留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战

温斌荣 田新亮 李占伟 彭志科

温斌荣, 田新亮, 李占伟, 彭志科. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战. 力学进展, 2022, 52(4): 731-808 doi: 10.6052/1000-0992-22-018
引用本文: 温斌荣, 田新亮, 李占伟, 彭志科. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战. 力学进展, 2022, 52(4): 731-808 doi: 10.6052/1000-0992-22-018
Wen B R, Tian X L, Li Z W, Peng Z K. Coupling dynamics of floating wind turbines: History, progress and challenges. Advances in Mechanics, 2022, 52(4): 731-808 doi: 10.6052/1000-0992-22-018
Citation: Wen B R, Tian X L, Li Z W, Peng Z K. Coupling dynamics of floating wind turbines: History, progress and challenges. Advances in Mechanics, 2022, 52(4): 731-808 doi: 10.6052/1000-0992-22-018

大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战

doi: 10.6052/1000-0992-22-018
基金项目: 国家自然科学基金青年科学基金项目 (11632011) 、海南省自然科学基金联合项目 (120 (12102251) 、国家自然科学基金重点项目 (11632011) 、海南省自然科学基金联合项目 (120LH050) 、国家自然科学基金创新研究群体项目 (12121002) 、汕尾市省级科技专项资金 (“大专项+任务清单”) 项目 (2020B001) 资助.
详细信息
    作者简介:

    温斌荣, 1993年生, 博士, 上海交通大学助理教授, 博士生导师. 2015年和2020年分别于西安交通大学和上海交通大学获学士、博士学位. 主要从事复杂装备动力学与控制相关研究. 先后主持国家级、省部级及各类科研项目7项, 作为核心成员参与国家自然科学基金重点项目2项. 围绕漂浮式风电装备耦合动力学建模、分析及试验方法取得一些创新成果, 发表学术论文30余篇, 申请国家专利10余项. 获第11届上银优秀机械博士论文奖铜奖、2020年上海交通大学优秀博士学位论文等荣誉

    田新亮, 1986年生, 博士, 上海交通大学副教授, 船舶与海洋工程系副系主任, 博士生导师. 主要研究方向为浮式海洋平台流体动力学、海洋流体机器人等. 主持国家自然科学基金联合基金重点项目、基金青年基金等各类科研项目20余项. 在Physical Review Letters、Journal of Fluid Mechanics、Ocean Engineering等知名期刊发表 SCI论文60余篇; 发明专利授权34件; 获2019年度上海市科技进步一等奖 (排3) , 2020年度海洋工程科学技术二等奖 (排2) , 入选“上海市青年科技英才扬帆计划”

    李占伟, 1991年生, 博士, 南京航空航天大学讲师, 硕士生导师. 2021年于上海交通大学获博士学位. 主要研究方向为振动分析与控制、传动系统动力学分析等. 先后主持各类科研项目多项, 作为核心成员参与完成国家自然科学基金重点项目1项. 发表学术论文20余篇, 申请国家专利6项

    彭志科 (通信作者) , 1974年生, 博士, 宁夏大学党委副书记、校长, 上海交通大学特聘教授、博士生导师, 国家杰出青年科学基金获得者, 教育部“长江学者”特聘教授, 国家自然科学基金创新群体项目负责人, 入选科技部“中青年科技创新领军人才”. 主要从事海上浮式风机、动力学分析与信号处理、振动分析与控制、设备智能诊断与运维等方面研究, 构建了漂浮式风电装备动力学分析设计与试验研究体系, 创建了广义参数化时频变换理论与方法, 提出了非线性调频分量分解方法, 发明了基于微波感知的全场形变和振动测量变革性技术. 主持了包括两机专项、国家自然科学基金创新群体项目、重点项目和面上项目、上海市国际合作重点项目等在内的20多个重要项目. 发表高水平论文200余篇, 连续7年入选爱思唯尔“中国高被引学者榜单”. 获上海青年科技英才提名奖、教育部新世纪优秀人才支持计划、上海市浦江人才支持计划、教育部自然科学一等奖等荣誉

    通讯作者:

    z.peng@sjtu.edu.cn

  • 中图分类号: O313

Coupling dynamics of floating wind turbines: History, progress and challenges

More Information
  • 摘要: 风电是可再生能源的主力军, 在优化能源结构、缓解气候变化方面发挥着重要作用. 经过数十年的发展, 风电装备逐渐向大型化和离岸化方向发展, 并由此形成“由陆向海, 由浅入深, 由固定式向漂浮式”的演变之路. 在水深大于50米的深远海域, 采用漂浮式支撑基础搭载大型或超大型风电机组是兼顾技术可行度和成本优势的理想选择. 如今, 大型漂浮式风机已成为下一代深远海风能大规模开发的主力装备, 是深化海洋风能开发的先导战略性高端装备, 是风电领域的研究热点和技术高地. 本文围绕大型漂浮式风电装备耦合动力学问题, 综述了国内外浮式风电技术的发展历程和研究现状, 结合作者团队多年的研究与实践经验, 介绍了浮式风机耦合动力学及其优化控制中的基础问题与研究现状, 总结了现阶段浮式风机耦合动力学研究中的困难与挑战, 为浮式风电研究人员提供参考.

     

  • 图  1  2001—2020年全球风电累计装机容量变化情况(GWEC 2021)

    图  2  风电装备大型化发展趋势示意图(EWEA 2009)

    图  3  风电装备“由陆向海, 由浅入深”发展示意图(EWEA 2013)

    图  4  浮式风电技术发展脉络

    图  5  中国浮式风电技术发展脉络

    图  6  浮式风机静水稳性获取方式. 来源: The Economist

    图  7  半潜式浮式风机概念设计举例

    图  8  单柱式浮式风机概念设计举例

    图  9  张力腿式浮式风机概念设计举例

    图  10  驳船式浮式风机概念设计举例

    图  11  大型浮式风机运行环境示意图

    图  12  大型浮式风机耦合动力学研究内容概览(Micallef & Rezaeiha 2021)

    图  13  风机叶片涡系模型示意图(Wen et al. 2019a)

    图  14  浮式风机输出功率随等效湍流强度平方变化规律(Wen et al. 2021)

    图  15  浮式风机不同状态下的运行模式(Micallef & Rezaeiha 2021)

    图  16  平台运动下的浮式风机尾流图 (Tran et al. 2016b)

    图  17  笔者团队建立的浮式风机非定常气动特性“三步式”试验研究框架

    图  18  叶片结构建模方法. (a)有限元模型(Hu et al. 2016), (b)多体动力学模型(Molenaar 2003), (c)等效梁模型(Branner et al. 2012)

    图  19  浮式风机叶片气弹耦合分析流程图

    图  20  不同非定常因素及综合效应对浮式风机叶片气动气弹特性的影响

    图  21  平台运动/结构振动作用下的叶片翼型相对速度与受力(Liu et al. 2017). (a) 速度扰动与风速同向, (b) 无运动/振动扰动, (c) 运动/振动与风速反向

    图  22  不同气动载荷作用下的浮式平台响应. (a) 平台纵荡; (b) 平台纵摇

    图  23  浮式风机陀螺力矩的动力响应(陈嘉豪 2018). (a) 平台首摇, (b) 首摇偏航力矩

    图  24  浮体初始竖直与倾斜下的风轮陀螺效应研究

    图  25  初始竖直与倾斜下的SJTU-S4浮体运动固有周期, 单位: 秒

    图  26  FAST软件算法结构示意图

    图  27  浮式风机全实物试验系统. (a) 浮式风机缩尺模型, (b)试验系统全貌

    图  28  浮式风机全实物模型试验用造风系统“Big Wind System”. (a) 模型图, (b) 实物图, (c) 正弦风模拟效果, (d) 湍流风模拟效果

    图  29  性能相似叶片气动推力. (a) 风轮推力系数, (b) 法向载荷

    图  30  基于数值浮体的半实物模型试验系统原理图

    图  31  基于数值浮体的半实物模型试验系统及其验证. (a) 试验系统, (b) 试验验证

    图  32  基于数值风轮的半实物模型试验系统原理图

    图  33  浮式风机试验系统. (a) 全实物模型试验系统, (b)半实物模型试验系统

    图  34  基于数值风轮的半实物模型试验方法验证与评估. (a) 湍流风下浮式风机气动推力复现性能; (b) 半实物模型试验与全实物模型试验结果对比

    图  35  WindFloat主动压载调节系统

    图  36  单柱式浮式风机及其附属垂荡板结构 (图中红圈) (丁勤卫等 2019)

    图  37  张力腿浮式风机串联浮筒优化方法(马哲等 2020)

    图  38  现代大型风机变转速控制逻辑

    图  39  浮式风机独立变桨实现运动/载荷抑制的基本原理. (a) 统一变桨, (b) 独立变桨

    图  40  笔者团队开展的浮式风机独立变桨一体化试验研究. (a) 独立变桨机构模型图, (b) 统一变桨原理图, (c) 独立变桨机构实物图, (d) 独立变桨原理图

    图  41  结构控制在高层建筑和浮式风机中的应用. (a) 高层建筑, (b)浮式风机(Si et al. 2013)

