留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热端部件低温热腐蚀疲劳机理、寿命模型和抗腐蚀设计方法

赵高乐 齐红宇 李少林 刘扬 杨晓光 石多奇 孙燕涛

赵高乐, 齐红宇, 李少林, 刘扬, 杨晓光, 石多奇, 孙燕涛. 热端部件低温热腐蚀疲劳机理、寿命模型和抗腐蚀设计方法. 力学进展, 待出版 doi: 10.6052/1000-0992-22-020
引用本文: 赵高乐, 齐红宇, 李少林, 刘扬, 杨晓光, 石多奇, 孙燕涛. 热端部件低温热腐蚀疲劳机理、寿命模型和抗腐蚀设计方法. 力学进展, 待出版 doi: 10.6052/1000-0992-22-020
Zhao G L, Qi H Y, Li S L, Liu Y, Yang X G, Shi D Q, Sun Y T. Low temperature hot corrosion fatigue mechanism, life model and corrosion resistance design method of hot section components. Advances in Mechanics, in press doi: 10.6052/1000-0992-22-020
Citation: Zhao G L, Qi H Y, Li S L, Liu Y, Yang X G, Shi D Q, Sun Y T. Low temperature hot corrosion fatigue mechanism, life model and corrosion resistance design method of hot section components. Advances in Mechanics, in press doi: 10.6052/1000-0992-22-020

热端部件低温热腐蚀疲劳机理、寿命模型和抗腐蚀设计方法

doi: 10.6052/1000-0992-22-020
基金项目: 国家自然科学基金资助项目(51975027).
详细信息
    作者简介:

    李少林, 北京航空航天大学副教授、硕导. 一直从事航空发动机高温部件结构强度的基础理论和方法研究, 主持国家自然基金面上/青年项目、“两机”专项课题等20余项, 在《International Journal of Fatigue》《Fatigue & Fracture of Engineering Materials & Structures》《Ceramics International》等期刊发表SCI论文20余篇、出版译著1部

    通讯作者:

    lishaolin@buaa.edu.cn

  • 中图分类号: V239

Low temperature hot corrosion fatigue mechanism, life model and corrosion resistance design method of hot section components

More Information
  • 摘要: 对于沿海地区或海洋环境中使用的航空发动机来说, 由于高温、机械载荷和盐雾环境的共同作用, 热腐蚀疲劳破坏是影响其热端部件使用寿命的主要因素. 本文对热端部件低温热腐蚀疲劳损伤机理、寿命模型和防腐蚀设计方法进行了总结、归纳以及评述, 提出了未来的研究趋势与方向. 首先介绍航空发动机热端部件的热腐蚀疲劳故障案例、损伤演化机理; 其次, 重点分析了低温腐蚀疲劳寿命的唯象模型、损伤力学模型、断裂力学模型以及机器学习模型; 再次, 对几种代表性的考虑腐蚀演化不同阶段的分段式腐蚀疲劳全寿命模型进行综述, 还分析指出了腐蚀疲劳全寿命模型的发展趋势; 从次, 对航空发动机材料选择、零件制造、结构强度设计和外场运行维护不同阶段的抗腐蚀方法进行了综述. 最后, 还对增材制造零部件的热腐蚀疲劳问题以及无损检测技术、人工智能等与热腐蚀疲劳研究的结合进行了展望.

     

  • 图  1  盐雾环境导致的航空发动机涡轮部件失效案例. (a) CF6-80C2发动机断裂叶片, (b)低温热腐蚀形貌(Pridemore 2003), (c) 250-C47B发动机断裂叶片, (d)高温热腐蚀形貌(Roach et al. 2005)

    图  2  热端部件热腐蚀截面形貌(J 1987). (a)高温热腐蚀形貌, 使用401 h的Olympus发动机一级涡轮叶片, (b)低温热腐蚀形貌, 海洋环境使用的某型航空发动机涡轮叶片

    图  3  燃气轮机的叶片. (a)用于发电的燃气轮机的断裂叶片以及(b)叶片上的腐蚀坑(Poursaeidi & Arablu 2013), (c)船用燃气轮机叶片的损伤(Meisner & Opila 2020)

    图  4  空气中的盐诱导航空发动机零部件发生热腐蚀的过程总结(Pridemore 2003; Nippon Cargo Airlines CO. 2011; Safety 2015, 2009, 2016)

    图  5  环境温度与两种类型热腐蚀速率的关系示意图(Draper 2011). (图中的538℃, 704℃, 884℃和1010℃均仅供参考, 随着合金体系和硫酸盐成分的变化也会出现相应的变化)

    图  6  高温热腐蚀层的形成机理示意图

    图  7  低温热腐蚀坑萌生机理示意图

    图  8  直升机主转子部件有无点蚀的归一化寿命与归一化裂纹长度的关系图(Mills & Honeycutt)

    图  9  热腐蚀对高温合金疲劳寿命的影响规律. (a) 704 °C处光棒和热腐蚀试验件的疲劳寿命与应变范围(Telesman et al. 2016), (b) Franklin等在不同腐蚀环境下的试验结果(Franklin & Nelson, 1981), (c)腐蚀坑深度和宽度尺寸对疲劳寿命的影响, (d)腐蚀坑面积尺寸对疲劳寿命的影响(Gabb et al. 2010)

    图  10  低温热腐蚀疲劳损伤演化全过程示意图(Draper 2011)

    图  11  腐蚀坑的SEM图像. (a)热腐蚀的表面腐蚀坑形貌和(b)局部区域放大的图像, (c)孤立腐蚀坑的分布区域以及(d)单个腐蚀坑的放大形貌(Nesbitt & Draper 2016)

