, Succi S, Wettlaufer J S. 2017. Roughness as a route to the ultimate regime of thermal convection,. Phys. Rev. Lett., 118: 074503. doi: 10.1103/PhysRevLett.118.074503
    [173] Valet J P, Fournier A, Courtillot V, Herrero-Bervera E. 2012. Dynamical similarity of geomagnetic field reversals,. Nature, 490: 89-93. doi: 10.1038/nature11491
    [174] Vogt T, Horn S, Aurnou J M. 2021. Thermal-inertial oscillatory flows in liquid metal rotating convection,. J. Fluid Mech., 911: A5. doi: 10.1017/jfm.2020.976
    [175] Vogt T, Horn S, Grannan A M, Aurnou, J. M. 2018. Jump rope vortex in liquid metal convection,. Proc. Natl. Acad. Sci., 115: 12674-12679. doi: 10.1073/pnas.1812260115
    [176] Vogt T, Yang J C, Schindler F, Eckert S. 2021. Free-fall velocities and heat transport enhancement in liquid metal magneto-convection,. J. Fluid Mech., 915: A68. doi: 10.1017/jfm.2021.108
    [177] Vreugdenhil C A, Gayen B, Griffiths R W. 2016. Mixing and dissipation in a geostrophic buoyancy-driven circulation,. J. Geophys. Res. Ocean, 121: 6076-6091. doi: 10.1002/2016JC011691
    [178] Vreugdenhil C A, Griffiths R W, Gayen B. 2017. Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux,. J. Fluid Mech., 823: 57-99. doi: 10.1017/jfm.2017.249
    [179] Wagner S, Shishkina O. 2015. Heat flux enhancement by regular surface roughness in turbulent thermal convection,. J. Fluid Mech., 763: 109-135. doi: 10.1017/jfm.2014.665
    [180] Wang B F, Zhou Q, Sun C. 2020. Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement,. Sci. Adv., 6: eaaz8239. doi: 10.1126/sciadv.aaz8239
    [181] Wang F, Huang S D, Xia K Q. 2018. Contribution of surface thermal forcing to mixing in the Ocean,. J. Geophys. Res. Ocean., 123: 855-863. doi: 10.1002/2017JC013578
    [182] Wang F, Huang S D, Zhou S Q, Xia K Q. 2016. Laboratory simulation of the geothermal heating effects on ocean overturning circulation,. J. Geophys. Res. Ocean, 121: 7589-7598. doi: 10.1002/2016JC012068
    [183] Wang F, Huang S, Xia K. 2017. Thermal convection with mixed thermal boundary conditions : effects of insulating lid at the top, J. Fluid Mech. ,  817: R1.
    [184] Wang Q, Verzicco R, Lohse D, Shishkina O. 2020. Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls,. Phys. Rev. Lett., 125: 074501. doi: 10.1103/PhysRevLett.125.074501
    [185] Wang Q, Wan Z H, Yan R, Sun D J. 2018. Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios,. Phys. Rev. Fluids, 3: 113503. doi: 10.1103/PhysRevFluids.3.113503
    [186] Wang Q, Xia S N, Wang B F, Sun D J, Zhou Q, Wan Z H. 2018. Flow reversals in two-dimensional thermal convection in tilted cells,. J. Fluid Mech., 849: 355-372. doi: 10.1017/jfm.2018.451
    [187] Wang W, Huang R X. 2005. An experimental study on thermal circulation driven by horizontal differential heating,. J. Fluid Mech., 540: 49-73. doi: 10.1017/S002211200500577X
    [188] Wang Y, He X, Tong P. 2016. Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Bénard convection,. Phys. Rev. Fluids, 1: 082301. doi: 10.1103/PhysRevFluids.1.082301
    [189] Wang Y, Lai P Y, Song H, Tong P. 2018. Mechanism of large-scale flow reversals in turbulent thermal convection,. Sci. Adv., 4: eaat7480. doi: 10.1126/sciadv.aat7480
    [190] Wang Y, Xu W, He X, Yik H, Wang X, Schumacher J, Tong P. 2018. Boundary layer fluctuations in turbulent Rayleigh-Bénard convection,. J. Fluid Mech., 840: 408-431. doi: 10.1017/jfm.2018.68
