留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非球形颗粒两相流的数值模拟研究进展

崔智文 王泽 蒋新宇 赵立豪

崔智文, 王泽, 蒋新宇, 赵立豪. 非球形颗粒两相流的数值模拟研究进展. 力学进展, 2022, 52(3): 623-672 doi: 10.6052/1000-0992-22-006
引用本文: 崔智文, 王泽, 蒋新宇, 赵立豪. 非球形颗粒两相流的数值模拟研究进展. 力学进展, 2022, 52(3): 623-672 doi: 10.6052/1000-0992-22-006
Cui Z W, Wang Z, Jiang X Y, Zhao L H. Numerical study of non-spherical particle-laden flows. Advances in Mechanics, 2022, 52(3): 623-672 doi: 10.6052/1000-0992-22-006
Citation: Cui Z W, Wang Z, Jiang X Y, Zhao L H. Numerical study of non-spherical particle-laden flows. Advances in Mechanics, 2022, 52(3): 623-672 doi: 10.6052/1000-0992-22-006

非球形颗粒两相流的数值模拟研究进展

doi: 10.6052/1000-0992-22-006
详细信息
    作者简介:

    赵立豪, 清华大学长聘副教授 (特别研究员) , 博士生导师, 国家级青年人才项目入选者. 主要从事湍流两相流相关问题的理论与应用研究, 在Journal of Fluid MechanicsPhysical Review LettersScience Advances等流体力学和综合性主流学术期刊上发表SCI论文60余篇, 担任包括国际多相流杂志International Journal of Multiphase Flow编委、Acta Mechanica编委、Acta Mechanica Sinica青年编委及客座编辑等. 现任中国力学学会环境力学专委会副主任、对外交流与合作委员会秘书长、中国空气动力学学会计算空气动力学专委会委员等

    通讯作者:

    zhaolihao@tsinghua.edu.cn

  • 中图分类号: O359

Numerical study of non-spherical particle-laden flows

More Information
  • 摘要: 非球形颗粒两相流是多相流的重要研究方向之一, 常见于自然界及工业生产过程中. 不同于球形颗粒, 由于非球形颗粒形状的各向异性, 除了颗粒平动行为, 还需要考虑颗粒的转动与取向行为, 颗粒的取向与转动行为会影响颗粒所受的力和力矩. 为了准确模拟非球形颗粒的运动行为, 目前非球形颗粒两相流的数值模拟研究主要基于欧拉−拉格朗日的求解框架展开, 常见的非球形颗粒两相流数值模拟方法主要包括点颗粒法与全分辨颗粒法. 本文将对这两类方法进行介绍, 同时会全面介绍非球形颗粒两相流研究的基础理论模型, 并系统总结非球形颗粒在简单基本流和复杂湍流中的研究进展, 包括对于非球形颗粒在湍流中的取向与转动行为机理, 以及颗粒对湍流减阻调制作用的研究. 最后, 本文提出了非球形颗粒两相流研究存在的问题及未来研究方向.

     

  • 图  1  描述颗粒运动的参考系: 惯性参考系$ \left\langle{{x},{y},{z}}\right\rangle $, 颗粒参考系$\left\langle{{{x}}',{{y}}',{z}'}\right\rangle$以及随动参考系$\left\langle{{{x}}'',{{y}}'',{z}''}\right\rangle$

    图  2  椭球颗粒模型示意图.(a)三轴不等颗粒, (b)杆状颗粒, (c)碟状颗粒

    图  3  全分辨颗粒两相流问题示意图

    图  4  网格方法示意图. (a)贴体网格类方法, (b)非贴体类网格方法

    图  5  浸没边界方法的欧拉网格和拉格朗日网格

    图  6  格子结构与速度的示意图. (a) D2Q9, (b) D3Q19

    图  7  细针以任意取向在流体中沉降示意图

    图  8  (a)颗粒在简单剪切流示意图; (b)~(g)椭球颗粒在剪切流中的转动时代表椭球颗粒方向的轨迹图. 其中(b)~(d)无惯性椭球颗粒, (e)~(g)以最长轴定义的颗粒转动惯性分布为${\mathrm{S}\mathrm{t}}_{\mathrm{r}}=669, 646, 100$; 形状参数(b)(e)$ \mathrm{\lambda }=5 $, (c)(f)$ \mathrm{\lambda }=1/5 $, (d)(g)$ {\mathrm{k}}_{\mathrm{a}}=1,{k}_{b}={10}^{-0.65},{k}_{c}=0.1 $

    图  9  颗粒在剪切流中转动的不同模态(Rosén et al. 2014)

    图  10  颗粒中心处滑移速度非零时的剪切流模型示意图

    图  11  无惯性椭球颗粒的(a)转动率随形状变化的关系(数值模拟数据来自Byron 等 (2015), 两处实验数据分别来自Marcus等 (2014)与Parsa 等(2012))与(b)在湍流中运动示意图

    图  12  有限尺寸杆状颗粒在湍流中分布示意图(a)与(b)自适应网格加密(Schneiders et al. 2019)

    图  13  椭球颗粒在槽道湍流中的取向分布. (a)(b)无惯性椭球颗粒(Challabotla et al. 2015b); (c)(d)St = 30椭球颗粒

    图  14  颗粒在近壁流向涡结构影响下的取向行为及区域划分(Cui Z et al. 2021). (a)(b)分别为细长杆状与扁平颗粒在瞬时流向涡附近的取向分布; (c)(d)条件系综平均后的颗粒取向分布, 其中(c)细长杆状颗粒与流向夹角余弦值$ \left|\mathrm{cos}{\theta }_{x}\right| $; (d) 扁平颗粒与展向夹角余弦值$ \left|\mathrm{cos}{\theta }_{z}\right| $; (e)依据颗粒取向行为特点进行的区域划分示意图

    图  16  无惯性杆状颗粒在壁面取向行为与流体拉格朗日拉伸方向的差异(Cui Z et al. 2020)

    图  17  竖直槽道示意图.(a)向下流动, (b)向上流动

    图  15  杆状颗粒在雷诺数$ {{Re}}_{\mathrm{\tau }}=1000 $槽道湍流分布图. 其中云图为流向速度, 白色等值线代表0.95倍槽流中心平均速度