    图  12  Chan等(2020b)提出的腐蚀坑聚结模型. (a)两个不同表面长度 (2a1和2a2) 和深度 (d1d2) 的半圆形腐蚀坑相互作用示意图; (b)不同腐蚀坑尺寸的间距和相互影响作用的关系; (c)不同尺寸腐蚀坑的聚结标准; (d)聚结后腐蚀坑的等效尺寸

    图  13  基于损伤力学的腐蚀疲劳损伤模型定义示意图(Zheng & Wang 2020)

    图  14  基于支持向量回归模型的腐蚀疲劳寿命预测结果(Gabb et al. 2010)

    图  15  合金表面腐蚀坑的形貌和尺寸

    图  16  航空发动机关键零部件合金的环境抗性评价图

    图  17  涂覆防腐蚀涂层前后经热腐蚀氧化暴露后的ME3合金疲劳寿命以及微观损伤形貌(Gabb et al. 2010, Gangloff 2008).

    图  18  (a)涂层表面和(b)纵向截面缺陷形貌; (c)不同工艺处理后的ME3 合金暴露于氧化和热腐蚀环境中的疲劳寿命(Nesbitt et al. 2018)

    图  19  经热腐蚀暴露后CFM56-3型发动机HPT叶片通过腐蚀去除工艺处理前后形貌对比(Conner & Weimer 2000).

    表  1  航空发动机发生的热腐蚀事故

    年代发动机型号失效部件失效原因合金类型地区/污染物文献
    1950Proteus动叶/导叶热腐蚀Nimonic90燃油Stringer 1977
    1964Spey热腐蚀Nimonic105周围大气Stringer 1977
    1974Dart1级动叶热腐蚀Nimonic105沿海气候C and OH 1975
    1975动叶/导叶热腐蚀713C沿海气候Stringer 1977
    2001250—C20B涡轮叶片超温/腐蚀夏威夷Plagens et al. 2003
    2002CF6—80C2HPT低温热腐蚀Rene142中国台北Pridemore 2003
    2002250—C20B涡轮叶片热腐蚀Inconel738NebraskaBrannen & Dymock 2004
    2003250—C47B涡轮叶片高温热腐蚀Inconel738墨西哥湾Roach et al. 2005
    2005PT6A—114A涡轮叶片热腐蚀波多黎各Hogenson et al. 2006
    2006HPT热腐蚀Udimet500Ejaz & Tauqir 2006
    2009PT6A—114A涡轮叶片低温腐蚀大气灰尘2009/事故调查报告
    2010CF6HPT低温热腐蚀Rene142日本Nippon Cargo
    Airlines CO. 2011
    2011HPT热腐蚀人体汗液韩峰等 2011
    2013Trent772BHPT低温热腐蚀大气污染AAIB
    2015Trent1000IPT腐蚀疲劳CMSX—10KANSV
    20164Trent1000IPT低温热腐蚀CMSX—10K日本等ANSV
    20173Trent1000IPT低温热腐蚀CMSX—10K奥克兰等ANSV
    2017CF34—8HPT低温热腐蚀Rene142空气污染物Aviation 2017
    2018Trent700HPT高温热腐蚀镍基单晶中国香港2021/事故调查报告
    2018Trent1000IPT低温腐蚀CMSX—10KANSV
    20192Trent1000IPT低温腐蚀CMSX—10K罗马等Kaminski—Morrow 2019
    年份上标数字代表当年发生相应的事故数量; IPT代表中压涡轮叶片; HPT代表高压涡轮叶片
    AAIB: Air Accidents Investigation Branch ANSV: Agenzia nazionale per la sicurezza del volo
    下载: 导出CSV
  • [1] 陈丹之. 1992. 燃气轮机叶片的热腐蚀及其防止. 燃气轮机技术, 5: 9-14 (Chen D Z. 1992. Hot corrosion of gas turbine blades and its prevention. Gas Turbine Technology, 5: 9-14).

    (Chen D Z. 1992. Hot corrosion of gas turbine blades and its prevention. Gas Turbine Technology, 5: 9-14
    [2] 陈光. 2018. 遄达1000几起严重故障带来的启示. 航空动力, 1: 29-33 (Chen G. 2018. Lessons learned from Trent 1000’s serious faults. Aerospace Power, 1: 29-33).

    (Chen G. 2018. Lessons learned from trent 1000’s serious faults. Aerospace Power, 1: 29-33
    [3] 储昭贶. 2008. DZ951合金力学性能及变形机制的研究. 沈阳: 中国科学院金属研究所

    (Chu Z K. 2008. Study on mechanical properties and deformation mechanism of DZ951 alloy. Shenyang: Institute of Metal Research, Chinese Academy of Sciences
    [4] 范瑞麟. 1993. 国外燃气轮机涡轮叶片低温热腐蚀的防护. 材料工程, 12: 7-11 (Fan R L. 1993. Protection against low temperature hot corrosion of turbine blades of foreign gas turbines. Journal of Materials Engineering, 12: 7-11).

