留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质点阵超结构设计及多功能力学性能调控方法

吴文旺 夏热

吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法. 力学进展, 2022, 52(3): 1-46 doi: 10.6052/1000-0992-22-002
引用本文: 吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法. 力学进展, 2022, 52(3): 1-46 doi: 10.6052/1000-0992-22-002
Wu W W, Xia R. Design of lightweight lattice metastructures and multi-functional mechanical properties manipulating approaches. Advances in Mechanics, 2022, 52(3): 1-46 doi: 10.6052/1000-0992-22-002
Citation: Wu W W, Xia R. Design of lightweight lattice metastructures and multi-functional mechanical properties manipulating approaches. Advances in Mechanics, 2022, 52(3): 1-46 doi: 10.6052/1000-0992-22-002

轻质点阵超结构设计及多功能力学性能调控方法

doi: 10.6052/1000-0992-22-002
详细信息
    作者简介:

    吴文旺, 男, 1984年生, 上海交通大学船舶海洋与建筑工程学院工程力学系副教授, 博士生导师. 2000—2004年于中国科学技术大学获理论与应用力学学士学位, 2005—2008年于清华大学获固体力学硕士学位, 2014年获瑞士洛桑联邦理工大学材料科学与工程专业博士学位. 主要研究领域: 轻质多功能复合材料与结构、增材制造工艺力学、先进实验力学. 已发表SCI论文90余篇

    夏热, 男, 1980年生, 武汉大学机械工程系副教授, 博士生导师. 1998—2005年于哈尔滨工业大学获机械电子工程学士学位、动力机械及工程专业硕士学位, 2010年获清华大学固体力学专业博士学位. 现任水力机械过渡过程教育部重点实验室副主任, 机械工程系副主任. 主要研究领域: 多孔结构设计与物性表征、智能材料性能分析和测试. 已发表SCI论文80余篇, 获山东省自然科学二等奖

    通讯作者:

    wuwenwang@sjtu.edu.cn

    xiare@whu.edu.cn

Design of lightweight lattice metastructures and multi-functional mechanical properties manipulating approaches

More Information
  • 摘要: 随着先进制造技术、多学科交叉和人工智能科技的飞速发展, 高端装备呈现出轻量化、集成化、复合化、功能化、智能化、柔性化和仿生化等发展趋势. 传统结构研究存在结构设计和制造相互分离, 复杂结构制造效率低、实际制造结构的性能指标和使用可靠性大幅低于设计理论预测、结构多功能一体化程度不足、经济成本过高等问题. 此外, 先进工业装备对材料、结构的使用性能、使用环境要求越来越高, 亟需开展结构的设计、制造、功能、应用一体化研究, 为解决我国先进制造“卡脖子”技术难题提供理论依据和技术支持. 轻量化多功能点阵超结构具有轻质高强、抗冲击吸能、减振降噪等性能优势, 在航空航天、交通运输、国防、生物医疗、能源、机械等工业领域具有巨大的应用潜力. 有鉴于此, 受多晶体微结构的多尺度力学设计启发, 以“点阵超结构力学设计”为主题, 开展点阵超结构的节点、杆件组元, 胞元类型、双相结构、梯度结构、多层级结构等典型点阵超结构的几何构筑和力学设计, 并阐明多晶体多尺度微观结构启发的点阵超结构力学设计基本原理、多功能力学性能调控方法, 以及点阵超结构在不同类型载荷下的结构变形和失效物理机理.

     

  • 图  1  点阵结构的节点和杆件组元创新设计. (a) 三维弹簧单螺旋状杆件, (b) 三维螺旋状杆件, (c) 非对称杆件, (d) 不同波长波浪状杆件, (e) 不同粗细波浪状杆件, (f) 变截面杆件, (g) 具有扭转效应的节点, (h) 节点参数化多层级设计, (i) 节点增强设计

    图  2  典型点阵结构胞元分类

    图  3  晶体微结构启发的点阵超结构多尺度新胞元、新构型力学设计. (a) 具有镜像特征的新型孪生三斜晶系点阵超结构力学设计(Bian et al. 2021), (b) 具有异质结构特征的跨尺度随机点阵超结构设计(Do Q et al. 2021), (c) FCC和BCC异质结构点阵结构胞元混杂构成的复合点阵超结构(Pham et al. 2019), (d) 具有随机取向的几种不同类型最小曲面点阵结构形成的复合结构(Oraid et al. 2021); (e) 具有共格晶界和几何镜像特征的点阵超结构设计(Liu C et al. 2021), (f) 基于结构孪生和杆件组元接触改变点阵结构变形和承载模式的相变点阵结构(Vangelatos et al. 2019, Vangelatos et al. 2020), (g) 二维FCC和BCC混杂的多晶点阵结构(Li W et al. 2021), (h) 基于结构中心对称性和准晶拓扑构型的轻质高强准晶点阵结构(Wang & Sigmund 2020, Somera et al. 2022)

    图  4  点阵结构的节点/对角线强化设计. (a) 和 (b) 将周期性点阵结构的对角线胞元更换为比强度更高的异质点阵结构胞元(Vangelatos et al. 2020, Xiao R et al. 2021), (c) 点阵结构的节点换成直径更大的实心球(Liu Y et al. 2020), (d) 节点和中空杆件之间采用薄板平滑过渡连接 (Dever et al. 2013), (e) 和 (g) 杆件组元采用变截面设计(Qi et al. 2019b, Tancogne-Dejean & Mohr 2018a), (f) 和 (h) 节点和杆件连接过渡区域的平滑增强(Portela et al. 2018, Latture et al. 2018, Dallago et al. 2020)