    图  18  不同形状和颗粒惯性的非球形颗粒回转轴方向与涡量的夹角分布(Zhao et al. 2015). (a)槽道中部, (b)近壁区

    图  19  纤维与拉格朗日拉伸结构的关系. (a)周期流动(Parsa et al. 2011), (b)非周期流动(Parsa et al. 2011), (c)拉格朗日拉伸(黑色箭头)与压缩(红色箭头)与拉格朗日结构的关系(Cui Z & Zhao 2021)

    图  20  纤维减阻机制示意图(Paschkewitz et al. 2004)

    表  1  轴对称椭球颗粒相关的形状参数

    碟状椭球颗粒
    (${\bf{0} } < \boldsymbol{\lambda } < {\bf{1} }$)
    球形颗粒
    (${\lambda }={\bf{1} }$)
    杆状椭球颗粒
    (${\lambda } > {\bf{1} }$)
    α = β$-\dfrac{ {{B} }-\pi}{2\left(1-\lambda^{2}\right)^{{3}/{2} } }-\dfrac{\lambda}{1-\lambda^{2} }$$ \dfrac{2}{3} $$-\dfrac{{A} }{2{\left({{\lambda } }^{2}-1\right)}^{{3}/{2} } }+\dfrac{\lambda }{ {\lambda }^{2}-1}$
    γ$-\dfrac{{B}-{\pi } }{ {\left(1-{\boldsymbol{\lambda } }^{2}\right)}^{{3}/{2} } }+\frac{2}{\left(1-{\lambda }^{2}\right)\lambda }$$ \dfrac{2}{3} $$\dfrac{{A} }{ {\left({{\lambda } }^{2}-1\right)}^{{3}/{2} } }-\dfrac{2}{\left({\lambda }^{2}-1\right)\lambda }$
    χ$-\dfrac{ { {B} }-\pi}{\left(1-\lambda^{2}\right)^{ {1}/{2} } }$$ 2 $$\dfrac{{A} }{ {\left({{\lambda } }^{2}-1\right)}^{{1}/{2} } }$
    其中 ${A}=2{\ln}\left({\lambda }+\sqrt{ {\lambda }^{2}-1}\right),\;{ {{B} } }=2{\rm{arctan} }\dfrac{\lambda}{\sqrt{1-\lambda^{2}} }$
    下载: 导出CSV

    表  2  有限尺寸杆状颗粒在剪切流中不同$ {{Re}}_{\mathrm{s}} $对应的转动模态

    $ \mathrm{\lambda }=2 $(Huang et al. 2012)$\mathrm{\lambda }=4$(Rosén et al. 2014)
    ${{Re} }_{\mathrm{s} }$状态${Re}_{\mathrm{s} }$状态
    0Jeffery 轨迹0Jeffery 轨迹
    0 ~ 120翻转0 ~ 14翻转
    120 ~ 235翻转或自旋15 ~ 62翻转或自旋
    235 ~ 305翻转或倾斜自旋63 ~ 71翻转或倾斜自旋
    305 ~ 345翻转或倾斜摇摆72 ~ 74翻转或倾斜摇摆
    345 ~ 385翻转或摇摆75翻转或摇摆
    385 ~ 445翻转76 ~ 89翻转
    445 ~ 700翻转或静止朝向90 ~ 150翻转或静止朝向
    下载: 导出CSV

    表  3  有限尺寸碟状颗粒在剪切流中不同$ {{R}{e}}_{\mathrm{s}} $对应的转动模态

    $ \mathrm{\lambda }=1/2 $(Huang et al. 2012)
    ${{R}{e} }_{\mathrm{s} }$状态
    0Jeffery 轨迹
    0 ~ 112自旋
    112 ~ 168翻转/倾斜自旋
    168 ~ 520静止朝向
    下载: 导出CSV
  • 崔智文, 赵立豪. 2021. 近壁湍流中微小非球形颗粒取向行为研究综述. 空气动力学学报, 39: 99-108 (Cui Z W, Zhao L H. 2021. Reviews on alignment of non-spherical particles in wall-bounded turbulence. Acta Aerodynamica Sinica, 39: 99-108). doi: 10.7638/kqdlxxb-2021.0045
    何雅玲, 王勇, 李庆. 2009. 格子Boltzmann方法的理论及应用. 北京: 科学出版社

    He Y L, Wang Y, Li Q. 2009. Lattice Boltzmann Method Theory and Applications. Beijing: Science Press
    邱敬然, 赵立豪. 2021. 复杂流动中的智能颗粒游动策略研究进展. 力学学报, 53: 2630-2639 (Qiu J R, Zhao L H. 2021. Progresses in swimming strategy of smart particles in complex flows. Chinese Journal of Theoretical and Applied Mechanics, 53: 2630-2639). doi: 10.6052/0459-1879-21-402
    许春晓. 2015. 壁湍流相干结构和减阻控制机理. 力学进展, 45: 201504 (Xu C X. 2015. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 45: 201504). doi: 10.6052/1000-0992-15-006
    张兆顺, 崔桂香, 许春晓, 黄伟希. 2017. 湍流理论与模拟. 北京: 清华大学出版社