    图  42  惯容实现机制. (a) 齿轮−齿条机制惯容, (b) 滚珠丝杠机制惯容

    表  1  四类浮式风机结构型式的基本特点

    类型稳性原理优点缺点
    单柱式压载稳定设计简单, 制造方便
    活动部件少, 稳性好
    限于深水
    安装困难
    维护不便
    半潜式浮力稳定安装灵活, 费用较低
    可达性强, 维修方便
    质量较大
    结构复杂
    制造困难
    张力腿系泊稳定结构紧凑, 质量较轻
    活动部件少, 稳性好
    系泊与锚固负载大
    安装困难, 成本高
    驳船式阻尼稳定结构简单
    定位方便
    成本较低
    吃水浅、重心高
    对外界环境较敏感
    不适应于恶劣海况
    下载: 导出CSV

    表  2  浮式风机动力学求解软件基本情况汇总(段斐 2017)

    软件名称开发机构气动载荷水动载荷系泊载荷
    FASTNRELBEM+DSAiry+ME
    Airy+PF+ME
    QSCE
    HAWC2Risø+DTUBEM+DSAiry+ME
    Airy+PF+ME
    QSCE, UDFD
    SIMOMARINTEKBEMAiry+MEQSCE, MBS
    GH BladedGHBEM+DSAiry+MEUDFD
    ADAMSMSC+NREL+LUHBEM+DSAiry+ME
    Airy+PF+ME
    QSCE, UDFD
    SESAM.DeepCDNV-Airy+ME
    Airy+PF+ME
    QSCE, FEM
    3DfloatIFE-UMBBEMAiry+MEFEM, UDFD
    BEM: 叶素动量理论 (Blade Element Momentum) ; DS: 动态失速 (Dynamics Stall) ; Airy: 线性波理论; ME: 莫里森公式 (Morison’s Equation) ; PF: 势流理论 (Potential Flow) ; QSCE: 准静态悬链线方程 (Quasi-static Catenary Equations) ; UDFD: 用户自定义力−位移关系 (User-Defined Force-Displacement relationship) ; FEM: 有限元 (Finite Element Method); MBS:多体动力学(Multi-body Dynamics formulation)
    下载: 导出CSV
  • 曹宏源. 2017. 海上风电-金风十年求索路. 风能, 10: 23-30 (Cao H Y. 2017. Offshore wind power - Gold Wind 10-year quest. Wind Energy, 10: 23-30).
    陈东阳, 顾超杰, 朱卫军等. 2020. 抑制柱体结构涡激振动的非线性能量阱减振装置优化设计. 工程力学, 37: 240-247 (Chen D Y, Gu C J, Zhu W J, et al. 2020. An optimum design of nonlinear energy sink vibration absorbing device for suppressing vortex-induced vibration of cylindrical structures. Engineering Mechanics, 37: 240-247). doi: 10.6052/j.issn.1000-4750.2019.10.0613
    陈嘉豪. 2018. 海上浮式风机刚柔耦合多体动力学方法及特性研究. [博士论文]. 上海: 上海交通大学.

    Chen J H. 2018. Study on the rigid-flexible coupled multi-body dynamics and the characteristics of floating offshore wind turbines. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University.
    陈嘉豪, 裴爱国, 马兆荣等. 2020. 海上漂浮式风机关键技术研究进展. 南方能源建设, 7: 8-20 (Chen J H, Pei A G, Ma Z R, et al. 2020. A review of the key technologies for floating offshore wind turbines. Southern Energy Construction, 7: 8-20).
    陈进格. 2019. 水平轴风力机叶片气弹建模与应用研究. [博士论文]. 上海: 上海交通大学.

    Chen J G. 2019. A study on aeroelastic analysis and application of horizontalaxis wind turbine blades. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University.
    仇永兴. 2015. 基于自由涡方法的控制过程中风轮气动特性研究. [博士论文] . 北京: 华北电力大学.

    Qiu Y X. 2015. Investigation of aerodynamic characteristics of wind turbine rotor under control process based on free-vortex method. [PhD Thesis]. Beijing: North China Electric Power University.
    邓露, 黄民希, 肖志颖等. 2017. 考虑气动阻尼的浮式风机频域响应分析. 湖南大学学报(自然科学版), 44: 1-8 (Deng L, Huang M X, Xiao Z Y, et al. 2017. Analysis on frequency response of floating wind turbine considering the influence of aerodynamic damping. Journal of Hunan University(Natural Sciences), 44: 1-8). doi: 10.16339/j.cnki.hdxbzkb.2017.01.001
    邓露, 王彪, 肖志颖等. 2016. 钢筋混凝土浮式风机平台概念设计与性能研究. 华中科技大学学报, 44: 11-15 (Dneg L, Wang B, Xiao Z Y, et al. 2016. Conceptual design and performance analysis of a reinforced concrete platform for floating wind turbines. Journal of University of Science and Technology of China, 44: 11-15).
    丁勤卫, 李春, 袁伟斌等. 2019. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响. 中国电机工程学报, 39: 1113-1126 (Ding Q W, Li C, Yuan W B, et al. 2019. Effects of heave plate on dynamic response of floating wind turbine spar platform under the coupling effects of wind and wave. Proceedings of the Chinese Society of Electrical Engineering, 39: 1113-1126). doi: 10.13334/J.0258-8013.PCSEE.180658
    段斐. 2017. 单柱式浮式风机动力性能机理和响应特性的模型试验与数值模拟研究. [博士论文]. 上海: 上海交通大学.

    Duan F. 2017. Investigation on mechanism and characteristics of dynamic response of a spar-type floating wind turbine based on model testing and numerical simulation methods. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University.
    范定成. 2016. 海上风力发电机组变桨距控制技术研究. [硕士论文]. 株洲: 湖南工业大学.

    Fan D C. 2016. Research on the technology of pitch control for offshore wind turbine. [Master Thesis]. Zhuzhou: Hunan University of Technology.
    郭洪澈, 李钢强, 刘雄等. 2013. 气动阻尼对海上风力机筒形塔架的影响. 太阳能学报, 34: 1451-1457 (Guo H C, Li G Q, Liu X. 2013. Influence of aerodynamic damping on tubular tower of offshore horizontal axis wind turbines. Acta Energiae Solaris Sinica, 34: 1451-1457). doi: 10.3969/j.issn.0254-0096.2013.08.024
    贺尔铭, 胡亚琪, 张扬. 2014. 基于TMD的海上浮动风力机结构振动控制研究. 西北工业大学学报, 32: 55-61 (He E M, Hu Y Q, Zhang Y. 2014. Structural vibration control of offshore floating wind turbine based on TMD. Journal of Northwestern Polytechnical University, 32: 55-61).
    黄致谦, 丁勤卫, 李春等. 2018. 基于多岛遗传算法的漂浮式风力机稳定性多重调谐质量阻尼器多重调谐质量阻尼器优化控制. 中国机械工程, 29: 1349-1356 (Huang Z Q, Ding Q W, Li C, et al. 2018. Optimal control of MTMD in floating wind turbine stability based on MIGA. China Mechanical Engineering, 29: 1349-1356). doi: 10.3969/j.issn.1004-132X.2018.11.015
    霍林生, 黄辰, 李宏男. 2019. 基于非线性能量阱的悬吊摆对输电塔振动控制的研究. 防灾减灾工程学报, 39: 898-904 (Huo L S, Huang C, Li H N. 2019. Vibration control of transmission towers with a suspended pendulum based on nonlinear energy sink. Journal of Disaster Prevention and Mitigation Engineering, 39: 898-904). doi: 10.13409/j.cnki.jdpme.2019.06.003
    金鑫, 林益帆, 谢双义等. 2020. 漂浮式风力机混合振动控制. 太阳能学报, 41: 261-266 (Jin X, Lin Y F, Xie S Y, et al. 2020. Hybrid vibration controlof floating wind turbines. Acta Energiae Solaris Sinica, 41: 261-266).
    李德源, 莫文威, 严修红等. 2014. 基于多体模型的水平轴风力机气弹耦合分析, 机械工程学报, 50: 140-150.

    Li D Y, Mo W W, Yan X H, et al. 2014. Aeroelastic analysis of horizontal axis wind turbine based on multi-body model. Journal of Mechanical Engineering, 50: 140-150.
    李亮, 李映辉, 刘启宽. 2012. 风力机叶片非线性挥舞分析. 固体力学学报, 33: 98-102 (Li L, Li Y H, Liu Q K. 2012. Analysis of non-linear flap vibration of wind turbine blades. Acta Mechanica Solida Sinica, 33: 98-102). doi: 10.3969/j.issn.0254-7805.2012.01.015
    李阳, 温华兵, 张坤等. 2019. 惯容器对船舶舱室低频隔振效果的影响. 船舶工程, 41: 43-46 (Li Y, Wen H B, Zhang K, et al. 2019. Influence of inerter on the low frequency vibration isolation effect of ship cabin. Ship Engineering, 41: 43-46).
    刘海平, 王耀兵, 孙鹏飞等. 2018. 非线性能量阱对飞轮振动抑制效果的实验研究. 宇航学报, 39: 562-568 (Liu H P, Wang Y B, Sun P F, et al. 2018. Experimental research on vibration suppression for a flywheel based on nonlinear energy sink. Journal of Astronautics, 39: 562-568). doi: 10.3873/j.issn.1000-1328.2018.05.011
    刘浩学, 温斌荣, 魏汉迪等. 2020. 海上浮式风机混合模型试验系统开发. 实验室研究与探索, 39: 71-76 (Liu H X, Wen B R, Wei H D, et al. 2020. Development of hybrid model test system for floating wind turbines. Research and Exploration in Laboratory, 39: 71-76). doi: 10.3969/j.issn.1006-7167.2020.07.015
    刘强. 2014. 漂浮式风力机动态响应及气动特性研究. [博士论文]. 北京: 中国科学院工程热物理研究所.