    Fan R L. 1993. Protection against low temperature hot corrosion of turbine blades of foreign gas turbines. Journal of Materials Engineering, 12: 7-11
    [5] 韩峰, 张海华, 武晓龙. 2011. 某型发动机高压涡轮叶片表面腐蚀分析和预防. 航空维修与工程, 02: 69-70 (Han F, Zhang H H, Wu X L. 2011. Analysis and prevention about superficial corrosion for aeroengine high pressure turbine blade. Aviation Maintenance & Engineering, 02: 69-70). doi: 10.3969/j.issn.1672-0989.2011.06.031

    (Han F, Zhang H H, Wu X L. 2011. Analysis and Prevention about Superficial Corrosion for Aeroengine High Pressure Turbine Blade. Aviation Maintenance & Engineering, 02: 69-70 doi: 10.3969/j.issn.1672-0989.2011.06.031
    [6] 洪友士, 方飚. 1993. 疲劳短裂纹萌生及发展的细观过程和理论. 力学进展, 23: 468-486 (Hong Y S, Fang B. 1993. Microscopic process and description for the initiation and propagation of short fatigue cracks. Advances in Mechanics, 23: 468-486). doi: 10.6052/1000-0992-1993-4-J1993-043

    (Hong Y S, Fang B. 1993. Microscopic process and description for the initiation and propagation of short fatigue cracks. Advances in Mechanics, 23: 468-486 doi: 10.6052/1000-0992-1993-4-J1993-043
    [7] 李铁藩. 2003. 金属高温氧化和热腐蚀. 北京: 化学工业出版社

    (Li T F. 2003. High Temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press
    [8] 李艳明, 刘欢, 乔志, 等. 2020. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较. 中国有色金属学报, 30: 2105-2115 (Li Y M, Liu H, Qiao Z, et al. 2020. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11. The Chinese Journal of Nonferrous Metals, 30: 2105-2115). doi: 10.11817/j.ysxb.1004.0609.2020-36479

    (Li Y M, Liu H, Qiao Z, et al. 2020. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11. The Chinese Journal of Nonferrous Metals, 30: 2105-2115 doi: 10.11817/j.ysxb.1004.0609.2020-36479
    [9] 娄学明, 孙文儒, 郭守仁, 等. 2008. IN718高温合金热腐蚀行为及其对力学性能的影响. 稀有金属材料与工程, 37: 259-263 (Lou X M, Sun W R, Guo S R, et al. 2008. Hot corrosion behavior of IN718 alloy and its effect on mechanical properties. Rare Metal Materials and Engineering, 37: 259-263). doi: 10.3321/j.issn:1002-185X.2008.02.016

    (Lou X M, Sun W R, Guo S R, et al. 2008. Hot corrosion behavior of IN718 alloy and its effect on mechanical properties. Rare Metal Materials and Engineering, 37: 259-263 doi: 10.3321/j.issn:1002-185X.2008.02.016
    [10] 王佩弦, 李遵照, 丁凯, 王晓司, 李明一. 2021. 航空煤油的关键指标分析与影响因素探讨. 中外能源, 26: 68-73

    Wang P X, Li Z Z, Ding K, Wang X S, Li M Y. 2021. Analysis on Key Indicators of Aviation Kerosene and Discussion on Influencing Factors. Sino-Global Energy, 26: 68-73
    [11] 吴欣强, 徐松, 韩恩厚, 柯伟. 2011. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型. 金属学报, 47: 790-796 (Wu X Q, Xu S, Han E H. 2011. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environmental fatigue design model. Acta Metallurgica Sinica, 47: 790-796).

    (Wu X Q, Xu S, Han E H. 2011. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environmental fatigue design model. Acta Metallurgica Sinica, 47: 790-796
    [12] 张永刚, 廖建樟. 2020. 某型发动机燃气涡轮工作叶片热腐蚀问题分析. 现代工业经济和信息化, 10: 110-111 (Zhang Y G, Liao J Z. 2020. Analysis of the hot corrosion of the working blades of a gas turbine. Modern Industrial Economy and Informationization, 10: 110-111). doi: 10.16525/j.cnki.14-1362/n.2020.02.48

    (Zhang Y G, Liao J Z. 2020. Analysis of the hot corrosion of the working blades of a gas turbine. Modern Industrial Economy and Informationization, 10: 110-111 doi: 10.16525/j.cnki.14-1362/n.2020.02.48
    [13] 张源虎. 1995. 热腐蚀环境中高温合金的蠕变与断裂. 腐蚀科学与防护技术, 7: 108-114 (Zhang Y H. 1995. Creep and fracture of superalloysin hot corrosion environments. Corrsion Science and Protection Technology, 7: 108-114).

    Zhang Y H. 1995. Creep and fracture of superalloysin hot corrosion environments. Corrsion Science and Protection Technology, 7: 108-114
    [14] 张源虎, 曹鹏, 方炜, 等. 1994. 单晶DD3合金在混合盐介质中的蠕变和断裂特性. 金属学报, 30: 368-373 (Zhang Y H, Cao P, Fang W, et al. 1994. Creep and fracture feature of dd3 single crystal nickel-base superalloy in mixed salt environment. Acta Metallurgica Sinica, 30: 368-373).