    Zhang Z S, Cui G X, Xu C X, Huang W X. 2017. Theory and Modeling of Turbulence. Beijing: Tsinghua University Press
    Abbasi Hoseini A, Lundell F, Andersson H I. 2015. Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. International Journal of Multiphase Flow, 76: 13-21. doi: 10.1016/j.ijmultiphaseflow.2015.05.015
    Aidun C K, Clausen J R. 2010. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42: 439-472. doi: 10.1146/annurev-fluid-121108-145519
    Anand P, Ray S S, Subramanian G. 2020. Orientation dynamics of sedimenting anisotropic particles in turbulence. Physical Review Letters, 125: 034501. doi: 10.1103/PhysRevLett.125.034501
    Andersson H I, Zhao L, Barri M. 2012. Torque-coupling and particle–turbulence interactions. Journal of Fluid Mechanics, 696: 319-329. doi: 10.1017/jfm.2012.44
    Andersson H I, Zhao L, Variano E A. 2015. On the anisotropic vorticity in turbulent channel flows. Journal of Fluids Engineering, 137: 084503-084503–3.
    Andersson H I, Jiang F. 2018. Forces and torques on a prolate spheroid: Low-Reynolds-number and attack angle effects. Acta Mechanica, 230: 431-447.
    Angot P, Bruneau C H, Fabrie P. 1999. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81: 497-520. doi: 10.1007/s002110050401
    Ardekani M N, Costa P, Breugem W P, Brandt L. 2016. Numerical study of the sedimentation of spheroidal particles. International Journal of Multiphase Flow, 87: 16-34. doi: 10.1016/j.ijmultiphaseflow.2016.08.005
    Ardekani M N, Costa P, Breugem W-P, Picano F, Brandt L. 2017b. Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. Journal of Fluid Mechanics, 816: 43-70. doi: 10.1017/jfm.2017.68
    Ardekani M N, Sardina G, Brandt L, Karp-Boss L, Bearon R N, Variano E A. 2017a. Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. Journal of Fluid Mechanics, 831: 655-674. doi: 10.1017/jfm.2017.670
    Bagchi P, Balachandar S. 2002. Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Physics of Fluids, 14: 2719-2737. doi: 10.1063/1.1487378
    Balachandar S, Eaton J K. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42: 111-133. doi: 10.1146/annurev.fluid.010908.165243
    Balkovsky E, Fouxon A. 1999. Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Physical Review E, 60: 4164-4174.
    Batchelor G K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 213: 349-366.
    Batchelor G K. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics, 41: 545-570. doi: 10.1017/S0022112070000745
    Bec J, Homann H, Ray S S. 2014. Gravity-driven enhancement of heavy particle clustering in turbulent flow. Physical Review Letters, 112: 184501. doi: 10.1103/PhysRevLett.112.184501
    Boivin M, Simonin O, Squires K D. 1998. Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal of Fluid Mechanics, 375: 235-263. doi: 10.1017/S0022112098002821
    Bounoua S, Bouchet G, Verhille G. 2018. Tumbling of inertial fibers in turbulence. Physical Review Letters, 121: 124502.
    Brenner H, Cox R G. 1963a. The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. Journal of Fluid Mechanics, 17: 561-595. doi: 10.1017/S002211206300152X
    Brenner H. 1961. The Oseen resistance of a particle of arbitrary shape. Journal of Fluid Mechanics, 11: 604-610. doi: 10.1017/S0022112061000755
    Brenner H. 1963b. The Stokes resistance of an arbitrary particle. Chemical Engineering Science, 18: 1-25. doi: 10.1016/0009-2509(63)80001-9
    Brenner H. 1974. Rheology of a dilute suspension of axisymmetric Brownian particles. International Journal of Multiphase Flow, 1: 195-341. doi: 10.1016/0301-9322(74)90018-4
    Breugem W-P. 2012. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. Journal of Computational Physics, 231: 4469-4498. doi: 10.1016/j.jcp.2012.02.026
    Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E. 2015. Shape-dependence of particle rotation in isotropic turbulence. Physics of Fluids, 27: 035101. doi: 10.1063/1.4913501
    Candelier F, Mehlig B. 2016. Settling of an asymmetric dumbbell in a quiescent fluid. Journal of Fluid Mechanics, 802: 174-185. doi: 10.1017/jfm.2016.350
    Challabotla N R, Nilsen C, Andersson H I. 2015a. On rotational dynamics of inertial disks in creeping shear flow. Physics Letters A, 379: 157-162. doi: 10.1016/j.physleta.2014.10.045
    Challabotla N R, Zhao L, Andersson H I. 2015b. Shape effects on dynamics of inertia-free spheroids in wall turbulence. Physics of Fluids, 27: 061703. doi: 10.1063/1.4922864
    Challabotla N R, Zhao L, Andersson H I. 2015c. Orientation and rotation of inertial disk particles in wall turbulence. Journal of Fluid Mechanics, 766.
    Challabotla N R, Zhao L, Andersson H I. 2016a. Orientation and rotation dynamics of triaxial ellipsoidal tracers in wall turbulence. Physics of Fluids, 28: 123304. doi: 10.1063/1.4971318
    Challabotla N R, Zhao L, Andersson H I. 2016b. Gravity effects on fiber dynamics in wall turbulence. Flow, Turbulence and Combustion, 97: 1095-1110. doi: 10.1007/s10494-016-9742-5
    Challabotla N R, Zhao L, Andersson H I. 2016c. On fiber behavior in turbulent vertical channel flow. Chemical Engineering Science, 153: 75-86. doi: 10.1016/j.ces.2016.07.002
    Chen J, Jin G, Zhang J. 2016. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows. Journal of Turbulence, 17: 308-326. doi: 10.1080/14685248.2015.1093638
    Chen S, Doolen G D. 1998. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30: 329-364. doi: 10.1146/annurev.fluid.30.1.329
    Cheung H, Ho M, Lau K, Cardona F, Hui D. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B:Engineering, 40: 655-663. doi: 10.1016/j.compositesb.2009.04.014
    Chevillard L, Meneveau C. 2013. Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. Journal of Fluid Mechanics, 737: 571-596. doi: 10.1017/jfm.2013.580