    Liu Q. 2014, Dynamic response and aerodynamic characteristics of floating wind turbine. [PhD Thesis]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences
    刘雄, 马新稳, 沈世等. 2013. 风力机柔性叶片振动变形对其气动阻尼的影响分析. 空气动力学学报, 31: 407-412 (Liu X, Ma X W, Shen S, et al. 2013. Analysis of the influence of vibration and deformation of the blade on the aerodynamic damping. Acta Aerodynamica Sinica, 31: 407-412).
    刘中坡, 乌建中, 王菁菁等. 2016. 轨道型非线性能量阱对高层结构脉动风振的控制仿真. 振动工程学报, 29: 1088-1096 (Liu Z P, Wu J Z, Wang J J. 2016. Simulation of track nonlinear energy sink for wind-induced vibration control in high-rise building. Journal of Vibration Engineering, 29: 1088-1096).
    马哲, 王少雄, 任年鑫等. 2020. 新型串联浮筒张力腿式风力机纵荡响应分析. 太阳能学报, 41: 288-294 (Ma Z, Wang S X, Ren N X, et al. 2020. Surge response analysis of serbuoys-tlp wind turbine. Acta Energiae Solaris Sinica, 41: 288-294).
    千尧科技. 2020. 我国漂浮式风机发展现状.

    Kyotta Technology. 2020. Development status of floating wind turbine in China.
    沈昕. 2014. 水平轴风力机气动性能预测及优化设计. [博士论文]. 上海: 上海交通大学.

    Shen X, 2014. Aerodynamic performance prediction and optimization design of horizontal axis wind turbines. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University.
    汤金桦, 李春, 丁勤卫等. 2017. 基于TMD的海上漂浮式风力机稳定性研究. 热能动力工程, 32: 111-116 (Tnag J H, Li C, Ding Q W, et al. 2017. Research on the stability control of floating wind turbine based on TMD. Journal of Engineering for Thermal Energy and Power, 32: 111-116). doi: 10.16146/j.cnki.rndlgc.2017.08.018
    王慧. 2019. 基于DAC状态反馈控制的浮式风机减载研究与监控. [硕士论文]. 重庆大学.

    Wang H, 2019. Study on load reduction of floating wind turbine based on DAC state feedback control and monitoring. [Master Thesis]. Chongqing University.
    王新茹, 陈刚, 肖龙飞等. 2019. 实尺度大型水平轴风机气动特性数值模拟. 中国海洋平台, 34: 31-39 (Wang X R, Chen G, Xiao L F, et al. 2019. Numerical simulation of aerodynamic characteristics of large real scale horizontal axial wind turbine. China Offshore Platform, 34: 31-39). doi: 10.3969/j.issn.1001-4500.2019.06.006
    温斌荣. 2020. 大型海上浮式风机非定常空气动力学特性研究. [博士论文]. 上海: 上海交通大学.

    Wen B R, 2020. Investigation on the unsteady aerodynamics of large-scale floating wind turbines. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University.
    温斌荣, 魏莎, 魏克湘等. 2018. 风切变和塔影效应对风力机输出功率的影响. 机械工程学报, 54: 124-132 (Wen B R, Wei S, Wei K X, et al. 2018. Influences of wind shear and tower shadow on the power output of wind turbine. Journal of Mechanical Engineering, 54: 124-132).
    谢双义. 2013. 变速变桨风力发电机组的运行控制策略研究. [硕士论文]. 重庆: 重庆大学.

    Xie S Y. 2013. Research on the operation conrol strategies of the variable speed variable pitch wind turbine. [Master Thesis]. Chongqing: Chongqing University.
    许波峰, 2013. 基于涡尾迹方法的风力机气动特性研究. [博士论文]. 南京: 南京航空航天大学.

    Xu B F, 2013. Study of wind turbine aerodynamic characteristics based on vortex wake methods. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics.
    杨佳佳, 贺尔铭, 姚文旭等. 2020. 抑制海上浮式风力机振动的TMD限位策略研究. 振动与冲击, 39: 18-24 (Yang J J, He E M. Yao W X, et al. 2020. TMD limited position strategy for vibration suppression of floating offshore wind turbines. Journal of Vibration and Shock, 39: 18-24). doi: 10.13465/j.cnki.jvs.2020.15.003
    姚红良, 曹焱博, 张钦等. 2020. 非线性能量阱在转子系统振动抑制中的应用. 机械工程学报, 56: 192-196 (Yao H L, Cao Y B, Zhang Q. 2020. Application of nonlinear energy sink for rotor system vibration suppression. Journal of Mechanical Engineering, 56: 192-196).
    叶昆, 舒率. 2020. 基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究. 动力学与控制学报, 18: 57-62 (Ye K, Shu S. 2020. Optimal design of base-isolated structure with supplemental tuned inerter damper based on performance requirement. Journal of Dynamics and Control, 18: 57-62).
    余万, 丁勤卫, 李春等. 2018. 垂荡板对浮式风力机平台动态响应的影响. 动力工程学报, 38: 747-754 (Yu W, Ding Q W, Li C, et al. 2018. Influence of heave plate on the dynamic response of a floating wind turbine platform. Journal Of Chinese Society of Power Engineering, 38: 747-754). doi: 10.3969/j.issn.1674-7607.2018.09.009
    虞志浩. 2012. 旋翼柔性多体系统气动弹性研究. [博士论文], 南京: 南京航空航天大学.