    (Zhang Y H, Cao P, Fang W, et al. 1994. Creep and fracture feature of dd3 single crystal nickel-base superalloy in mixed salt environment. Acta Metallurgica Sinica, 30: 368-373
    [15] Aviation Online Magazine [M].
    [16] Corrosion Removal Techniques [M].
    [17] https://ansv.it/wp-content/uploads/2020/07/ANSV-safety-recommendations-B787-8-LN-LND.pdf [M].
    [18] MIL-C-43616 [M].
    [19] MIL-C-85704 [M].
    [20] West Conshohocken, PA: ASTM International, 199210.1520/STP1122-EB.
    [21] 2009. Engine / Component Investigation Report [M].
    [22] GJB 241—1987. 航空涡轮喷气和涡轮风扇发动机通用规范. 北京: 总装备部军标出版发行部.
    [23] 2013. AAIB Bulletin.
    [24] GJB 2635—1996. 军用飞机腐蚀防护设计和控制要求.
    [25] 2017. Research, Engineering and Development Advisory Committee Recommendations for Fiscal Year 2019 Research and Development Portfolio.
    [26] GJB 242—1987. 航空涡轮螺桨和涡轮轴发动机通用规范.
    [27] GJB/Z 138-2004. 海军航空装备腐蚀控制要求指南.
    [28] HN 7671-2000. 飞机结构防腐蚀设计要求.
    [29] 2021. Incident Investigation Final Report [M].
    [30] Al Ameri M, Yi Y, Cho P, et al. 2015. Critical conditions for pit initiation and growth of austenitic stainless steels. Corrosion Science, 92: 209-216. doi: 10.1016/j.corsci.2014.12.006
    [31] Amiri M, Arcari A, Airoldi L, et al. 2015. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3,. Corrosion Science, 98: 678-687. doi: 10.1016/j.corsci.2015.06.009
    [32] Arunachalam S, Fawaz S. 2016. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy. International Journal of Fatigue, 91: 50-58. doi: 10.1016/j.ijfatigue.2016.05.021
    [33] Aviation G. 2017. CF34-8 ESN 965-352 HPT S2B Under-Platform Separations [M].
    [34] Bagui S, Ray A K, Sahu J K, et al. 2013. Influence of saline environment on creep rupture life of Nimonic-263 for marine turbine application. Materials Science and Engineering:A, 566: 54-60. doi: 10.1016/j.msea.2012.12.081
    [35] Bao L, Li K, Zheng J, et al. 2022. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes. Surface and Coatings Technology, 440: 128481. doi: 10.1016/j.surfcoat.2022.128481
    [36] Birks N, Meier G H, Pettit F S J C U P. 2006. Introduction to the High Temperature Oxidation of Metals. 2013.
    [37] Bornstein N S, Crescente M A. 1969. The relationship between compounds of sodium and sulfur and sulfidation. Metallurgical and Materials Transactions B, 4: 1799-1810.
    [38] Bornstein N S, Decrescente M A. 1971. The role of sodium in the accelerated oxidation phenomenon termed sulfidation. 2: 2875-2883.
    [39] Brannen J M, Dymock D. 2004. National Transportation Safety Board Aviation Accident Final Report [M].
    [40] Brooking L, Gray S, Sumner J, et al. 2018. Effect of stress state and simultaneous hot corrosion on the crack propagation and fatigue life of single crystal superalloy CMSX-4. International Journal of Fatigue, 116: 106-117. doi: 10.1016/j.ijfatigue.2018.05.002
    [41] Burns J, Larsen J, Gangloff R. 2011. Driving forces for localized corrosion to fatigue crack transition in Al–Zn–Mg–Cu. Fatigue & Fracture of Engineering Materials & Structures, 34: 745-773.
    [42] C B M I, OH. Proceedings of the Conference on Gas Turbine Materials in the Marine Environment: Castine, July 24-26, 1974[C]//, 1975
    [43] Chaboche J L. 1981. Continuous damage mechanics — A tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64: 233-247. doi: 10.1016/0029-5493(81)90007-8
    [44] Chan K, Burns J, Enright M, et al. 2020a. Validation of hot corrosion and fatigue models in HOTPITS,. Journal of Engineering Materials and Technology, 142.
    [45] Chan K, Enright M, Moody J. Development of a Probabilistic Methodology for Predicting Hot Corrosion Fatigue Crack Growth Life of Gas Turbine Engine Disks[C]//, 201310.1115/GT2013-95057.
    [46] Chan K, Enright M, Moody J P, et al. 2016. Physics-based modeling tools for predicting type II hot corrosion in nickel-based superalloys//Proceedings of the 13th Intenational Symposium of Superalloys, 917-925. 10.1002/9781119075646. ch98.
    [47] Chan K S, Enright M P, Moody J, et al. 2014. A microstructure-based time-dependent crack growth model for life and reliability prediction of turbopropulsion systems. Metallurgical and Materials Transactions A, 45: 287-301. doi: 10.1007/s11661-013-1971-9
    [48] Chan K S, Enright M P, Moody J, et al. 2020b. HOTPITS: The DARWIN approach to assessing risk of hot corrosion-induced fracture in gas turbine components,. Engineering Fracture Mechanics, 228: 106889. doi: 10.1016/j.engfracmech.2020.106889
    [49] Chanyathunyaroj K, Phetchcrai S, Laungsopapun G, et al. 2020. Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment. International Journal of Fatigue, 133: 105420.
    [50] Chen J, Diao B, He J, et al. 2018. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion. International Journal of Fatigue, 110: 153-161. doi: 10.1016/j.ijfatigue.2018.01.019
    [51] Cheng A, Chen N-Z. 2017a. Corrosion fatigue crack growth modelling for subsea pipeline steels. Ocean Engineering, 142: 10-19. doi: 10.1016/j.oceaneng.2017.06.057
    [52] Cheng A, Chen N-Z. 2017b. Fatigue crack growth modelling for pipeline carbon steels under gaseous hydrogen conditions. International Journal of Fatigue, 96: 152-161. doi: 10.1016/j.ijfatigue.2016.11.029