    Chrust M, Bouchet G, Dusek J. 2013. Numerical simulation of the dynamics of freely falling discs. Physics of Fluids, 25: 044102. doi: 10.1063/1.4799179
    Costa P, Boersma B J, Westerweel J, Breugem W-P. 2015. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 92: 053012. doi: 10.1103/PhysRevE.92.053012
    Crowe C T, Sharma M P, Stock D E. 1977. The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Journal of Fluids Engineering, 99: 325-332. doi: 10.1115/1.3448756
    Cui Y, Ravnik J, Hriberšek M, Steinmann P. 2018. A novel model for the lift force acting on a prolate spheroidal particle in an arbitrary non-uniform flow. Part I. Lift force due to the streamwise flow shear. International Journal of Multiphase Flow, 104: 103-112. doi: 10.1016/j.ijmultiphaseflow.2018.03.007
    Cui Y, Ravnik J, Hriberšek M, Steinmann P. 2020. Towards a unified shear-induced lift model for prolate spheroidal particles moving in arbitrary non-uniform flow. Computers & Fluids, 196: 104323.
    Cui Y, Ravnik J, Verhnjak O, Hriberšek M, Steinmann P. 2019. A novel model for the lift force acting on a prolate spheroidal particle in arbitrary non-uniform flow. Part II. Lift force taking into account the non-streamwise flow shear. International Journal of Multiphase Flow, 111: 232-240. doi: 10.1016/j.ijmultiphaseflow.2018.12.003
    Cui Z, Dubey A, Zhao L, Mehlig B. 2020. Alignment statistics of rods with the Lagrangian stretching direction in a channel flow. Journal of Fluid Mechanics, 901: A16. doi: 10.1017/jfm.2020.547
    Cui Z, Huang W-X, Xu C-X, Andersson H I, Zhao L. 2021. Alignment of slender fibers and thin disks induced by coherent structures of wall turbulence. International Journal of Multiphase Flow, 145: 103837. doi: 10.1016/j.ijmultiphaseflow.2021.103837
    Cui Z, Zhao L, Huang W-X, Xu C-X. 2019. Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Physics of Fluids, 31: 023301. doi: 10.1063/1.5080316
    Cui Z, Zhao L. 2021. A method for long-time integration of Lyapunov exponent and vectors along fluid particle trajectories. Physics of Fluids, 33: 125107. doi: 10.1063/5.0071064
    Dabade V, Marath N K, Subramanian G. 2015. Effects of inertia and viscoelasticity on sedimenting anisotropic particles. Journal of Fluid Mechanics, 778: 133-188. doi: 10.1017/jfm.2015.360
    Dabade V, Marath N K, Subramanian G. 2016. The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. Journal of Fluid Mechanics, 791: 631-703. doi: 10.1017/jfm.2016.14
    Daitche A. 2015. On the role of the history force for inertial particles in turbulence. Journal of Fluid Mechanics, 782: 567-593. doi: 10.1017/jfm.2015.551
    Den Toonder J M J, Hulsen M A, Kuiken G D C, Nieuwstadt F T M. 1997. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. Journal of Fluid Mechanics, 337: 193-231. doi: 10.1017/S0022112097004850
    Derksen J J. 2011. Simulations of granular bed erosion due to laminar shear flow near the critical Shields number. Physics of Fluids, 23: 113303. doi: 10.1063/1.3660258
    Do-Quang M, Amberg G, Brethouwer G, Johansson A V. 2014. Simulation of finite-size fibers in turbulent channel flows. Physical Review E, 89: 013006. doi: 10.1103/PhysRevE.89.013006
    Einarsson J, Angilella J R, Mehlig B. 2014. Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D: Nonlinear Phenomena, 278–279: 79–85.
    Einarsson J, Candelier F, Lundell F, Angilella J-R, Mehlig B. 2015. Rotation of a spheroid in a simple shear at small Reynolds number. Physics of Fluids, 27.
    Einarsson J, Mihiretie B M, Laas A, Ankardal S, Angilella J R, Hanstorp D, Mehlig B. 2016. Tumbling of asymmetric microrods in a microchannel flow. Physics of Fluids, 28: 013302. doi: 10.1063/1.4938239
    Ern P, Risso F, Fabre D, Magnaudet J. 2012. Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annual Review of Fluid Mechanics, 44: 97-121. doi: 10.1146/annurev-fluid-120710-101250
    Eshghinejadfard A, Abdelsamie A, Janiga G, Thevenin D. 2016. Direct-forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles. Particuology, 25: 93-103. doi: 10.1016/j.partic.2015.05.004
    Eshghinejadfard A, Hosseini S A, Thévenin D. 2017. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study. AIP Advances, 7: 095007. doi: 10.1063/1.5002528
    Eshghinejadfard A, Hosseini S A, Thévenin D. 2019. Effect of particle density in turbulent channel flows with resolved oblate spheroids. Computers & Fluids, 184: 29-39.
    Eshghinejadfard A, Zhao L, Thévenin D. 2018. Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. Journal of Fluid Mechanics, 849: 510-540. doi: 10.1017/jfm.2018.441
    Fadlun E A, Verzicco R, Orlandi P, Mohd-Yusof J. 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161: 35-60. doi: 10.1006/jcph.2000.6484
    Fan F-G, Ahmadi G. 1995. A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. Journal of Aerosol Science, 26: 813-840. doi: 10.1016/0021-8502(95)00021-4
    Feng Y, Kleinstreuer C. American Institute of Physics, 2013. 2013. Analysis of non-spherical particle transport in complex internal shear flows. Physics of Fluids, 25: 091904. doi: 10.1063/1.4821812
    Fries J, Einarsson J, Mehlig B. 2017. Angular dynamics of small crystals in viscous flow. Physical Review Fluids, 2: 014302. doi: 10.1103/PhysRevFluids.2.014302
    Frohlich K, Meinke M, Schroeder W. 2020. Correlations for inclined prolates based on highly resolved simulations. Journal of Fluid Mechanics, 901: A5. doi: 10.1017/jfm.2020.482
    Gillissen J J J, Boersma B J, Mortensen P H, Andersson H I. 2008. Fibre-induced drag reduction. Journal of Fluid Mechanics, 602: 209-218. doi: 10.1017/S0022112008000967
    Girimaji S S, Pope S B. 1990. Material-element deformation in isotropic turbulence. Journal of Fluid Mechanics, 220: 427-458. doi: 10.1017/S0022112090003330