    Yu Z H. 2012. Research on aeroelasticity of rotor flexible multibody system. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics.
    张琦, 彭志科, 寇雨丰等. 2019. 海洋工程试验的浮式风力发电机模型设计. 实验室研究与探索, 38: 9-12 (Zhang Q, Peng Z K, Tian X L, et al. 2019. Model design of floating offshore wind turbine and application in ocean engineering tests. Research and Exploration in Laboratory, 38: 9-12). doi: 10.3969/j.issn.1006-7167.2019.06.004
    张瑞甫, 曹嫣如, 潘超. 2019. 惯容减震(振)系统及其研究进展. 工程力学, 36: 8-26 (Zhang R F, Cao Y R, Pan C. 2019. Inerter system and its state-of-the-art. Engineering Mechanics, 36: 8-26).
    张晓峰, 金鑫, 林益帆等. 2020. 基于TMD的漂浮式风力机振动控制. 太阳能学报, 41: 292-300 (Zhang X F, Jin X, Lin Y F, et al. 2020. Vibration controlof floating wind turbines based on TMD. Acta Energiae Solaris Sinica, 41: 292-300).
    周国龙, 叶舟, 成欣等. 2015. 垂荡板对传统Spar平台水动力特性的影响. 水资源与水工程学报, 26: 143-148 (Zhou G L, Ye Z, Chen X, et al. 2015. Influence of heave plate on hydrodynamic characteristics of traditional spar platform. Journal of Water Resources and Water Engineering, 26: 143-148). doi: 10.11705/j.issn.1672-643X.2015.04.027
    周红杰, 丁勤卫, 李春等. 2018. 基于多岛遗传算法的漂浮式风力机TMD参数优化. 动力工程学报, 38: 406-411 (Zhou H X, Ding Q W, Li C, et al. 2018. Optimization of TMD parameters based on MIGA for a floating wind turbine. Journal of Chinese Society Of Power Engineering, 38: 406-411). doi: 10.3969/j.issn.1674-7607.2018.05.011
    周腊吾, 杨彬佑, 韩兵等. 2019. 漂浮式风机气-水动力耦合下的独立变桨控制方法. 电工技术学报, 34: 3607-3614 (Zhou L W, Yang B Y, Han B, et al. 2019. Individual blade pitch control for the floating offshore wind turbines bearing the air-hydrodynamic coupling loads. Transactions of China Electrotechnical Society, 34: 3607-3614). doi: 10.19595/j.cnki.1000-6753.tces.180919
    Agius S, Sant T. 2012. Insight into the unsteady aerodynamics of floating wind turbines with Tension Leg Platforms (TLP) using a Blade Element Momentum (BEM) based model. HEFAT 2012.
    Arai T, Aburakawa T, Ikago K, et al. 2009. Verification on effectiveness of a tuned viscous mass damper and its applicability to non-linear structural systems. Journal of Structural and Construction Engineering, 74: 1993-2002. doi: 10.3130/aijs.74.1993
    Azcona J, Bouchotrouch F, González M, et al. 2014. Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan. Journal of Physics:Conference Series, 524: 012089. doi: 10.1088/1742-6596/524/1/012089
    Azcona J, Bouchotrouch F, Vittori F. 2019. Low-frequency dynamics of a floating wind turbine in wave tank-scaled experiments with SiL hybrid method. Wind Energy, 22: 1402-1413. doi: 10.1002/we.2377
    Bahramiasl S, Abbaspour M, Karimirad M. 2017. Experimental study on gyroscopic effect of rotating rotor and wind heading angle on floating wind turbine responses. International Journal of Environmental Science and Technology, 15: 2531-2544.
    Barakati S, Kazerani M, Aplevich J. 2009. Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Trans Energy Conversion, 24: 705-713. doi: 10.1109/TEC.2008.2005316
    Bauchau O A. 2010. Flexible multibody dynamics. Springer Science & Business Media.
    Bayati I, Belloli M, Bernini L, et al. 2018a. UNAFLOW project: UNsteady Aerodynamics of FLOating Wind turbines. Journal of Physics: Conference Series, 1037: 072037. doi: 10.1088/1742-6596/1037/7/072037
    Bayati I, Belloli M, Bernini L, et al. 2017a. Scale model technology for floating offshore wind turbines,. IET Renewable Power Generation, 11: 1120-1126. doi: 10.1049/iet-rpg.2016.0956
    Bayati I, Belloli M, Bernini L, et al. 2016. Wind tunnel validation of AeroDyn within LIFES50+ project: imposed surge and pitch tests. Journal of Physics:Conference Series, 753: 092001. doi: 10.1088/1742-6596/753/9/092001
    Bayati I, Belloli M, Bernini L, et al. 2017b. Aerodynamic design methodology for wind tunnel tests of wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 167: 217-227. doi: 10.1016/j.jweia.2017.05.004
    Bayati I, Belloli M, Facchinetti A. 2013. Wind tunnel tests on floating offshore wind turbines: A proposal for hardware-in-the-loop approach. Wind Engineering, 37: 1-8. doi: 10.1260/0309-524X.37.1.1
    Bayati I, Belloli M, Giappino S. 2012. An experimental test rig to simulate hydrodynamic forcing on floating offshore wind turbine platforms. Offshore Wind and Other Marine Renewable Energy in Mediterranean and European Seas, 45-53.
    Bayati I, Facchinetti A, Fontanella A, et al. 2018b. 6-DoF hydrodynamic modelling for wind tunnel hybrid/HIL tests of FOWT: The real-time//The 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain. V010T009A078.
    Belloli M, Bayati I, Facchinetti A, et al. 2020. A hybrid methodology for wind tunnel testing of floating offshore wind turbines. Ocean Engineering. 210: 107592.
    Blusseau P, Patel M H. 2012. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure. Renewable Energy, 46: 31-42. doi: 10.1016/j.renene.2012.02.023
    Borg M, Collu M. 2015. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines. Applied Energy, 155: 629-636. doi: 10.1016/j.apenergy.2015.06.038
    Bossanyi E. 2003a. GH bladed theory manual. GH & Partners Ltd.
    Bossanyi E. 2003b. Individual blade pitch control for load reduction. Wind Energy, 6: 119-128. doi: 10.1002/we.76
    Bossanyi E. 2003c. Wind turbine control for load reduction. Wind Energy, 6: 229-244. doi: 10.1002/we.95
    Bossanyi E A, Fleming P A, Wright A D. 2013. Validation of individual pitch control by field tests on two- and three-bladed wind turbines. IEEE Transactions on Control Systems Technology, 21: 1067-1078. doi: 10.1109/TCST.2013.2258345
    Bottasso C L, Campagnolo F, Petrović V. 2014. Wind tunnel testing of scaled wind turbine models: Beyond aerodynamics. Journal of Wind Engineering & Industrial Aerodynamics, 127: 11-28.
    Boujleben A, Ibrahimbegovic A, Lefrançois E. 2020. An efficient computational model for fluid-structure interaction in application to large overall motion of wind turbine with flexible blades. Appl Math Model, 77: 392-407. doi: 10.1016/j.apm.2019.07.033
    Boulluec M L, Ohana J, Martin A, et al. 2013. Tank festing of a new concept of floating offshore wind turbine//ASME 2013 International Conference on Ocean, Offshore and Arctic Engineering, V008T009A100.
    Branner K , Blasques J , Kim T , et al. 2012. Anisotropic beam model for analysis and design of passive controlled wind turbine blades. DTU Wind Energy report E-0001 (EN)
    Bredmose H, Lemmer F, Borg M, et al. 2017. The Triple Spar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control. Energy Procedia, 137: 58-76. doi: 10.1016/j.egypro.2017.10.334
    Cao Q, Xiao L, Cheng Z, et al. 2021. Dynamic responses of a 10MW semi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison,. Ocean Engineering, 232: 109138. doi: 10.1016/j.oceaneng.2021.109138
    Cao Q, Xiao L, Cheng Z, et al. 2020. Operational and extreme responses of a new concept of 10MW semi-submersible wind turbine in intermediate water depth: An experimental study. Ocean Engineering, 217: 108003. doi: 10.1016/j.oceaneng.2020.108003
    Carrión M, Steijl R, Woodgate M, et al. 2014. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method. Journal of Fluids and Structures, 50: 392-415. doi: 10.1016/j.jfluidstructs.2014.06.029
    Castellani F, Vignaroli A. 2013. An application of the actuator disc model for wind turbine wakes calculations. Applied Energy, 101: 432-440. doi: 10.1016/j.apenergy.2012.04.039
    Chen C, Duffour P. 2018. Modelling damping sources in monopile-supported offshore wind turbines. Wind Energy, 21: 1121-1140. doi: 10.1002/we.2218
    Chen C, Duffour P, Frommec P. 2020. Modelling wind turbine tower-rotor interaction through an aerodynamic damping matrix. Journal of Sound and Vibration, 489: 115667.
    Chen C, Ma Y, Fan T. 2022. Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines. Renewable and Sustainable Energy Reviews, 157: 112036.
    Chen J, Duan F, Hu Z. 2017. Experimental investigation of aerodynamic damping effects on a semi-submersible floating offshore wind turbine//Twenty-seventh (2017) International Ocean and Polar Engineering Conference.
    Chen J, Hu Z. 2017. Experimental investigation of aerodynamic effect–induced dynamic characteristics of an OC4 semi-submersible floating wind turbine. Journal of Engineering for the Maritime Environment, 232: 19-36.
    Chen J, Pei A, Chen P, et al. 2021. Study on gyroscopic effect of floating offshore wind turbines. China Ocean Engineering, 35: 201-214. doi: 10.1007/s13344-021-0018-z
    Chen J G, Shen X, Zhu X C, et al. 2018a. Impact of blade flexibility on wind turbine loads and pitch settings//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, Oslo, Norway.
    Chen J G, Shen X, Zhu X C, et al. 2018b. Influence of wake asymmetry on wind turbine blade aerodynamic and aeroelastic performance in shear/yawed wind. Journal of Renewable and Sustainable Energy, 10: 053309. doi: 10.1063/1.5030671
    Chen Z J, Stol K A. 2014. An assessment of the effectiveness of individual pitch control on upscaled wind turbines. Journal of Physics Conference, 524: 012045. doi: 10.1088/1742-6596/524/1/012045
    Cheng P, Huang Y, Wan D. 2019. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine. Ocean Engineering, 173: 183-196. doi: 10.1016/j.oceaneng.2018.12.021
    Cheng Z, Madsen H A, Zhen G, et al. 2016. Numerical study on aerodynamic damping of floating vertical axis wind turbines,. Journal of Physics:Conference Series, 753: 102001. doi: 10.1088/1742-6596/753/10/102001