    [53] Cheng A, Chen N-Z. 2018. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels. Engineering Failure Analysis, 84: 262-275. doi: 10.1016/j.engfailanal.2017.11.012
    [54] Cheng Y, Huang W L, Zhou C Y 1999. Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring. International Journal of Pressure Vessels and Piping, 76: 113-116.
    [55] Cheng Y F, Luo J L. 1999. Metastable pitting of carbon steel under potentiostatic control. Journal of the Electrochemical Society, 146: 970-976. doi: 10.1149/1.1391707
    [56] Chou J-S, Ngo N-T, Chong W K. 2017. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Engineering Applications of Artificial Intelligence, 65: 471-483. doi: 10.1016/j.engappai.2016.09.008
    [57] Cockings H L, Cockings B J, Harrison W, et al. 2020. The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy. Journal of Alloys and Compounds, 832: 154889. doi: 10.1016/j.jallcom.2020.154889
    [58] Conner J A, Weimer M J. 2000. Coating rejuvenation: New repair technology for high pressure turbine blades//ASME Turbo Expo 2000: Power for Land, Sea, and Air.
    [59] Cramer S D, Covino B. Corrosion: Environments and Industries//ASM International, 2006
    [60] Diao Y, Yan L, Gao K. 2021. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. Materials & Design, 198: 109326.
    [61] Draper S. Effect of environmental exposure on fatigue life of P/M disk superalloys//NASA Aviation Safety Program Annual Meeting. 2011
    [62] EASA. 2019. Emergency Airworthiness Directive (AD No. : 2017-0253-E) [M]: 1-3.
    [63] Ebara R. 2010. Corrosion fatigue crack initiation behavior of stainless steels. Procedia Engineering, 2: 1297-1306.
    [64] Ejaz N, Tauqir A. 2006. Failure due to structural degradation in turbine blades. Engineering Failure Analysis, 13: 452-463. doi: 10.1016/j.engfailanal.2004.12.041
    [65] El Haddad M H, Smith K N, Topper T H. 1979a. Fatigue crack propagation of short cracks. Journal of Engineering Materials and Technology, 101: 42-46. doi: 10.1115/1.3443647
    [66] El Haddad M H, Topper T H, Smith K N. 1979b. Prediction of non propagating cracks. Engineering Fracture Mechanics, 11: 573-584. doi: 10.1016/0013-7944(79)90081-X
    [67] Encinas-Oropesa A, Drew G L, Hardy M C, et al. Effects of oxidation and hot corrosion in a nickel disc alloy//Superalloys 2008. Warrendale: Minerals, Metals & Materials Soc, 2008: 609-+.
    [68] Evans C, Leiva-Garcia R, Akid R. 2018. Strain evolution around corrosion pits under fatigue loading. Theoretical and Applied Fracture Mechanics, 95: 253-260. doi: 10.1016/j.tafmec.2018.02.015
    [69] Fairbanks J W, Machlin I. 1975. Proceedings of gas turbine materials in the marine environment (1974)//Conference Held at the Marine Maritime Academy at Castine, Maine on 24-26 July 1974.
    [70] Feng J, Gao K, Gao W, et al. 2022. Machine learning-based bridge cable damage detection under stochastic effects of corrosion and fire. Engineering Structures, 264: 114421. doi: 10.1016/j.engstruct.2022.114421
    [71] Frankel G S. 1998. Pitting corrosion of metals: A review of the critical factors. Journal of the Electrochemical Society, 145: 2186-2198. doi: 10.1149/1.1838615
    [72] Franklin D B, Nelson. 1981. Corrosion fatigue of Inconel 718 and Incoloy 903 NASA TM-82426. NASA Marshall Space Flight Center, Alabama.
    [73] Gabb T, Miller R, Sudbrack C, et al. 2015. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys [M].
    [74] Gabb T P, Telesman J, Hazel B, et al. 2010. The effects of hot corrosion pits on the fatigue resistance of a disk superalloy. Journal of Materials Engineering and Performance, 19: 77-89. doi: 10.1007/s11665-009-9399-5
    [75] Gangloff R P. Critical issues in hydrogen assisted cracking of structural alloys//Critical Issues in Hydrogen Assisted Cracking of Structural Alloys, 2008
    [76] Gauntner D J, Ensign C R. 1981. An introduction to NASA's turbine engine hot section technology (HOST) project.
    [77] Gibson G J, Perkins K M, Gray S, et al. 2016. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li. Materials at High Temperatures, 33: 225-233. doi: 10.1080/09603409.2016.1161945
    [78] Gordon A P. 2006. Crack Initiation Modeling of A Directionally-solidified Nickel-base Superalloy. Georgia Institute of Technology.
    [79] Haddad M, Smith K, Topper T 1979. Fatigue Crack Propagation of Short Cracks. Journal of Engineering Materials and Technology-transactions of The Asme - J ENG MATER TECHNOL, 101.
    [80] Han Z, Huang X, Yang Z. 2019. Effect of Al–Zn alloy coating on corrosion fatigue behavior of X80 riser steel. Materials, 12: 1520. doi: 10.3390/ma12091520
    [81] Haque M E, Sudhakar K V. 2001. Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. International Journal of Fatigue, 23: 1-4.
    [82] Harlow D G, Wei R P. 1994. Probability approach for prediction of corrosion and corrosion fatigue life. AIAA Journal, 32: 2073-2079.
    [83] Heidloff A, Tang Z, Zhang F, et al. 2010. A combined mapping process for the development of platinum-modified Ni-based superalloys. 62: 48-53.
    [84] Hendery M L, Whittaker M T, Cockings B J, et al. 2022. The effect of salt composition on the stress-free and corrosion-fatigue performance of a fine-grained nickel-based superalloy. Corrosion Science, 198: 110113. doi: 10.1016/j.corsci.2022.110113