    [191] Wang Z, Mathai V, Sun C. 2019. Self-sustained biphasic catalytic particle turbulence,. Nat. Commun., 10: 3333. doi: 10.1038/s41467-019-11221-w
    [192] Wei P, Chan T S, Ni R, Zhao X Z, Xia K Q. 2014. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection,. J. Fluid Mech., 740: 28-46. doi: 10.1017/jfm.2013.638
    [193] Wei P, Ni R, Xia K Q. 2012. Enhanced and reduced heat transport in turbulent thermal convection with polymer additives,. Phys Rev E, 86: 016325. doi: 10.1103/PhysRevE.86.016325
    [194] Wei P, Xia K Q. 2013. Viscous boundary layer properties in turbulent thermal convection in a cylindrical cell: the effect of cell tilting,. J. Fluid Mech., 720: 140-168. doi: 10.1017/jfm.2013.17
    [195] Weiss S, Ahlers G. 2011. Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38,. J. Fluid Mech., 676: 5-40. doi: 10.1017/S0022112010005963
    [196] Weiss S, and Ahlers G. 2013. Effect of tilting on turbulent convection: cylindrical samples with aspect ratio 0.5,. J. Fluid Mech., 715: 314-334. doi: 10.1017/jfm.2012.520
    [197] Winters K B, Lombard P N, Riley J J, D’Asaro E A. 1995. Available potential energy and mixing in density-stratified fluids,. J. Fluid Mech., 289: 115-128. doi: 10.1017/S002211209500125X
    [198] Winters K B, Young W R. 2009. Available potential energy and buoyancy variance in horizontal convection,. J. Fluid Mech., 629: 221-230. doi: 10.1017/S0022112009006685
    [199] Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans,. Annu. Rev. Fluid Mech., 36: 281-314. doi: 10.1146/annurev.fluid.36.050802.122121
    [200] Wunsch C. 2000. Moon, tides and climate,. Nature, 405: 743-744. doi: 10.1038/35015639
    [201] Xi H D, Bodenschatz E, Xu H. 2013. Elastic energy flux by flexible polymers in fluid turbulence,. Phys. Rev. Lett., 111: 024501. doi: 10.1103/PhysRevLett.111.024501
    [202] Xi H D, Lam S, Xia K Q. 2004. From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection,. J. Fluid Mech., 503: 47-56. doi: 10.1017/S0022112004008079
    [203] Xi H D, Zhou S Q, Zhou Q, Chan T S, Xia K Q. 2009. Origin of the temperature oscillation in turbulent thermal convection,. Phys. Rev. Lett., 102: 044503. doi: 10.1103/PhysRevLett.102.044503
    [204] Xi H D, Xia K Q. 2007. Cessations and reversals of the large-scale circulation in turbulent thermal convection,. Phys. Rev. E, 75: 066307. doi: 10.1103/PhysRevE.75.066307
    [205] Xi H D, Xia K Q. 2008. Flow mode transitions in turbulent thermal convection,. Phys. Fluids, 20: 055104. doi: 10.1063/1.2920444
    [206] Xi H D, Zhang Y B, Hao J T, Xia K Q. 2016. Higher-order flow modes in turbulent Rayleigh–Bénard convection,. J. Fluid Mech., 805: 31-51. doi: 10.1017/jfm.2016.572
    [207] Xia, K Q. 2013. Current trends and future directions in turbulent thermal convection,. Theoretical and Applied Mechanics Letters, 3: 052001. doi: 10.1063/2.1305201
    [208] Xia K Q, Sun C, Zhou S Q. 2003. Particle image velocimetry measurement of the velocity field in turbulent thermal convection,. Phys Rev E., 68: 066303. doi: 10.1103/PhysRevE.68.066303
    [209] Xia K Q. 2019. Tuning heat transport via boundary layer topographies,. J. Fluid Mech., 876: 1-4. doi: 10.1017/jfm.2019.526
    [210] Xia S, Wan Z, Liu S, Wang Q, Sun D. 2016. Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects,. J. Fluid Mech., 798: 628-642. doi: 10.1017/jfm.2016.338
    [211] 夏振华. 湍流中的多态现象. 科学通报, 2019, 64(4): 373−383.