    Cho T, Kim C. 2014. Wind tunnel test for the NREL phase VI rotor with 2m diameter,. Renewable Energy, 65: 265-274. doi: 10.1016/j.renene.2013.10.009
    Dai J, Xu Z, Gai P. 2019. Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location,. Engineering Structures, 199: 109585. doi: 10.1016/j.engstruct.2019.109585
    Dai L P, Zhou Q, Zhang Y W, et al. 2017. Analysis of wind turbine blades aeroelastic performance under yaw conditions. Journal of Wind Engineering and Industrial Aerodynamics, 171: 273-287. doi: 10.1016/j.jweia.2017.09.011
    de Vaal J B, Hansen M O L, Moan T. 2014. Effect of wind turbine surge motion on rotor thrust and induced velocity. Wind Energy, 17: 105-121. doi: 10.1002/we.1562
    Dekemele K, van Torre P, Loccufier M. 2020. Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. Journal of Sound and Vibration, 473: 115243.
    Ding H, Chen L Q. 2020. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100: 3061-3107. doi: 10.1007/s11071-020-05724-1
    Ding Q W, Li C. 2017. Research on the influence of helical strakes on dynamic response of floating wind turbine platform. China Ocean Engineering, 31: 131-140. doi: 10.1007/s13344-017-0016-3
    Dinh V N, Basu B. 2015. Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers. Structural Control & Health Monitoring, 22: 152-176.
    Du Z, Selig M. 2000. The effect of rotation on the boundary layer of a wind turbine blade. Renewable Energy, 20: 167-181. doi: 10.1016/S0960-1481(99)00109-3
    Dumitrescu H, Cardoş V. 2001. Predictions of unsteady hawt aerodynamics by lifting line theory. Mathematical & Computer Modelling, 33: 469-481.
    Dumitrescu H C V. 1998. Wind turbine aerodynamic performance by lifting line method. International Journal of Rotating Machinery, 4: 141-149. doi: 10.1155/S1023621X98000128
    Dunne F, Schlipf D, Pao L Y. 2015. Comparison of two independent LIDAR-based pitch control designs//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1151.
    Ebrahimi A, Sekandari M. 2018. Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes. Energy, 145: 261-275. doi: 10.1016/j.energy.2017.12.115
    EWEA. 2015. The economics of wind energy. European Wind Energy Association.
    Farrugia R, Sant T, Micallef D. 2016. A study on the aerodynamics of a floating wind turbine rotor. Renewable Energy, 86: 770-784. doi: 10.1016/j.renene.2015.08.063
    Fontanella A, Bayati I, Taruff F. 2019a. Numerical and experimental wind tunnel analysis of aerodynamics on a semi-submersible floating wind turbine response//ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2019-95976.
    Fontanella A, Bayati I, Taruff F, et al. 2019b. A 6-DOF Hardware-In-the-Loop system for wind tunnel tests of floating offshore wind turbines//ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2019-95967.
    Fowler M J, Kimball R W, Thomas III D A, et al. 2013. Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines//International Conference on Offshore Mechanics and Arctic Engineering. V008T009A004.
    Fujiwara H, Tsubogo T, Nihei Y. 2011. Gyro effect of rotating blades on the floating wind turbine platform in waves//Twenty-first International Offshore and Polar Engineering Conference.
    Gangele A, Ahmed S. 2013. Modal analysis of S809 wind turbine blade considering different geometrical and material parameters. Journal of the Institution of Engineers (India):Series C, 94: 225-228. doi: 10.1007/s40032-013-0071-3
    Garrel A V. 2003. Development of a wind turbine aerodynamics simulation module. ECN-C-03-079.
    Gebhardt C G, Roccia B A. 2014. Non-linear aeroelasticity: An approach to compute the response of three-blade large-scale horizontal-axis wind turbines. Renewable Energy, 66: 495-514. doi: 10.1016/j.renene.2013.12.040
    Giahi M H, Jafarian D A. 2016. Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation. Renewable Energy, 97: 162-168. doi: 10.1016/j.renene.2016.05.059
    Glauert H. 1935. Airplane Propellers. Aerodynamic Theory, 169-360.
    Gonzalez L G, Figueres E, Garcera G, et al. 2010. Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Applied Energy, 87: 2304-2312. doi: 10.1016/j.apenergy.2009.11.030
    Goupee A J, Kimball R W, Dagher H J. 2017. Experimental observations of active blade pitch and generator control influence on floating wind turbine response. Renewable Energy, 104: 9-19. doi: 10.1016/j.renene.2016.11.062
    Goupee A J, Koo B J, Kimball R W, et al. 2014. Experimental comparison of three floating wind turbine concepts. Journal of Offshore Mechanics and Arctic Engineering, 136: 021903.
    Gueydon S. 2016. Aerodynamic damping on a semisubmersible floating foundation for wind turbines. Energy Procedia, 94: 367-378. doi: 10.1016/j.egypro.2016.09.196
    Gueydon S, Bayati I, de Ridder E. 2020. Discussion of solutions for basin model tests of FOWTs in combined waves and wind. Ocean Engineering, 209: 107288. doi: 10.1016/j.oceaneng.2020.107288
    Gupta S, Leishman J. 2005. Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines//The 43rd AIAA Aerospace Sciences Meeting and Exhibit. 594.
    GWEC. 2021. Global Wind Report 2021. Global Wind Energy Council.
    Ha M, Cheong C. 2016. Pitch motion mitigation of spar-type floating substructure for offshore wind turbine using multilayer tuned liquid damper. Ocean Engineering, 116: 157-164. doi: 10.1016/j.oceaneng.2016.02.036
    Haans W, Sant T, van Kuik G, et al. 2005. Measurement and modelling of tip vortex paths in the wake of a HAWT under yawed flow conditions. Journal of Solar Energy Engineering, 127: 456-463.
    Haans W, Sant T, van Kuik G, et al. 2008. HAWT near-wake aerodynamics, Part I: Axial flow conditions. Wind Energy, 11: 245-264. doi: 10.1002/we.262
    Hamdi H, Mrad C, Hamdi A, et al. 2014. Dynamic response of a horizontal axis wind turbine blade under aerodynamic, gravity and gyroscopic effects. Applied Acoustics, 86: 154-164. doi: 10.1016/j.apacoust.2014.04.017
    Hand M M, Balas M J. 1997. Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines//1998 ASME Wind Energy Symposium. 31.
    Hand M M, Simms D A, Fingersh L J, et al. 2001. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-29955.
    Hansen M O L, Madsen H A. 2011. Review paper on wind turbine aerodynamics. Journal of Fluids Engineering, 133: 114001. doi: 10.1115/1.4005031
    Hassena M B, Najar F, Aydi B, et al. 2013. A new dynamical model of flexible cracked wind turbines for health monitoring. Journal of Dynamic Systems. Measurement, and Control, 135: 031013. doi: 10.1115/1.4023210
    Hassena M B, Najar F, Choura S, et al. 2018. Coupled dynamics of a flexible horizontal axis wind turbine with damaged blades: experimental and numerical validations. Journal of Dynamic Systems, Measurement, and Control, 140: 021012. doi: 10.1115/1.4037529
    Hauptmann S, Bülk M, Schön L, et al. 2014. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines. Journal of Physics:Conference Series, 555: 012050. doi: 10.1088/1742-6596/555/1/012050
    Hegseth J M, Bachynski E E. 2019. A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines. Marine Structures, 64: 186-210. doi: 10.1016/j.marstruc.2018.10.015
    Henderson A R. 2000. Analysis tools for large floating offshore wind farms. London: University of London.
    Heronemus W E. 1972. Pollution-free energy from offshore winds//8th Annual Conference and Exposition, Marine Technology Society.
    Hess J L. 1973. Calculation of potential flow about arbitrary three-dimensional lifting bodies. Thchnical Report MDC J5679-01, McDonnel Douglas.
    Hodges D H. 2006. Nonlinear composite beam theory. American Institute of Aeronautics and Astronautics.
    Hu W F, Choi K K, Zhupanska O, et al. 2016. Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Structural and Multidisciplinary Optimization, 53: 375-394. doi: 10.1007/s00158-015-1338-5
    Hu Y, He E. 2017. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. Journal of Sound and Vibration, 410: 447-472. doi: 10.1016/j.jsv.2017.08.050
    Huang W. 2019. Investigation of interference effects between wind turbine and Spar-type floating platform under combined wind-wave excitation. Sustainability, 12: 246.
    Huang Z, Jin X, Chen M. 2016. Minimization of the beam response using inerter-based passive vibration control configurations. International Journal of Mechanical Sciences, 119: 80-87.
    Ikago K, Saito K, Inoue N. 2012. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Engineering & Structural Dynamics, 41: 453-474.
    Inoue N, Ikago K. 2012. Displacement Control Design of Buildings: Design Method of Long-Period Seismic Isolation Buildings Against Earthquake. Tokyo, Japan: Maruzen Publishing.
    Ivanell S, Sørensen J N, Mikkelsen R, et al. 2009. Analysis of numerically generated wake structures. Wind Energy, 12: 63-80. doi: 10.1002/we.285
    Jeon M, Lee S, Lee S. 2014. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method. Renewable Energy, 65: 207-212. doi: 10.1016/j.renene.2013.09.009
    Jeon M, Lee S, Kim T, et al. 2016. Wake influence on dynamic load characteristics of offshore floating wind turbines. AIAA Journal, 3535-3545.
    Jeong M S, Kim S W, Lee I, et al. 2013. The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade. Renewable Energy, 60: 256-268. doi: 10.1016/j.renene.2013.05.014
    Jiang Z, Karimirad M, Moan T. 2014. Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events. Wind Energy, 17: 1385-1409.
    Jiang Z, Wen B, Chen G, et al. 2021. Feasibility studies of a novel spar-type floating wind turbine for moderate water depths: Hydrodynamic perspective with model test. Ocean Engineering, 233: 1090707.