    Glowinski R, Pan T W, Hesla T I, Joseph D D. 1999. A distributed Lagrange multiplier fictitious domain method for particulate flows. International Journal of Multiphase Flow, 25: 755-794. doi: 10.1016/S0301-9322(98)00048-2
    Goldstein D, Handler R, Sirovich L. 1993. Modeling a no-slip flow boundary with an external force-field. Journal of Computational Physics, 105: 354-366. doi: 10.1006/jcph.1993.1081
    Griffith B E, Patankar N A. 2020. Immersed methods for fluid-structure interaction. Annual Review of Fluid Mechanics, Vol 52, 52: 421-448. doi: 10.1146/annurev-fluid-010719-060228
    Guala M, Lüthi B, Liberzon A, Tsinober A, Kinzelbach W. 2005. On the evolution of material lines and vorticity in homogeneous turbulence. Journal of Fluid Mechanics, 533: 339-359.
    Guazzelli E, Morris J F. 2011. A physical introduction to suspension dynamics. Cambridge University Press.
    Gustavsson K, Einarsson J, Mehlig B. 2014. Tumbling of small axisymmetric particles in random and turbulent flows. Physical Review Letters, 112.
    Gustavsson K, Jucha J, Naso A, Lévêque E, Pumir A, Mehlig B. 2017. Statistical model for the orientation of non-spherical particles settling in turbulence. Physical Review Letters, 119.
    Gustavsson K, Sheikh M Z, Lopez D, Naso A, Pumir A, Mehlig B. 2019. Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New Journal of Physics, 21: 083008. doi: 10.1088/1367-2630/ab3062
    Gyr A, Bewersdorff H-W. 1995. Drag reduction of turbulent flows by additives. Springer Netherlands.
    Haeri S, Shrimpton J S. 2012. On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. International Journal of Multiphase Flow, 40: 38-55. doi: 10.1016/j.ijmultiphaseflow.2011.12.002
    Håkansson K M O, Fall A B, Lundell F, Yu S, Krywka C, Roth S V, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg L D. 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 5: 4018. doi: 10.1038/ncomms5018
    Harper E Y, Chang I-D. 1968. Maximum dissipation resulting from lift in a slow viscous shear flow. Journal of Fluid Mechanics, 33: 209-225. doi: 10.1017/S0022112068001254
    Heymsfield A J. 1977. Precipitation development in stratiform ice clouds: A microphysical and dynamical study. Journal of the Atmospheric Sciences, 34: 367-381. doi: 10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2
    Hinch E J, Leal L G. 1979. Rotation of small non-axisymmetric particles in a simple shear flow. Journal of Fluid Mechanics, 92: 591. doi: 10.1017/S002211207900077X
    Hölzer A, Sommerfeld M. 2008. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184: 361-365. doi: 10.1016/j.powtec.2007.08.021
    Huang H, Yang X, Krafczyk M, Lu X-Y. 2012. Rotation of spheroidal particles in Couette flows. Journal of Fluid Mechanics, 692: 369-394. doi: 10.1017/jfm.2011.519
    Huang W-X, Chang C B, Sung H J. 2011. An improved penalty immersed boundary method for fluid-flexible body interaction. Journal of Computational Physics, 230: 5061-5079. doi: 10.1016/j.jcp.2011.03.027
    Jain R, Tschisgale S, Froehlich J. 2019. A collision model for DNS with ellipsoidal particles in viscous fluid. International Journal of Multiphase Flow, 120: 103087. doi: 10.1016/j.ijmultiphaseflow.2019.103087
    Jeffery G B. 1922. The motion of ellipsoidal particles in a viscous fluid. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 102: 161-179.
    Jeffrey D J. 1982. Low-Reynolds-number flow between converging spheres. Mathematika, 29: 58-66. doi: 10.1112/S002557930001216X
    Jiang F, Zhao L, Andersson H I, Gustavsson K, Pumir A, Mehlig B. 2021. Inertial torque on a small spheroid in a stationary uniform flow. Physical Review Fluids, 6: 024302. doi: 10.1103/PhysRevFluids.6.024302
    Jie Y, Xu C, Dawson J R, Andersson H I, Zhao L. 2019. Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow. Journal of Turbulence: 1–15.
    Johnson P L, Hamilton S S, Burns R, Meneveau C. 2017. Analysis of geometrical and statistical features of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking algorithm. Physical Review Fluids, 2: 014605. doi: 10.1103/PhysRevFluids.2.014605
    Jucha J, Naso A, Lévêque E, Pumir A. 2018. Settling and collision between small ice crystals in turbulent flows. Physical Review Fluids, 3: 014604. doi: 10.1103/PhysRevFluids.3.014604
    Kempe T, Froehlich J. 2012. Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics, 709: 445-489. doi: 10.1017/jfm.2012.343
    Khayat R E, Cox R G. 1989. Inertia effects on the motion of long slender bodies. Journal of Fluid Mechanics, 209: 435-462. doi: 10.1017/S0022112089003174
    Kim W, Choi H. 2019. Immersed boundary methods for fluid-structure interaction: A review. International Journal of Heat and Fluid Flow, 75: 301-309. doi: 10.1016/j.ijheatfluidflow.2019.01.010
    Ladd A J C. 1994a. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 271: 285-309. doi: 10.1017/S0022112094001771
    Ladd A J C. 1994b. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 271: 311-339. doi: 10.1017/S0022112094001783
    Lai M C, Peskin C S. 2000. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics, 160: 705-719. doi: 10.1006/jcph.2000.6483
    Lawrence C J, Weinbaum S. 1986. The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. Journal of Fluid Mechanics, 171: 209. doi: 10.1017/S0022112086001428
    Lawrence C J, Weinbaum S. 1988. The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. Journal of Fluid Mechanics, 189: 463-489. doi: 10.1017/S0022112088001107
    Lees A W, Edwards S F. 1972. The computer study of transport processes under extreme conditions. Journal of Physics Part C Solid State Physics, 5: 1921-1929. doi: 10.1088/0022-3719/5/15/006
    Legendre D, Magnaudet J. 1998. The lift force on a spherical bubble in a viscous linear shear flow. Journal of Fluid Mechanics, 368: 81-126. doi: 10.1017/S0022112098001621