    Xia Z. 2019. Multiple states in turbulence. Chinese Science Bulletin, 64: 373 – 383. (in Chinese)
    [212] Xie Y C, Cheng B Y C, Hu Y B, Xia K Q. 2019. Universal fluctuations in the bulk of Rayleigh–Bénard turbulence,. J. Fluid Mech., 878: R1. doi: 10.1017/jfm.2019.667
    [213] Xie Y C, Ding, G Y, Xia K Q. 2018. Flow topology transition via global bifurcation in thermally driven turbulence,. Phys. Rev. Lett., 120: 214501. doi: 10.1103/PhysRevLett.120.214501
    [214] Xie Y C, Huang S D, Funfschilling D, Li X M, Ni R, Xia K Q. 2015. Effects of polymer additives in the bulk of turbulent thermal convection,. J. Fluid Mech., 784: R3. doi: 10.1017/jfm.2015.618
    [215] Xie Y C, Wei P, Xia K Q. 2013. Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection,. J. Fluid Mech., 717: 322-346. doi: 10.1017/jfm.2012.574
    [216] Xie Y C, Xia K Q. 2013. Dynamics and flow coupling in two-layer turbulent thermal convection,. J. Fluid Mech., 728: R1. doi: 10.1017/jfm.2013.313
    [217] Xie Y C, Xia K Q. 2017. Turbulent thermal convection over rough plates with varying roughness geometries,. J. Fluid Mech., 825: 573-599. doi: 10.1017/jfm.2017.397
    [218] 谢毅超, 陶鑫, 任磊, 夏克青. 热湍流多重态与热输运效率实验研究. 空气动力学学报, 2022, 40(2), 1-11.

    XIE Y C, TAO X, REN L, Xia K Q. 2022. Experimental study of multiple states and heat transport in turbulent thermal convection. Acta Aerodynamica Sinica, 40: 188−198 (in Chinese).
    [219] Xu A, Chen X, Wang F, Xi H D. 2020. Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh–Bénard convection,. Phys. Fluids, 32: 105112. doi: 10.1063/5.0024408
    [220] Xu A, Chen X, Xi H D. 2021. Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells,. J. Fluid Mech., 910: A33. doi: 10.1017/jfm.2020.964
    [221] Xu B L, Wang Q, Wan Z H, Yan R, Sun D J. 2018. Heat transport enhancement and scaling law transition in two-dimensional Rayleigh-Bénard convection with rectangular-type roughness,. International Journal of Heat and Mass Transfer, 121: 872-883. doi: 10.1016/j.ijheatmasstransfer.2018.01.051
    [222] Xu W, Wang Y, He X, Wang X, Schumacher J, Huang S D, Tong P. 2021. Mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection at low Prandtl numbers,. J. Fluid Mech., 918: A1. doi: 10.1017/jfm.2021.255
    [223] Yan B, Shishkina O, He X. 2021. Thermal boundary-layer structure in laminar horizontal convection,. J. Fluid Mech., 915: R5. doi: 10.1017/jfm.2021.226
    [224] Yang R, Chong K L, Wang Q, Verzicco R, Shishkina O, Lohse D. 2020. Periodically modulated thermal convection,. Phys. Rev. Lett., 125: 154502. doi: 10.1103/PhysRevLett.125.154502
    [225] Yang Y, Chen W, Verzicco R, Lohse D. 2020. Multiple states and transport properties of double-diffusive convection turbulence,. Proc. Nat. Acad. Sci., 117: 14676-14681. doi: 10.1073/pnas.2005669117
    [226] Zhang K, Liao X. 2009. The onset of convection in rotating circular cylinders with experimental boundary conditions,. J. Fluid Mech., 622: 63-73. doi: 10.1017/S002211200800517X
    [227] Zhang L, Chong K L, Xia K Q. 2019. Moisture transfer by turbulent natural convection,. J. Fluid Mech., 874: 1041-1056. doi: 10.1017/jfm.2019.463
    [228] Zhang L, Ding G Y, Xia K Q. 2021. On the effective horizontal buoyancy in turbulent thermal convection generated by cell tilting,. J. Fluid Mech., 914: A15. doi: 10.1017/jfm.2020.825
    [229] Zhang L, Dong J, Xia K Q. 2022. Exploring the plume and shear effects in turbulent Rayleigh-Bénard convection with effective horizontal buoyancy under stream-wise and span-wise geometrical confinements,. J. Fluid Mech., 940: A37. doi: 10.1017/jfm.2022.187
    [230] Zhang S, Xia Z, Zhou Q, Chen S. 2020. Controlling flow reversal in two-dimensional Rayleigh–Bénard convection,. J. Fluid Mech., 891: R4. doi: 10.1017/jfm.2020.210
    [231] Zhang X, van Gils D P M, Horn S, Wedi M, Zwirner L, Ahlers G, Ecke R, Weiss S, Bodenschatz E, Shishkina O. 2019. Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection,. Phys. Rev. Lett., 124: 084505.