    Jiang Z, Wen B, Tian X, et al. 2020. Feasibility study of deploying a spar-type floating wind turbine in moderate water depths: A hydrodynamics perspective with model tests//ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2020-18451.
    Jonkman B, Jonkman J. 2016. FAST v8.16. 00a-bjj. National Renewable Energy Laboratory.
    Jonkman J. 2010. Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment.
    Jonkman J, Butterfield S, Musial W, et al. 2009. Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory: Golden, CO, USA.
    Jonkman J, Matha D. 2010. Quantitative comparison of the responses of three floating platforms. Australian Historical Studies, 32: 351-355.
    Jonkman J. 2008. Influence of control on the pitch damping of a floating wind turbine//46th AIAA Aerospace Sciences Meeting and Exhibit, 1306.
    Jonkman J, Buhl J. 2005. FAST user's guide. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230.
    Karikomi K, Ohta M, Nakamura A, et al. 2015. Wind tunnel testing on negative-damped responses of a 7MW floating offshore wind turbine, EWEA2015.
    Karimirad M M T. 2010. Effect of aerodynamic and hydrodynamic damping on dynamic response of spar type floating wind turbine, EWEC2010.
    Khosravi M, Sarkar P, Hu H. 2015. An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion//33rd Wind Energy Symposium, 1207: 1-18.
    Khosravi M, Sarkar P, Hu H. 2016. An experimental investigation on the aeromechanic performance and wake characteristics of a wind turbine model subjected to pitch motions//34th Wind Energy Symposium, 1997.
    Kim K H, Van T L, Lee D C, et al. 2013. Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE Transactions on Industrial Electronics, 60: 3207-3217. doi: 10.1109/TIE.2012.2200210
    Kim Y, Kwon O J. 2019. Effect of platform motion on aerodynamic performance and aeroelastic behavior of floating offshore wind turbine blades. Energies, 12: 2519. doi: 10.3390/en12132519
    Kocurek D. 1987. Lifting surface performance analysis for horizontal axis wind turbines. NASA STI/Recon Technical Report N, 87: 29946.
    Koo B, Goupee A J, Lambrakos K, et al. 2013. Model test correlation study for a floating wind turbine on a tension leg platform//International Conference on Offshore Mechanics and Arctic Engineering, 55423: V008T009A101.
    Koo B J, Goupee A J, Kimball R W, et al. 2014. Model tests for a floating wind turbine on three different floaters. Journal of Offshore Mechanics and Arctic Engineering, 136: 021904.
    Kragh K A, Hansen M H. 2014. Load alleviation of wind turbines by yaw misalignment. Wind Energy, 17: 971-982. doi: 10.1002/we.1612
    Kumar D, Chatterjee K. 2016. A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 55: 957-970. doi: 10.1016/j.rser.2015.11.013
    Kyle R, Lee Y C, Früh W G. 2020. Propeller and vortex ring state for floating offshore wind turbines during surge. Renewable Energy, 155: 645-657. doi: 10.1016/j.renene.2020.03.105
    Lackner M, Rotea M. 2011a. Passive structural control of offshore wind turbines. Wind Energy, 14: 373-388. doi: 10.1002/we.426
    Lackner M, Rotea M, Saheba R. 2010. Active structural control of offshore wind turbines//48th AIAA Aerospace Sciences Meeting, AIAA 2010-1000.
    Lackner M A. 2009. Controlling platform motions and reducing blade loads for floating wind turbines. Wind Engineering, 33: 541-553. doi: 10.1260/0309-524X.33.6.541
    Lackner M A, Rotea M A. 2011b. Structural control of floating wind turbines. Mechatronics, 21: 704-719. doi: 10.1016/j.mechatronics.2010.11.007
    Lago L I. 2012. Structural response and dynamics of fluid-structure-control interaction in wind turbine blades. [Master Theses]. Michigan Technological University
    Larsen T J, Hansen A M. 2007. How 2 HAWC2, the user's manual. Risø National Laboratory; Risø-R-1597.
    Larsen T J, Hanson T D. 2007. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. Journal of Physics: Conference Series, 75: 012073. doi: 10.1088/1742-6596/75/1/012073
    Lazar I F, Neild S A, Wagg D J. 2014. Using an inerter-based device for structural vibration suppression. Earthquake Engineering & Structural Dynamics, 43: 1129-1147.
    Lee H, Lee D J. 2019a. Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine. Renewable Energy, 143: 9-23. doi: 10.1016/j.renene.2019.04.134
    Lee H, Lee D. 2019b. Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method. Renewable Energy, 132: 1121-1133. doi: 10.1016/j.renene.2018.08.087
    Lee K H. 2005. Responses of floating wind turbines to wind and wave excitation. [PhD Theses]. MIT.
    Leishman J G. 2002. Challenges in modeling the unsteady aerodynamics of wind turbines. Wind Energy Symposium, 7476: 141-167.
    Leishman J G, Bhagwat M J, Bagai A. 2002. Free-vortex filament methods for the analysis of helicopter rotor wakes. Journal of Aircraft, 39: 759-775. doi: 10.2514/2.3022
    Lennie M, Marten D, Pechlivanoglou G, et al. 2016. Modern methods for investigating the stability of a pitching floating platform wind turbine. Journal of Physics: Conference Series, 753: 082012. doi: 10.1088/1742-6596/753/8/082012
    Li Q A, Kamada Y, Maeda T, et al. 2016. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism. Energy, 99: 20-31. doi: 10.1016/j.energy.2016.01.049
    Li Y, Castro A M, Sinokrot T, et al. 2015. Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewable Energy, 76: 338-361. doi: 10.1016/j.renene.2014.11.014
    Li Z, Wen B, Dong X, et al. 2020a. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows. Journal of Wind Engineering and Industrial Aerodynamics, 197: 104057. doi: 10.1016/j.jweia.2019.104057
    Li Z, Wen B, Peng Z, et al. 2020b. Dynamic modeling and analysis of wind turbine drivetrain considering the effects of non-torque loads. Applied Mathematical Modelling, 83: 146-168. doi: 10.1016/j.apm.2020.02.018
    Lin L, Vassalos D, Dai S. 2015. CFD simulation of aerodynamic performance of floating offshore wind turbine compared with BEM method//Twenty-fifth international ocean and polar engineering conference, OnePetro.
    Liu X, Lu C, Li G, et al. 2017. Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines. Applied Energy, 204: 1101-1114. doi: 10.1016/j.apenergy.2017.05.024
    Liu Z, Wang X, Kang S. 2014. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations. Energy, 73: 126-136. doi: 10.1016/j.energy.2014.05.107
    Lupton R. 2014. Frequency-domain modelling of floating wind turbines. [PhD Thesis]. University of Cambridge.
    Lupton R C, Langley R S. 2019. Complex but negligible: Non-linearity of the inertial coupling between the platform and blades of floating wind turbines. Renewable Energy, 134: 710-726. doi: 10.1016/j.renene.2018.11.036
    Ma R, Bi K, Hao H. 2020. Using inerter-based control device to mitigate heave and pitch motions of semi-submersible platform in the shallow sea. Engineering Structures, 207: 110248. doi: 10.1016/j.engstruct.2020.110248
    Macquart T, Pirrera A, Weaver P M. 2018. Finite beam elements for variable stiffness structures. AIAA Journal, 56: 3362-3368. doi: 10.2514/1.J056898
    Madsen F J, Nielsen T R L, Kim T, et al. 2020. Experimental analysis of the scaled DTU10MW TLP floating wind turbine with different control strategies. Renewable Energy, 155: 330-346. doi: 10.1016/j.renene.2020.03.145
    Make M, Vaz G. 2015. Analyzing scaling effects on offshore wind turbines using CFD. Renewable Energy, 83: 1326-1340. doi: 10.1016/j.renene.2015.05.048
    Make M K P. 2014. Predicting scale effects on floating offshore wind turbines: A numerical analysis of model- and full-scale wind turbines using a RANS CFD solver. TU Delft, Delft, The Netherlands.
    Manonmani, N, Kausalyadevi P. 2014. A review of maximum power extraction techniques for wind energy conversion systems. International Journal of Innovative Science, Engineering & Technology, 16: 597-604.
    Marten D, Lennie M, Pechlivanoglou G, et al. 2015. Implementation, optimization, and validation of a nonlinear lifting line-free vortex wake module within the wind turbine smulation code QBlade. Journal of Engineering for Gas Turbines and Power, 138: 072601.
    Marten D, Wendler J. 2013. QBlade guidelines v0.6. Berlin: Technical University of Berlin .
    Marten D, Wendler J, Pechlivanoglou G, et al. 2013. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. International Journal of Emerging Technology and Advanced Engineering, 3: 264-269.
    Martin H R, Kimball R W, Viselli A M, et al. 2014. Methodology for wind/wave basin testing of floating offshore wind turbines. Journal of Offshore Mechanics and Arctic Engineering, 136: 2.
    Martínez-Tossas L A, Churchfield M J, Leonardi S, et al. 2015. Large eddy simulations of the flow past wind turbines: actuator line and disk modeling. Wind Energy, 18: 1047-1060. doi: 10.1002/we.1747
    Matha D, Fischer S A, Hauptmann S, et al. 2013. Variations in ultimate load predictions for floating offshore wind turbine extreme pitching motions applying different aerodynamic methodologies//Twenty-third (2013) International Offshore and Polar Engineering, OnePetro.
    McFarland D M, Bergman L A, Vakakis A F. 2005. Experimental study of non-linear energy pumping occurring at a single fast frequency. International Journal of Non-Linear Mechanics, 40: 891-899. doi: 10.1016/j.ijnonlinmec.2004.11.001
    Mello P C, Malta E B, Silva R, et al. 2021. Influence of heave plates on the dynamics of a floating offshore wind turbine in waves. Journal of Marine Science and Technology, 26: 190-200. doi: 10.1007/s00773-020-00728-3