    Li R-Y, Cui Z-W, Huang W-X, Zhao L-H, Xu C-X. 2019. On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica, 239: 449-467.
    Lundell F, Carlsson A. 2010. Heavy ellipsoids in creeping shear flow: Transitions of the particle rotation rate and orbit shape. Physical Review E, 81: 016323. doi: 10.1103/PhysRevE.81.016323
    Lundell F, Söderberg L D, Alfredsson P H. 2011a. Fluid mechanics of papermaking. Annual Review of Fluid Mechanics, 43: 195-217. doi: 10.1146/annurev-fluid-122109-160700
    Lundell F. 2011b. The effect of particle inertia on triaxial ellipsoids in creeping shear: From drift toward chaos to a single periodic solution. Physics of Fluids, 23: 011704. doi: 10.1063/1.3548864
    Magnaudet J, Takagi S, Legendre D. 2003. Drag, deformation and lateral migration of a buoyant drop moving near a wall. Journal of Fluid Mechanics, 476: 115-157. doi: 10.1017/S0022112002002902
    Magnaudet J. 2003. Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. Journal of Fluid Mechanics, 485: 115-142. doi: 10.1017/S0022112003004464
    Majumdar S, Iaccarino G, Durbin P. 2001. RANS solvers with adaptive structured boundary non-conforming grids. Annual Research Briefs, NASA Ames Research Center/Stanford University Center for Turbulence Research, Stanford, CA. 353-366
    Mandø M, Roséndahl L. 2010. On the motion of non-spherical particles at high Reynolds number. Powder Technology, 202: 1-13. doi: 10.1016/j.powtec.2010.05.001
    Mao W, Alexeev A. 2014. Motion of spheroid particles in shear flow with inertia. Journal of Fluid Mechanics, 749: 145-166. doi: 10.1017/jfm.2014.224
    Marchioli C, Fantoni M, Soldati A. 2010. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Physics of fluids, 22: 033301. doi: 10.1063/1.3328874
    Marchioli C, Soldati A. 2013. Rotation statistics of fibers in wall shear turbulence. Acta Mechanica, 224: 2311-2329. doi: 10.1007/s00707-013-0933-z
    Marchioli C, Zhao L, Andersson H. 2016. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Physics of Fluids, 28: 013301. doi: 10.1063/1.4937757
    Marcus G G, Parsa S, Kramel S, Ni R, Voth G A. 2014. Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New Journal of Physics, 16: 102001. doi: 10.1088/1367-2630/16/10/102001
    Maxey M R, Patel B K, Chang E J, Wang L-P. 1997. Simulations of dispersed turbulent multiphase flow. Fluid Dynamics Research, 20: 143-156. doi: 10.1016/S0169-5983(96)00042-1
    Maxey M R, Riley J J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 26: 883-889. doi: 10.1063/1.864230
    Maxey M R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174: 441-465. doi: 10.1017/S0022112087000193
    Maxey M. 2017. Simulation methods for particulate flows and concentrated suspensions. Annual Review of Fluid Mechanics, 49: 171-193. doi: 10.1146/annurev-fluid-122414-034408
    McLaughlin J B. 1991. Inertial migration of a small sphere in linear shear flows. Journal of Fluid Mechanics, 224: 261-274. doi: 10.1017/S0022112091001751
    Meibohm J, Candelier F, Rosén T, Einarsson J, Lundell F, Mehlig B. 2016. Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number. Physical Review Fluids, 1: 084203. doi: 10.1103/PhysRevFluids.1.084203
    Michel A, Arcen B. 2021a. Long time statistics of prolate spheroids dynamics in a turbulent channel flow. International Journal of Multiphase Flow, 135: 103525. doi: 10.1016/j.ijmultiphaseflow.2020.103525
    Michel A, Arcen B. 2021b. Reynolds number effect on the concentration and preferential orientation of inertial ellipsoids. Physical Review Fluids, 6: 114305. doi: 10.1103/PhysRevFluids.6.114305
    Milici B, De Marchis M, Sardina G, Napoli E. 2014. Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. Journal of Fluid Mechanics, 739: 465-478. doi: 10.1017/jfm.2013.633
    Mittal R, Iaccarino G. 2005. Immersed boundary methods. Annual Review of Fluid Mechanics, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    Moosaie A, Manhart M. 2013. Direct Monte Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow. Acta Mechanica, 224: 2385-2413. doi: 10.1007/s00707-013-0919-x
    Moriche M, Uhlmann M, Dusek J. 2021. A single oblate spheroid settling in unbounded ambient fluid: A benchmark for simulations in steady and unsteady wake regimes. International Journal of Multiphase Flow, 136: 103519. doi: 10.1016/j.ijmultiphaseflow.2020.103519
    Mortensen P H, Andersson H I, Gillissen J J J, Boersma B J. 2008a. Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Physics of Fluids, 20: 093302. doi: 10.1063/1.2975209
    Mortensen P H, Andersson H I, Gillissen J J J, Boersma B J. 2008b. On the orientation of ellipsoidal particles in a turbulent shear flow. International Journal of Multiphase Flow, 34: 678-683. doi: 10.1016/j.ijmultiphaseflow.2007.12.007
    Ni R, Ouellette N T, Voth G A. 2014. Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. Journal of Fluid Mechanics, 743.
    Nilsen C, Andersson H I. 2013. Chaotic rotation of inertial spheroids in oscillating shear flow. Physics of Fluids, 25: 013303. doi: 10.1063/1.4789376
    Olivieri S, Picano F, Sardina G, Iudicone D, Brandt L. 2014. The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Physics of Fluids, 26: 041704. doi: 10.1063/1.4871480
    Ouchene R, Khalij M, Arcen B, Taniere A. 2016. A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technology, 303: 33-43. doi: 10.1016/j.powtec.2016.07.067
    Ouchene R, Khalij M, Tanière A, Arcen B. 2015. Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers. Computers & Fluids, 113: 53-64.
    Parsa S, Calzavarini E, Toschi F, Voth G A. 2012. Rotation rate of rods in turbulent fluid flow. Physical Review Letters, 109.
    Parsa S, Guasto J S, Kishore M, Ouellette N T, Gollub J P, Voth G A. 2011. Rotation and alignment of rods in two-dimensional chaotic flow. Physics of Fluids, 23: 043302. doi: 10.1063/1.3570526