    [85] Hogenson D J, Alvarez A, August R, et al. 2006. National transportation safety board aviation incident final report.
    [86] Holroyd N J H, Hardie D. 1983. Factors controlling crack velocity in 7000 series aluminium alloys during fatigue in an aggressive environment. Corrosion Science, 23: 527-546. doi: 10.1016/0010-938X(83)90117-8
    [87] Hu W P, Shen Q A, Zhang M, et al. 2011. Corrosion–fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach. International Journal of Damage Mechanics, 21: 1245-1266.
    [88] Hu Y, Wu S, Withers P J, et al. 2021. Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Engineering Fracture Mechanics, 245: 107588. doi: 10.1016/j.engfracmech.2021.107588
    [89] Hudak S J. 1981. Small crack behavior and the prediction of fatigue life. Journal of Engineering Materials and Technology, 103: 26-35. doi: 10.1115/1.3224969
    [90] Stringer J. 1987. High-temperature corrosion of superalloys. Materials Science & Technology, 3(7): 482-493.
    [91] Jianting G, Ranucci D, Picco E. 1983. Low cycle fatigue behaviour of cast nickel-base superalloy IN-738LC in air and in hot corrosive environments. Materials Science and Engineering, 58: 127-133. doi: 10.1016/0025-5416(83)90144-1
    [92] Jianting G, Ranucci D, Picco E, et al. 1984. Effect of environment on the low cycle fatigue behaviour of cast nickel-base superalloy IN738LC. International Journal of Fatigue, 6: 95-99. doi: 10.1016/0142-1123(84)90019-7
    [93] Jie Z, Li Y, Wei X, et al. 2018. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics. Journal of Constructional Steel Research, 148: 542-550. doi: 10.1016/j.jcsr.2018.06.013
    [94] Kaminski-Morrow D. 2019. https://www.flightglobal.com/engines/serious-norwegian-787-trent-failure-traced-to-blade-fracture/134176.article.
    [95] Khan Z, Younas M. 1996. Corrosion-fatigue life prediction for notched components based on the local strain and linear elastic fracture mechanics concepts. International Journal of Fatigue, 18: 491-498. doi: 10.1016/0142-1123(95)00054-2
    [96] Khobaib M, Lynch C T, Vahldiek F W. 1981. Inhibition of corrosion fatigue in high strength aluminum alloys. Corrosion, 37: 285-292. doi: 10.5006/1.3621685
    [97] Kircher T A. 1989. Oxidation, sulfidation, and hot corrosion: mechanisms and interrelationships//Meeting of the Structures and Materials Panel of AGARD. 68 (1989). AGARD, Neuilly-sur-Seine: 4.1-4.8.
    [98] Kofstad P. High Temperature Corrosion[C]//, 1988
    [99] Kofstad P, Åkesson G. 1979. The reaction of preoxidized nickel in SO2 at high temperatures. Oxidation of Metals, 13: 57-76. doi: 10.1007/BF00715870
    [100] Kondo Y. 1989. Prediction of fatigue crack initiation life based on pit growth. Corrosion, 45: 7-11.
    [101] Kumawat M K, Parlikar C, Alam M Z, et al. 2021. Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na2SO4 film. Metallurgical and Materials Transactions A, 52: 378-393. doi: 10.1007/s11661-020-06068-6
    [102] Kupkovits R A. 2009. Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC [M]. Georgia Institute of Technology.
    [103] Larrosa N O, Akid R, Ainsworth R A 2018. Corrosion-fatigue: a review of damage tolerance models. International Materials Reviews, 63: 283-308.
    [104] Li S-X, Akid R. 2013. Corrosion fatigue life prediction of a steel shaft material in seawater. Engineering Failure Analysis, 34: 324-334. doi: 10.1016/j.engfailanal.2013.08.004
    [105] Li S, Yang X, Qi H, et al. 2018. Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy. International Journal of Fatigue, 116: 334-343. doi: 10.1016/j.ijfatigue.2018.06.035
    [106] Li S, Yang X, Xu G, et al. 2016. Influence of the different salt deposits on the fatigue behavior of a directionally solidified nickel-based superalloy. International Journal of Fatigue, 84: 91-96. doi: 10.1016/j.ijfatigue.2015.11.020
    [107] Li Z, Li S, Xu G, et al. 2021. The framework of hot corrosion fatigue life estimation of a PM superalloy using notch fatigue methodology combined with pit evolution. International Journal of Fatigue, 153: 106483. doi: 10.1016/j.ijfatigue.2021.106483
    [108] Liao M, Bellinger N C, Komorowski J P. 2010. Corrosion Fatigue Analysis of AN F-18 LONGERON.
    [109] Liu M, Luo S, Shen Y, et al. 2019. Corrosion fatigue crack propagation behavior of S135 high–strength drill pipe steel in H2S environment. Engineering Failure Analysis, 97: 493-505. doi: 10.1016/j.engfailanal.2019.01.026
    [110] LTD C C H. Aviation Investigation Report: Engine power loss–hard landing and rollover [EB/OL]. [2016-03-01] [M].
    [111] Lukaszewicz M, Zhou S, Turnbull A. 2015. Novel concepts on the growth of corrosion fatigue small and short cracks. Diffusion & Defect Data. Solid State Data Part B. Solid State Phenomena, 66: 1488-1490.
    [112] Mahobia G S, Paulose N, Mannan S L, et al. 2014. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718. International Journal of Fatigue, 59: 272-281. doi: 10.1016/j.ijfatigue.2013.08.009
    [113] Mao M, Zhang X, Tu S, et al. 2014. Prediction of crack initiation life due to corrosion pits. Journal of Aircraft, 51: 805-810. doi: 10.2514/1.C032436
    [114] Meisner K J, Opila E J. 2020. Hot corrosion of shipboard gas turbine blades. Oxidation of Metals, 94: 301-322.