    Meng L, He Y, Zhao Y, et al. 2019. Experimental study on aerodynamic characteristics of the model wind rotor system and on characterization of a wind generation system. China Ocean Engineering, 33: 137-147. doi: 10.1007/s13344-019-0014-8
    Micallef D, Rezaeiha A. 2021. Floating offshore wind turbine aerodynamics: trends and future challenges. Renewable and Sustainable Energy Reviews, 152: 111696.
    Mo W W, Li D Y, Wang X N, et al. 2015. Aeroelastic coupling analysis of the flexible blade of a wind turbine. Energy, 89: 1001-1009. doi: 10.1016/j.energy.2015.06.046
    Molenaar D P. 2003. Cost-Effective Design and Operation of Variable Speed Wind Turbines. IOS Press.
    Moriarty P J, Hansen A C. 2005. AeroDyn theory manual. Technical Report NREL/EL-500-36881, National Renewable Energy Laboratory: Golden, CO, USA.
    Mostafa N, Murai M, Nishimura R, et al. 2012. Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination. Journal of Naval Architecture and Marine Engineering, 9: 67-79. doi: 10.3329/jname.v9i1.10732
    Muller K, Sandner F, Bredmose H, et al. 2014. Improved tank test procedures for scaled floating offshore wind turbines. International Wind Engineering Conference (IWEC).
    Musial W, Butterfield S, Ram B. 2006. Energy from offshore wind, Technical Report NREL/CP-500-39450. National Renewable Energy Laboratory: Golden, CO, USA .
    Nakashima M, Kato H, Takaoka E. 1992. Development of real-time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 21: 79-92.
    Namik H, Stol K. 2010. Individual blade pitch control of floating offshore wind turbines. Wind Energy, 13: 74-85. doi: 10.1002/we.332
    Namik H, Stol K. 2011. Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms. Mechatronics, 21: 691-703. doi: 10.1016/j.mechatronics.2010.12.003
    Namik H, Stol K. 2014. Individual blade pitch control of a Spar-Buoy floating wind turbine. IEEE Transactions on Control Systems Technology, 22: 214-223. doi: 10.1109/TCST.2013.2251636
    Namik H, Stol K, Jonkman J. 2008. State-space control of tower motion for deepwater floating offshore wind turbines//46th AIAA Aerospace Sciences Meeting and Exhibit, 1307.
    Nankali A, Lee Y S, Kalmár-Nagy T. 2017. Targeted energy transfers for suppressing regenerative machine tool vibrations. Journal of Computational and Nonlinear Dynamics, 12: 011010. doi: 10.1115/1.4034397
    Network M R I. 2015. Report on physical modelling methods for floating wind turbines. MARINET report.
    Novaes Menezes E J, Araújo A M, Bouchonneau da Silva N S. 2018. A review on wind turbine control and its associated methods. Journal of Cleaner Production, 174: 945-953. doi: 10.1016/j.jclepro.2017.10.297
    Otter A, Murphy J, Desmond C. 2020. Emulating aerodynamic forces and moments for hybrid testing of floating wind turbine models. Journal of Physics:Conference Series, 1618: 032022. doi: 10.1088/1742-6596/1618/3/032022
    Otter A, Murphy J, Pakrashi V, et al. 2021. A review of modelling techniques for floating offshore wind turbines. Wind Energy, 25: 63181
    Øye S. 1991. Tjæreborg wind turbine: 4. Dynamic inflow measurement. AFM notat No. VK-204
    Pegalajar-Jurado A, Bredmose H, Borg M, et al. 2018. State-of-the-art model for the LIFES50+ OO-Star Wind Floater Semi 10MW floating wind turbine. Journal of Physics: Conference Series, 1104: 012024. doi: 10.1088/1742-6596/1104/1/012024
    Qi C K, Gao F, Zhao X C, et al. 2017a. Low-order model based divergence compensation for Hardware-In-The-Loop simulation of space discrete contact. J Intell Robot Syst, 86: 81-93. doi: 10.1007/s10846-016-0460-y
    Qi C K, Ren A Y, Gao F, et al. 2017b. Compensation of velocity divergence caused by dynamic response for Hardware-in-the-Loop docking simulator. IEEE-ASME T Mech, 22: 422-432. doi: 10.1109/TMECH.2016.2601219
    Rafiee R, Tahani M, Moradi M. 2016. Simulation of aeroelastic behavior in a composite wind turbine blade. Journal of Wind Engineering and Industrial Aerodynamics, 151: 60-69. doi: 10.1016/j.jweia.2016.01.010
    Rezaeiha A, Pereira R, Kotsonis M. 2017. Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine. Renewable Energy, 114: 904-916. doi: 10.1016/j.renene.2017.07.101
    Robertson A, Jonkman J, Masciola M, et al. 2014. Definition of the semisubmersible floating system for Phase II of OC4. Technical Report NREL/TP-5000-60601, National Renewable Energy Laboratory: Golden, CO, USA.
    Rockel S, Camp E, Schmidt J, et al. 2014. Experimental study on influence of pitch motion on the wake of a floating wind turbine model. Energies, 7: 1954-1985. doi: 10.3390/en7041954
    Rockel S, Peinke J, Hölling M, et al. 2016. Wake to wake interaction of floating wind turbine models in free pitch motion: an eddy viscosity and mixing length approach. Renewable Energy, 85: 666-676. doi: 10.1016/j.renene.2015.07.012
    Roddier D, Cermelli C, Aubault A, et al. 2010. WindFloat: A floating foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy, 2: 033104. doi: 10.1063/1.3435339
    Sabale A, Gopal K V N. 2019. Nonlinear aeroelastic response of wind turbines using Simo-Vu-Quoc rods. Appl Math Model, 65: 696-716. doi: 10.1016/j.apm.2018.09.003
    Salehyar S, Zhu Q. 2015. Aerodynamic dissipation effects on the rotating blades of floating wind turbines. Renewable Energy, 78: 119-127.
    Sant T. 2007. Improving BEM-based aerodynamic models in wind turbine design codes. Delft University of Technology, Netherlands.
    Sant T, Bonnici D, Farrugia R, et al. 2015. Measurements and modelling of the power performance of a model floating wind turbine under controlled conditions. Wind Energy, 18: 811-834. doi: 10.1002/we.1730
    Sarkar S, Fitzgerald B. 2019. Vibration control of spar-type floating offshore wind turbine towers using a tuned mass-damper-inerter. Structural Control and Health Monitoring, 27: 1-23.
    Sauder T, Chabaud V, Thys M, et al. 2016. Real-time hybrid model testing of a braceless semi-submersible wind turbine: Part I-The hybrid approach//International Conference on Offshore Mechanics and Arctic Engineering, V006T009A039.
    Sayed M, Klein L, Lutz T, et al. 2019a. The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine,. Renewable Energy, 140: 304-318. doi: 10.1016/j.renene.2019.03.046
    Sayed M, Lutz T, Krämer E, et al. 2019b. Aeroelastic analysis of 10 MW wind turbine using CFD-CSD explicit FSI-coupling approach. Journal of Fluids and Structures, 87: 354-377. doi: 10.1016/j.jfluidstructs.2019.03.023
    Schepers J, Boorsma K, Cho T, et al. 2012. Final report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico wind tunnel measurements.
    Schulz C, Klein L, Weihing P, et al. 2014. CFD studies on wind turbines in complex terrain under atmospheric inflow conditions. Journal of Physics: Conference Series, 524: 012134. doi: 10.1088/1742-6596/524/1/012134
    Schulze M, Dietz S, Burgermeister B, et al. 2014. Integration of nonlinear models of flexible body deformation in Multibody System Dynamics. Journal of Computational and Nonlinear Dynamics, 9: 011012. doi: 10.1115/1.4025279
    Sebastian T. 2012. The aerodynamics and near wake of an offshore floating horizontal axis wind turbine.[PhD Thesis]. USA: University of Massachusetts .
    Sezer-Uzol N, Long L. 2006. 3-D time-accurate CFD simulations of wind turbine rotor flow fields//44th AIAA Aerospace Sciences Meeting and Exhibit. 394.
    Sheibani M, Akbari A A. 2015. Finite element modeling of a wind turbine blade. Journal of Vibroengineering, 17: 3774-3791.
    Shen X, Chen J, Hu P, et al. 2018a. Study of the unsteady aerodynamics of floating wind turbines. Energy, 145: 793-809. doi: 10.1016/j.energy.2017.12.100
    Shen X, Hu P, Chen J, et al. 2018b. The unsteady aerodynamics of floating wind turbine under platform pitch motion. Journal of Power and Energy, 232: 1019-1036. doi: 10.1177/0957650918766606
    Si Y, Karimi H R, Gao H. 2013. Modeling and parameter analysis of the OC3-Hywind floating wind turbine with a Tuned Mass Damper in nacelle. Journal of Applied Mathematics, 2013: 1-10.
    Si Y, Karimi H R, Gao H. 2014. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine. Engineering Structures, 69: 168-182. doi: 10.1016/j.engstruct.2014.03.011
    Simms D, Schreck S, Hand M. 2001. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. Technology Report NREL/TP-500-29494. National Renewable Energy Laboratory: Golden, CO, USA.
    Sinclair F M. 1994. Aerodynamic damping on offshore installations-a comparison of experimental measurements with theory. Journal of Wind Engineering and Industrial Aerodynamics, 52: 321-344. doi: 10.1016/0167-6105(94)90057-4
    Skaare B, Hanson T D, Yttervik R, et al. 2011. Dynamic response and control of the Hywind demo floating wind turbine//European Wind Energy Conference and Exhibition, Warsaw, Poland, 14-17.
    Skaare B, Nielsen F G, Hanson T D, et al. 2015. Analysis of measurements and simulations from the Hywind Demo floating wind turbine. Wind Energy, 18: 1105-1122. doi: 10.1002/we.1750
    Smith M. 2002. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47: 1657-1662.
    Snel H, Schepers G, Siccama N B. 2009. MEXICO Project: The database and results of data processing and interpretation//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1217.
    Snel H, Schepers J G, Montgomerie B. 2007. The MEXICO project (Model Experiments in Controlled Conditions): The database and first results of data processing and interpretation. Journal of Physics: Conference Series, 75: 012014. doi: 10.1088/1742-6596/75/1/012014