    Paschkewitz J S, Dimitropoulos C D, Hou Y X, Somandepalli V S R, Mungal M G, Shaqfeh E S G, Moin P. 2005. An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer. Physics of Fluids, 17: 085101. doi: 10.1063/1.1993307
    Paschkewitz J S, Dubief Y, Dimitropoulos C D, Shaqfeh E S G, Moin P. 2004. Numerical simulation of turbulent drag reduction using rigid fibres. Journal of Fluid Mechanics, 518: 281-317. doi: 10.1017/S0022112004001144
    Paschkewitz J S, Dubief Y, Shaqfeh E S G. 2005. The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Physics of Fluids, 17: 063102. doi: 10.1063/1.1925447
    Pedley T J, Kessler J O. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annual Review of Fluid Mechanics, 24: 313-358. doi: 10.1146/annurev.fl.24.010192.001525
    Peng C, Teng Y, Hwang B, Guo Z, Wang L-P. 2016. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Computers & Mathematics with Applications, 72: 349-374.
    Peskin C S. 1972. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10: 252-271.
    Peskin C S. 1977. Numerical analysis of blood flow in heart. Journal of Computational Physics, 25: 220-252. doi: 10.1016/0021-9991(77)90100-0
    Peskin C S. 2002. The immersed boundary method. Acta Numerica, 11: 479-517. doi: 10.1017/S0962492902000077
    Prasath S G, Vasan V, Govindarajan R. 2019. Accurate solution method for the Maxey–Riley equation, and the effects of Basset history. Journal of Fluid Mechanics, 868: 428-460. doi: 10.1017/jfm.2019.194
    Pujara N, Arguedas-Leiva J-A, Lalescu C C, Bramas B, Wilczek M. 2021. Shape- and scale-dependent coupling between spheroids and velocity gradients in turbulence. Journal of Fluid Mechanics, 922: R6.
    Pujara N, Variano E A. 2017. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence. Journal of Fluid Mechanics, 821: 517-538. doi: 10.1017/jfm.2017.256
    Pujara N, Voth G A, Variano E A. 2019. Scale-dependent alignment, tumbling and stretching of slender rods in isotropic turbulence. Journal of Fluid Mechanics, 860: 465-486. doi: 10.1017/jfm.2018.866
    Pumir A, Wilkinson M. 2011. Orientation statistics of small particles in turbulence. New Journal of Physics, 13: 093030. doi: 10.1088/1367-2630/13/9/093030
    Qi D, Luo L. 2002. Transitions in rotations of a nonspherical particle in a three-dimensional moderate Reynolds number Couette flow. Physics of Fluids, 14: 4440-4443. doi: 10.1063/1.1517053
    Qi D, Luo L S. 2003. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. Journal of Fluid Mechanics, 477: 201-213.
    Qiu J, Marchioli C, Andersson H I, Zhao L. 2019. Settling tracer spheroids in vertical turbulent channel flows. International Journal of Multiphase Flow, 118: 173-182. doi: 10.1016/j.ijmultiphaseflow.2019.06.012
    Radin I, Zakin J L, Patterson G K. 1975. Drag reduction in solid-fluid systems. AIChE Journal, 21: 358-371. doi: 10.1002/aic.690210218
    Reddy G V, Singh R P. 1985. Drag reduction effectiveness and shear stability of polymer-polymer and polymer-fibre mixtures in recirculatory turbulent flow of water. Rheologica Acta, 24: 296-311. doi: 10.1007/BF01332609
    Rosén T, Do-Quang M, Aidun C K, Lundell F. 2015a. The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. Journal of Fluid Mechanics, 771: 115-158. doi: 10.1017/jfm.2015.127
    Rosén T, Einarsson J, Nordmark A, Aidun C K, Lundell F, Mehlig B. 2015b. Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Physical Review E, 92: 063022.
    Rosén T, Kotsubo Y, Aidun C K, Do-Quang M, Lundell F. 2017b. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia. Physical Review E, 96: 013109.
    Rosén T, Lundell F, Aidun C K. 2014. Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. Journal of Fluid Mechanics, 738: 563-590. doi: 10.1017/jfm.2013.599
    Rosén T, Nordmark A, Aidun C K, Do-Quang M, Lundell F. 2016. Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate Reynolds numbers. Physical Review Fluids, 1: 044201. doi: 10.1103/PhysRevFluids.1.044201
    Rosén T. 2017a. Chaotic rotation of a spheroidal particle in simple shear flow. Chaos:An Interdisciplinary Journal of Nonlinear Science, 27: 063112. doi: 10.1063/1.4985640
    Roy A, Gupta A, Ray S S. 2018. Inertial spheroids in homogeneous, isotropic turbulence. Physical Review E, 98: 021101. doi: 10.1103/PhysRevE.98.021101
    Saffman P G. 1965. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22: 385-400. doi: 10.1017/S0022112065000824
    Saffman P G. 1968. The lift on a small sphere in a slow shear flow Corrigendum. Journal of Fluid Mechanics, 31: 624-624. doi: 10.1017/S0022112068999990
    Saintillan D. 2018. Rheology of active fluids. Annual Review of Fluid Mechanics, 50: 563-592. doi: 10.1146/annurev-fluid-010816-060049
    Sanjeevi S K P, Kuipers J A M, Padding J T. 2018. Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. International Journal of Multiphase Flow, 106: 325-337. doi: 10.1016/j.ijmultiphaseflow.2018.05.011
    Sardina G, Schlatter P, Brandt L, Picano F, Casciola C M. 2012. Wall accumulation and spatial localization in particle-laden wall flows. Journal of Fluid Mechanics, 699: 50-78. doi: 10.1017/jfm.2012.65
    Schneiders L, Fröhlich K, Meinke M, Schröder W. 2019. The decay of isotropic turbulence carrying non-spherical finite-size particles. Journal of Fluid Mechanics, 875: 520-542. doi: 10.1017/jfm.2019.516
    Schneiders L, Meinke M, Schröder W. 2017. On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence. Fuel, 201: 2-14. doi: 10.1016/j.fuel.2016.11.096
    Shapiro M, Goldenberg M. 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. Journal of Aerosol Science, 24: 65-87. doi: 10.1016/0021-8502(93)90085-N