    [115] Miller J K. 1991. Metal fatigue—past, current and future. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C. Journal of Mechanical Engineering Science, 36: 291-304.
    [116] Miller K J. 1993. Materials science perspective of metal fatigue resistance. Materials Science and Technology, 9: 453-462.
    [117] Mills T, Honeycutt K. Holistic structural integrity analysis of corrosion in a dynamic helicopter component.
    [118] Misak H E, Perel V Y, Sabelkin V, et al. 2013. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tension–tension cyclic loading condition. Engineering Fracture Mechanics, 106: 38-48. doi: 10.1016/j.engfracmech.2013.04.004
    [119] Mu Z T, Chen D H, Zhu Z T, et al. The stress concentration factor with different shapes of corrosion pits//Advanced Materials Research. 2011: 1115-1119. 10.4028/www. scientific. net/AMR. 152-153.1115.
    [120] Murtaza G, Akid R. 1996. Corrosion fatigue short crack growth behaviour in a high strength steel. International Journal of Fatigue, 18: 557-566.
    [121] Nan Z Y, Ishihara S, Goshima T. 2008. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. International Journal of Fatigue, 30: 1181-1188.
    [122] Nesbitt J, Draper S. 2016. Pit morphology and depth after low-temperature hot corrosion of a disc alloy. Materials at High Temperatures, 33: 501-516.
    [123] Nesbitt J, Gabb T, Draper S, et al. 2017. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys [M].
    [124] Nesbitt J, Gabb T, Puleo S, et al. 2018. Effect of Pre-and Post-Coat Processing on the Fatigue Life of Coated Disk Alloys.
    [125] Nesbitt J A, Gabb T P, Draper S L, et al. LCF life of as-deposited and annealed NiCr-Y coatings for oxidation and hot corrosion protection of disk alloys//National Aeronautics and Space Administration, Glenn Research Center, 2019
    [126] Nesbitt J A, Miller R A, Gabb T P, et al. 2020. LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion.
    [127] Nippon Cargo Airlines Co. 2011. AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT [M].
    [128] Pao P S, Gill S J, Feng C R 2000. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy. Scripta Materialia, 43: 391-396.
    [129] Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. Journal of Basic Engineering, 85: 528-533. doi: 10.1115/1.3656900
    [130] Pettit F. 2011. Hot corrosion of metals and alloys. Oxidation of Metals, 76: 1-21. doi: 10.1007/s11085-011-9254-6
    [131] Peyre P, Scherpereel X, Berthe L, et al. 2000. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering, A, 280: 294-302.
    [132] Piascik R, Willard S J F, Materials F O E, et al. 1994. The growth of small corrosion fatigue cracks in alloy 2024. 17: 1247-1259.
    [133] Piascik R, Willard S J I J O F. 1996. The growth of small corrosion fatigue cracks in Alloy 2024. 1: 61.
    [134] Plagens H D, Weber M A, Booth A. 2003. National Transportation Safety Board Aviation Accident Final Report.
    [135] Poursaeidi E, Arablu M. 2013. Humidity effects on corrosion-assisted fatigue fracture of heavy-duty gas turbine compressor blades. Journal of Propulsion and Power, 29: 1009-1016. doi: 10.2514/1.B34481
    [136] Pridemore W D. 2003. Metallurgical evaluation of stage one HPT blades and additional hardware from CF6-80C2 ESN 704-893 operated by atlas air involved in undercowl fire event [M].
    [137] Rajabipour A, MELCHERS R E 2015. Application of Paris’ law for estimation of hydrogen-assisted fatigue crack growth. International Journal of Fatigue, 80: 357-363.
    [138] Bhushana Rao V N, Kumar I N, Prasad K B. 2014. Failure analysis of gas turbine blades in a gas turbine engine used for marine applications. International Journal of Engineering Science & Technology, 6: 43-48.
    [139] Rapp R A 2002. Hot corrosion of materials: a fluxing mechanism? Corrosion Science, 44: 209-221.
    [140] Rémy L, Geuffrard M, Alam A, et al. 2013. Effects of microstructure in high temperature fatigue: Lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue. International Journal of Fatigue, 57: 37-49. doi: 10.1016/j.ijfatigue.2012.10.013
    [141] Roach J, Moore J D, Swift J, et al. 2005. National Transportation Safety Board Aviation Accident Final Report [M].
    [142] Rokhlin S I, Kim J Y, Nagy H, et al. 1999. Effect of pitting corrosion on fatigue crack initiation and fatigue life. Engineering Fracture Mechanics, 62: 425-444. doi: 10.1016/S0013-7944(98)00101-5
    [143] Rossmann A. Aeroengine Safety[C]Institute of Thermal Turbomachinery and Machine Dynamics
    [144] Piascik S R. 1999. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075. NASA Langley Technical Report Server.
    [145] Safety N T S B O O A. 2015. Powerplants Group Chairman’S Factual Report.
    [146] Safety N T S B O O A. 2016. Powerplant Group Chairman’S Factual Report.
    [147] Sahu J K, Gupta R K, Swaminathan J, et al. 2013. Influence of hot corrosion on low cycle fatigue behavior of nickel base superalloy SU 263,. International Journal of Fatigue, 51: 68-73. doi: 10.1016/j.ijfatigue.2013.02.006
    [148] Sahu J K, Ravi Kumar B, Das S K, et al. 2015. Isothermal high temperature low cycle fatigue behavior of Nimonic-263: Influence of type I and type II hot corrosion. Materials Science and Engineering:A, 622: 131-138. doi: 10.1016/j.msea.2014.11.016