    [232] Zhang Y B, Bodenschatz E, Xu H, Xi H D. 2021. Experimental observation of the elastic range scaling in turbulent flow with polymer additives,. Sci. Adv., 7: eabd3525. doi: 10.1126/sciadv.abd3525
    [233] Zhang Y Z, Sun C, Bao Y, Zhou Q. 2018. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection,. J. Fluid Mech., 836: R2. doi: 10.1017/jfm.2017.786
    [234] Zhong F, Ecke R, Steinberg V. 1991. Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection,. Phys. Rev. Lett., 67: 2473-2476. doi: 10.1103/PhysRevLett.67.2473
    [235] Zhong F, Ecke R, Steinberg V. 1993. Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states,. J. Fluid Mech., 249: 135-159. doi: 10.1017/S0022112093001119
    [236] Zhong J Q, Funfschilling D, Ahlers G. 2009. Enhanced heat transport by turbulent two-phase Rayleigh-Benard convection,. Phys. Rev. Lett., 102: 124501. doi: 10.1103/PhysRevLett.102.124501
    [237] Zhong J Q, Sterl S, Li H M. 2015. Dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection with modulated rotation,. J. Fluid Mech., 778: R4. doi: 10.1017/jfm.2015.400
    [238] Zhong J Q, Stevens R J A M, Clercx H J H, Verzicco R, Lohse D, Ahlers G. 2009. Prandtl-, Rayleigh-, and Rossby-Number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection,. Phys. Rev. Lett., 102: 044502. doi: 10.1103/PhysRevLett.102.044502
    [239] Zhou Q, Stevens R J A M, Sugiyama K, Grossmann S. Lohse D, Xia K Q. 2010. Prandtl-Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh- Bénard convection,. J. Fluid Mech., 664: 297-312. doi: 10.1017/S0022112010003824
    [240] Zhou Q, Sugiyama K, Stevens R J A M, Grossmann S, Lohse D, Xia K Q. 2011 Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh- Bénard convection. Phys. Fluids, 23: 125104.
    [241] Zhou Q, Xia K Q. 2010. Measured instantaneous viscous boundary layer in turbulent Rayleigh-Benard convection,. Phys. Rev. Lett., 104: 104301. doi: 10.1103/PhysRevLett.104.104301
    [242] 周全, 夏克青2012. Rayleigh-Bénard 湍流热对流研究的进展、现状及展望. 力学进展, 42: 231-251.

    Zhou Q, Xia K Q. 2012. Advances and outlook in turbulent Rayleigh- Bénard convection. , Advances in Mechanics, 42: 231-251(in Chinese).
    [243] Zhou Q, Xia K Q. 2013. Thermal boundary layer structure in turbulent Rayleigh-Bénard convection in a rectangular cell,. J. Fluid Mech., 721: 199-224. doi: 10.1017/jfm.2013.73
    [244] Zhu X, Stevens R J A M, Shishkina O, Verzicco R, Lohse D. 2019. Nu~Ra 1/2 scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence,. J. Fluid Mech., 869: R4. doi: 10.1017/jfm.2019.228
    [245] Zhu X, Stevens R J A M, Verzicco R, Lohse D. 2017. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection,. Phys. Rev. Lett., 119: 154501. doi: 10.1103/PhysRevLett.119.154501
    [246] Zwirner L, Shishkina O. 2018. Confined inclined thermal convection in low-Prandtl-number fluids,. J. Fluid Mech., 850: 984-1008. doi: 10.1017/jfm.2018.477
    [247] Zwirner L, Tilgner A, Shishkina O. 2020. Elliptical instability and multiple-roll flow modes of the large-scale circulation in confined turbulent Rayleigh-Bénard convection,. Phys. Rev. Lett., 125: 054502. doi: 10.1103/PhysRevLett.125.054502
  • 加载中
图(22)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  20
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-02
  • 录用日期:  2015-03-04
  • 网络出版日期:  2015-05-06

目录

    /

    返回文章
    返回