    Sheikh M Z, Gustavsson K, Lopez D, Lévêque E, Mehlig B, Pumir A, Naso A. 2020. Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. Journal of Fluid Mechanics, 886: A9.
    Shin M, Koch D L. 2005. Rotational and translational dispersion of fibres in isotropic turbulent flows. Journal of Fluid Mechanics, 540: 143-173. doi: 10.1017/S0022112005005690
    Siewert C, Kunnen R P J, Meinke M, Schröder W. 2014. Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmospheric Research, 142: 45-56. doi: 10.1016/j.atmosres.2013.08.011
    Siewert C, Kunnen R P J, Schröder W. 2014. Collision rates of small ellipsoids settling in turbulence. Journal of Fluid Mechanics, 758: 686-701. doi: 10.1017/jfm.2014.554
    Soutis C. 2005. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41: 143-151. doi: 10.1016/j.paerosci.2005.02.004
    Taira K, Colonius T. 2007. The immersed boundary method: A projection approach. Journal of Computational Physics, 225: 2118-2137. doi: 10.1016/j.jcp.2007.03.005
    Taylor G I. 1923. The motion of ellipsoidal particles in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 103: 58-61.
    Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annual Review of Fluid Mechanics, 46: 199-230. doi: 10.1146/annurev-fluid-010313-141344
    Udaykumar H S, Shyy W, Rao M M. 1996. ELAFINT: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. International Journal for Numerical Methods in Fluids, 22: 691-712. doi: 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
    Uhlmann M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209: 448-476. doi: 10.1016/j.jcp.2005.03.017
    Voth G A, Soldati A. 2017. Anisotropic particles in turbulence. Annual Review of Fluid Mechanics, 49: 249-76. doi: 10.1146/annurev-fluid-010816-060135
    Vreman A W. 2015. Turbulence attenuation in particle-laden flow in smooth and rough channels. Journal of Fluid Mechanics, 773: 103-136. doi: 10.1017/jfm.2015.208
    Wang L-P, Maxey M R. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256: 27-68. doi: 10.1017/S0022112093002708
    Wang Z, Xu C-X, Zhao L. 2021. Turbulence modulations and drag reduction by inertialess spheroids in turbulent channel flow. Physics of Fluids, 33: 123313. doi: 10.1063/5.0074857
    Wang Z, Zhao L. 2020. The particle stress in dilute suspensions of inertialess spheroids in turbulent channel flow. Physics of Fluids, 32: 013302. doi: 10.1063/1.5139028
    Xia Y, Xiong H, Yu Z, Zhu C. 2020. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 32: 103303. doi: 10.1063/5.0020995
    Xu H, Pumir A, Bodenschatz E. 2011. The pirouette effect in turbulent flows. Nature Physics, 7: 709-712. doi: 10.1038/nphys2010
    Yang K, Zhao L, Andersson H I. 2018. Particle segregation in turbulent Couette–Poiseuille flow with vanishing wall shear. International Journal of Multiphase Flow, 98: 45-55. doi: 10.1016/j.ijmultiphaseflow.2017.09.001
    Yarin A L, Gottlieb O, Roisman I V. 1997. Chaotic rotation of triaxial ellipsoids in simple shear flow. Journal of Fluid Mechanics, 340: 83-100. doi: 10.1017/S0022112097005260
    Yin C, Roséndahl L, Knudsen Kær S, Sørensen H. 2003. Modelling the motion of cylindrical particles in a nonuniform flow. Chemical Engineering Science, 58: 3489-3498. doi: 10.1016/S0009-2509(03)00214-8
    Yu Z, Phan-Thien N, Tanner R I. 2007a. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Physical Review E, 76: 026310.
    Yu Z, Shao X. 2007b. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 227: 292-314. doi: 10.1016/j.jcp.2007.07.027
    Yu Z, Shao X. 2010. Direct numerical simulation of particulate flows with a fictitious domain method. International Journal of Multiphase Flow, 36: 127-134. doi: 10.1016/j.ijmultiphaseflow.2009.10.001
    Yuan W, Andersson H I, Zhao L, Challabotla N R, Deng J. 2017. Dynamics of disk-like particles in turbulent vertical channel flow. International Journal of Multiphase Flow, 96: 86-100. doi: 10.1016/j.ijmultiphaseflow.2017.06.008
    Yuan W, Zhao L, Andersson H I, Deng J. 2018. Three-dimensional Voronoï analysis of preferential concentration of spheroidal particles in wall turbulence. Physics of Fluids, 30: 063304. doi: 10.1063/1.5031117
    Zastawny M, Mallouppas G, Zhao F, van Wachem B. 2012. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. International Journal of Multiphase Flow, 39: 227-239. doi: 10.1016/j.ijmultiphaseflow.2011.09.004
    Zhang H, Ahmadi G, Fan F-G, McLaughlin J B. 2001. Ellipsoidal particles transport and deposition in turbulent channel flows. International Journal of Multiphase Flow, 27: 971-1009. doi: 10.1016/S0301-9322(00)00064-1
    Zhao L, Challabotla N R, Andersson H I, Variano E A. 2015. Rotation of nonspherical particles in turbulent channel flow. Physical review letters, 115: 244501. doi: 10.1103/PhysRevLett.115.244501
    Zhao L, Challabotla N R, Andersson H I, Variano E A. 2019a. Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. Journal of Fluid Mechanics, 876: 19-54. doi: 10.1017/jfm.2019.521
    Zhao L, Gustavsson K, Ni R, Kramel S, Voth G A, Andersson H I, Mehlig B. 2019b. Passive directors in turbulence. Physical Review Fluids, 4: 054602. doi: 10.1103/PhysRevFluids.4.054602
    Zhong W Q, Yu A B, Liu X J, Tong Z B, Zhang H. 2016. DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technology, 302: 108-152. doi: 10.1016/j.powtec.2016.07.010
    Zhu C, Yu Z, Pan D, Shao X. 2020. Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. Journal of Fluid Mechanics, 891: A6.
    Zhu C, Yu Z, Shao X. 2018. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Physics of Fluids, 30: 115103. doi: 10.1063/1.5051592
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  2294
  • HTML全文浏览量:  537
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 录用日期:  2022-04-15
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-09-25

目录

    /

    返回文章
    返回