    [149] Sankaran K K, Perez R, Jata K V 2001. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies. Materials Science and Engineering: A, 297: 223-229.
    [150] Schönbauer B M, Stanzl-Tschegg S E, Perlega A, et al. 2015. The influence of corrosion pits on the fatigue life of 17-4PH steam turbine blade steel. Engineering Fracture Mechanics, 147: 158-175. doi: 10.1016/j.engfracmech.2015.08.011
    [151] Schönbauer B M, Stanzl-Tschegg S E, Perlega A, et al. 2014. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. International Journal of Fatigue, 65: 33-43. doi: 10.1016/j.ijfatigue.2013.10.003
    [152] Shi P, Mahadevan S. 2001a. Aircraft structures reliability under corrosion fatigue//19th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2001-137710.2514/6.2001-1377.
    [153] Shi P, Mahadevan S. 2001b. Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction. Engineering Fracture Mechanics, 68: 1493-1507. doi: 10.1016/S0013-7944(01)00041-8
    [154] Sriraman M R, Pidaparti R M. 2009. Life Prediction of Aircraft Aluminum Subjected to Pitting Corrosion Under Fatigue Conditions. Journal of Aircraft, 46: 1253-1259. doi: 10.2514/1.40481
    [155] Sriraman M R, Pidaparti R M. 2010. Crack Initiation Life of Materials Under Combined Pitting Corrosion and Cyclic Loading. Journal of Materials Engineering and Performance, 19: 7-12. doi: 10.1007/s11665-009-9379-9
    [156] Stringer J. 1977. Hot Corrosion of High-Temperature Alloys. Annual Review of Materials Science, 7: 477-509. doi: 10.1146/annurev.ms.07.080177.002401
    [157] Sun B. 2018. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. Journal of Constructional Steel Research, 146: 76-83. doi: 10.1016/j.jcsr.2018.03.031
    [158] Szklarska-Smialowska Z. 1999. Pitting corrosion of aluminum. Corrosion Science, 41: 1743-1767. doi: 10.1016/S0010-938X(99)00012-8
    [159] Tan J, Zhang Z, Zheng H, et al. 2020. Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants. Journal of Nuclear Materials, 541: 152407. doi: 10.1016/j.jnucmat.2020.152407
    [160] Telesman J, Gabb T P, Yamada Y, et al. 2016. Fatigue resistance of a hot corrosion exposed disk superalloy at varied test temperatures. Materials at High Temperatures, 33: 517-527. doi: 10.1080/09603409.2016.1179000
    [161] Turnbull A, Horner D A, Connolly B J. 2009. Challenges in modelling the evolution of stress corrosion cracks from pits. Engineering Fracture Mechanics, 76: 633-640. doi: 10.1016/j.engfracmech.2008.09.004
    [162] Turnbull A, Mccartney L N, Zhou S. A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters[C]//S. A. SHIPILOV, R. H. JONES, J. M. OLIVE, et al. Environment-Induced Cracking of Materials. Amsterdam: Elsevier, 2008: 19-45.https://doi.org/10.1016/B978-008044635-6.50006-6.
    [163] Turnbull A, Zhou S. 2012. Electrochemical short crack effect in environmentally assisted cracking of a steam turbine blade steel. Corrosion Science, 58: 33-40. doi: 10.1016/j.corsci.2012.01.004
    [164] Van Orden J, Pettit D. 1975. Corrosion fatigue crack growth in 7050 aluminum alloy extrusions[C]//16th Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics,doi: 10.2514/6.1975-80610.2514/6.1975-806.
    [165] Vormwald M, Seeger T. 2007. The consequences of short crack closure on fatigue crack growth under variable amplitude loading. Fatigue & Fracture of Engineering Materials & Structures, 14: 205-225.
    [166] Wang Q, Palakal M, Pidaparti R. 2001. Comparative Study of Corrosion–Fatigue in Aircraft Materials. Aiaa Journal - AIAA J, 39: 325-330. doi: 10.2514/2.1308
    [167] Wang R. 2008. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip. International Journal of Fatigue, 30: 1376-1386. doi: 10.1016/j.ijfatigue.2007.10.007
    [168] Wei R. 1998. Corrosion and Fatigue of Aluminum Alloys: Chemistry, Micro-Mechanics and Reliability. 40.
    [169] Yang X, Li S, Qi H. 2015. Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. International Journal of Fatigue, 70: 106-113. doi: 10.1016/j.ijfatigue.2014.08.011
    [170] Zhang Y, Liu X, Lai J, et al. 2021. Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size. Theoretical and Applied Fracture Mechanics, 114: 103023. doi: 10.1016/j.tafmec.2021.103023
    [171] Zhang Y, Zheng K, Zhu J. 2019a. Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges. Applied Sciences, 9: 3461. doi: 10.3390/app9173461
    [172] Zhang Z, Tan J, Wu X, et al. 2019b. Corrosion fatigue behavior and crack-tip characteristic of 316LN stainless steel in high-temperature pressurized water. Journal of Nuclear Materials, 518: 21-29. doi: 10.1016/j.jnucmat.2019.02.040
    [173] Zhao G, Qi H, Li S, et al. 2021. Effects of tensile load hold time on the fatigue and corrosion-fatigue behavior of turbine blade materials. International Journal of Fatigue, 152: 106448. doi: 10.1016/j.ijfatigue.2021.106448
    [174] Zheng Y, Wang Y. 2020. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue. Corrosion Science, 164: 108368. doi: 10.1016/j.corsci.2019.108368
    [175] Zhou T. 2001. Influence of pitting on the fatigue life of a turbine blade steel,. Fatigue & Fracture of Engineering Materials & Structures, 22: 1083-1093.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  36
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 录用日期:  2014-07-08
  • 网络出版日期:  2022-07-09

目录

    /

    返回文章
    返回