    Song D, Yang J, Cai Z, et al. 2017. Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines. Applied Energy, 190: 670-685. doi: 10.1016/j.apenergy.2016.12.132
    Sørensen J, Shen W. 2002. Numerical modelling of wind turbine wakes. Journal of Fluids Engineering, 124: 393. doi: 10.1115/1.1471361
    Sørensen J N, Shen W Z, Munduate X. 1998. Analysis of wake states by a full‐field actuator disc model. Wind Energy, 1: 73-88. doi: 10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L
    Sørensen P E. 1994. Frequency domain modelling of wind turbine structures. Risoe-R749.
    Stewart G M. 2012. Load reduction of floating wind turbines using Tuned Mass Dampers. University of Massachusetts Amherst.
    Stiesdal H. 2009. Hywind: The world’s first floating MW-scale wind turbine. Wind Directions, 31: 52-53.
    Subbulakshmi A, Sundaravadivelu R. 2016. Heave damping of spar platform for offshore wind turbine with heave plate. Ocean Engineering, 121: 24-36. doi: 10.1016/j.oceaneng.2016.05.009
    Suemoto H, Hara N, Konishi K. 2017. Model-based design of individual blade pitch and generator torque controllers for floating offshore wind turbines//2017 11th Asian Control Conference (ASCC), 2790-2795.
    Suemoto H, Hara N, Nihei Y, et al. 2019. Experimental testing on blade load mitigation of wind turbines with individual blade pitch control under wind shear//2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), 438-445.
    Sun C, Jahangiri V. 2018. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper. Mechanical Systems and Signal Processing, 105: 338-360. doi: 10.1016/j.ymssp.2017.12.011
    Suzuki A. 2000. Application of dynamic inflow theory to wind turbine. The University of Utah.
    Suzuki A, Hansen A. 1999. Generalized dynamic wake model for YawDyn// 37th Aerospace Sciences Meeting and Exhibit, January,1999.
    Taflanidis A A, Giaralis A, Patsialis D. 2019. Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. Journal of the Franklin Institute, 356: 7754-7784. doi: 10.1016/j.jfranklin.2019.02.022
    Tarfaoui M, Shah O R. 2013. Spar shape optimization of a multi-megawatt composite wind turbine blade: modal analysis // Recent Advances in Composite Materials for Wind Turbines Blades, 93-104.
    Thomsen K, Petersen J T, Nim E, et al. 2000. A method for determination of damping for edgewise blade vibrations. Wind Energy, 3: 233-246. doi: 10.1002/we.42
    Tian X, Xiao J, Liu H, et al. 2020. A novel dynamics analysis method for Spar-type floating offshore wind turbine. China Ocean Engineering, 34: 99-109. doi: 10.1007/s13344-020-0010-z
    Tong K C. 1998. Technical and economic aspects of a floating offshore wind farm. Journal of Wind Engineering & Industrial Aerodynamics, 74: 399-410.
    Tran T T, Kim D H. 2015. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 147: 104-119. doi: 10.1016/j.jweia.2015.09.016
    Tran T T, Kim D H. 2016a. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion. Renewable Energy, 90: 204-228. doi: 10.1016/j.renene.2015.12.013
    Tran T T, Kim D H. 2016b. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach. Renewable Energy, 92: 244-261. doi: 10.1016/j.renene.2016.02.021
    Tran T T, Kim D H, Song J S. 2014. Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion. Energies, 7: 5011-5026. doi: 10.3390/en7085011
    Troldborg N, Sørensen J N, Mikkelsen R. 2007. Actuator line simulation of wake of wind turbine operating in turbulent inflow. Journal of Physics:Conference Series, 75: 012063. doi: 10.1088/1742-6596/75/1/012063
    Urbán A M, Guanche R. 2019. Wind turbine aerodynamics scale-modeling for floating offshore wind platform testing. Journal of Wind Engineering and Industrial Aerodynamics, 186: 49-57. doi: 10.1016/j.jweia.2018.12.021
    Vakakis A F, Manevitch L I, Gendelman O, et al. 2003. Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Sound and Vibration, 264: 559-577. doi: 10.1016/S0022-460X(02)01207-5
    Valamanesh V, Myers A T. 2014. Aerodynamic damping and seismic response of horizontal axis wind turbine towers. Journal of Structural Engineering, 140: 04014090. doi: 10.1061/(ASCE)ST.1943-541X.0001018
    Viselli A M, Goupee A J, Dagher H J. 2015. Model test of a 1: 8-scale floating wind turbine offshore in the Gulf of Maine. Journal of Offshore Mechanics and Arctic Engineering. 137, 041901.
    Wang L, Liu X, Renevier N, et al. 2014. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory. Energy, 76: 487-501. doi: 10.1016/j.energy.2014.08.046
    Wen B, Dong X, Tian X, et al. 2018a. The power performance of an offshore floating wind turbine in platform pitching motion. Energy, 154: 508-521. doi: 10.1016/j.energy.2018.04.140
    Wen B, Jiang Z, Li Z, et al. 2022. On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study. Renewable Energy, 184: 306-319. doi: 10.1016/j.renene.2021.11.009
    Wen B, Li Z, Jiang Z, et al. 2020a. Experimental study on the tower loading characteristics of a floating wind turbine based on wave basin model tests. Journal of Wind Engineering and Industrial Aerodynamics, 207: 104390. doi: 10.1016/j.jweia.2020.104390
    Wen B, Li Z, Jiang Z, et al. 2020b. Blade loading performance of a floating wind turbine in wave basin model tests. Ocean Engineering, 199: 107061. doi: 10.1016/j.oceaneng.2020.107061
    Wen B, Li Z, Jiang Z, et al. 2021. Floating wind turbine power performance incorporating equivalent turbulence intensity induced by floater oscillations,. Wind Energy, 1-21. doi: 10.1002/we.2670
    Wen B, Tian X, Dong X, et al. 2020c. Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines. Renewable Energy, 148: 573-584. doi: 10.1016/j.renene.2019.10.147
    Wen B, Tian X, Dong X, et al. 2017. Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine. Energy, 141: 2054-2068. doi: 10.1016/j.energy.2017.11.090
    Wen B, Tian X, Dong X, et al. 2018b. On the power coefficient overshoot of an offshore floating wind turbine in surge oscillations. Wind Energy, 21: 1076-1091. doi: 10.1002/we.2215
    Wen B, Tian X, Dong X, et al. 2019a. A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions. Energy, 168: 1138-1156. doi: 10.1016/j.energy.2018.11.082
    Wen B, Tian X, Jiang Z, et al. 2020d. Monitoring blade loads for model floating wind turbine in wave basin tests using Fiber Bragg Grating sensors: a feasibility study. Marine Structures, 71: 102729. doi: 10.1016/j.marstruc.2020.102729
    Wen B, Tian X, Zhang Q, et al. 2019b. Wind shear effect induced by the platform pitch motion of a Spar-type floating wind turbine. Renewable Energy, 135: 1186-1199. doi: 10.1016/j.renene.2018.12.034
    Wen B, Zhang Q, Liu H, et al. 2019c. An experimental apparatus for investigating the unsteady aerodynamics of a floating wind turbine//38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2019-95915.
    Yang C, Cheng Z, Xiao L, et al. 2022. A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins. Renewable Energy, 187: 144-155. doi: 10.1016/j.renene.2022.01.068
    Yang X, Yan L, Shen Y, et al. 2020. Dynamic performance analysis and parameters perturbation study of inerter–spring–damper suspension for heavy vehicle. Journal of Low Frequency Noise, Vibration and Active Control, 40: 1335-1350.
    Yao H, Wang Y, Cao Y, et al. 2020. Multi-stable nonlinear energy sink for rotor system. International Journal of Non-Linear Mechanics. 118: 103273.
    Yu D O, Kwon O J. 2014. Time-accurate aeroelastic simulations of a wind turbine in yaw and shear using a coupled CFD-CSD method. Journal of Physics: Conference Series, 524: 012046. doi: 10.1088/1742-6596/524/1/012046
    Yu W, Lemmer F, Bredmose H, et al. 2017. The Triple Spar Campaign: Implementation and test of a blade pitch controller on a scaled floating wind turbine model. Energy Procedia, 137: 323-338. doi: 10.1016/j.egypro.2017.10.357
    Zhang C, Plestan F. Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode. Ocean Engineering, 228: 108897.
    Zhang H, Zhang Y, Yin C L. 2016. Hardware-in-the-Loop simulation of robust mode transition control for a series-parallel hybrid electric vehicle. IEEE T Veh Technol, 65: 1059-1069. doi: 10.1109/TVT.2015.2486558
    Zhang Z, Basu B, Nielsen S R K. 2019a. Real-time hybrid aeroelastic simulation of wind turbines with various types of full-scale tuned liquid dampers. Wind Energy, 22: 239-256. doi: 10.1002/we.2281
    Zhang Z, Fitzgerald B. 2020. Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades. Engineering Structures, 221: 110928. doi: 10.1016/j.engstruct.2020.110928
    Zhang Z, Lu Z, Ding H, et al. 2019b. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450: 199-213. doi: 10.1016/j.jsv.2019.03.014
    Zhao X, Maißer P, Wu J. 2007. A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element. Renewable Energy, 32: 532-546. doi: 10.1016/j.renene.2006.04.010
    Zhong H, Du P, Tang F, et al. 2015. Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method. Applied Energy, 144: 224-233. doi: 10.1016/j.apenergy.2015.01.082
    Zuo Y, Montesano J, Singh C V. 2018. Assessing progressive failure in long wind turbine blades under quasi-static and cyclic loads. Renewable Energy, 119: 754-766. doi: 10.1016/j.renene.2017.10.103
  • 加载中
图(42) / 表(2)
计量
  • 文章访问数:  3075
  • HTML全文浏览量:  783
  • PDF下载量:  932
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 录用日期:  2022-05-07
  • 网络出版日期:  2022-05-08
  • 刊出日期:  2022-12-29

目录

    /

    返回文章
    返回