    图  5  多晶体多尺度微结构及典型缺陷特征. (a) 多晶体多尺度微结构特征(Roters et al. 2011), (b) 不同尺度的结构缺陷分类

    图  6  多晶体微结构失效经典机制. (a) 晶格相变变形, (b) 位错滑移系开动, (c) 孪晶界面的形成, (d) 剪切滑移带的形成, (e) 高应变率载荷下的绝热剪切带, (f) 位错−夹杂物相互作用Orowan机制, (g) 位错−晶界相互作用, (h) 孔洞生长演化和贯穿, (i) 沿晶界/穿晶裂纹扩展.

    图  7  点阵结构中的典型结构缺陷效应. (a) 夹杂物−失效滑移带相互作用Orowan机制, (b) 硬点阵结构夹杂物增强软基体点阵结构, (c) 孔洞生长演化和贯穿, (d) 弱缺陷对应的杆件缺失和孔洞效应, (e) 随机杆件缺失效应

    图  8  具有双向微结构特征的高性能双相合金材料多尺度微结构设计. (a) 双相合金异质结构界面模型, (b) 镍基单晶筏化微结构, (c) 纳米双相复合多层结构, (d) 纳米颗粒夹杂无定形基体形成的纳米双相刚, (e) 强韧一体化跨尺度异质结构, (f) 具有奥氏体/马氏体双相复合微结构特征的高强钢

    图  9  双相结构的分类

    图  10  孪晶微结构启发的力学结构设计 (孪晶宽度、孪晶角度、梯度孪晶角度、梯度孪晶宽度、多级次孪晶、多级次梯度孪晶) 、压缩吸能特性、孪晶力学超结构强度的尺寸效应和逆尺寸效应(Wu W et al. 2022). (a) 均匀尺寸设计, (b) 功能梯度设计, (c) 多层级设计, (d) 单轴拉伸力学实验样品, (e) 均匀尺寸设计、功能梯度设计压缩吸能曲线对比, (f) 尺寸效应(Hall-Petch effects), (g) 逆尺寸效应(inverse Hall-Petch effects)

    图  11  功能梯度点阵结构设计策略. (a) 节点连续的杆件截面积梯度(Chen W et al. 2018), (b) 节点不连续分层梯度(Yue W et al. 2021), (c) 二维点阵结构单向和双向梯度(Niknam & Akbarzadeh 2020), (d) 三维点阵结构单向和双向梯度(Rafiee et al. 2020), (e) 节点半径梯度设计(Alghamdi et al. 2020), (f) 基于制造工艺和材料梯度特征的性能梯度设计(Zhang J et al. 2020), (g) 孔隙率梯度结构设计(Dalia & Mohamed 2017), (h) 具有二阶非线性梯度效应的功能梯度结构设计(Weeger 2021), (i) 共形梯度拓扑优化点阵结构设计(Li D et al. 2019), (j) 具有手性结构特征的功能梯度结构设计(Wu W et al. 2019), (k) 杆件组元具有梯度结构特征的多层级点阵结构设计(Mueller & Shea 2018)

    图  12  多层级点阵结构设计分类. (a) 胞元杆件多层级(Chen & Jin 2018, Jnha et al. 2021), (b) 节点多层级(Yu Z et al. 2021), (c) 高刚度负泊松比多层级(Khakalo et al. 2018), (d) 最小曲面无节点胞元并发多尺度多层级(Zhang L et al. 2021), (e) 胞元节点−杆件并发异质结构多层级(Wu et al. 2017), (f) 梯度多层级结构(Taylor et al. 2012), (g) 双曲型多层级(Kollar et al. 2019), (h) 胞元填充多层级(Taylor 2012), (i) 套娃多层级(Pang Y et al. 2019), (j) 分形多层级(Oftadeh et al. 2014), (k) 微纳米多层级(Chang Q et al. 2021).

    图  13  具有结构相变特征的点阵结构 (a) 基于超弹性材料杆件失稳的点阵结构相变(Bertoldi et al. 2008); (b) 静水压环境下的多材料组元复合点阵结构相变(Chen & Jin 2018); (c) 伊斯兰图案启发的基于结构组元多稳态变形效应的多稳态点阵结构机械超材料(Khajehtourian et al. 2020); (d) 基于螺旋形节点实现往复折叠波浪形特征的负泊松比、负热膨胀效应相变机械超材料(Yue W et al. 2021); (e) 具有变刚度、负刚度特征的相变点阵结构(Restrepo et al. 2015); (f) 孔洞结构缺陷拓扑构型引导的结构相变(Yang D et al. 2015); (g) 基于节点接触状态的有无实现拉伸主导型和弯曲主导型点阵结构构型切换的相变点阵超结构(Wagner et al. 2019); (h) 基于变形过程中杆件组元接触引起的变形模式转换的相变孪晶点阵超结构(Vangelatos et al. 2020); (i) 通过压缩过程中的手性点阵结构胞元构型切换 (长方形和平行四边形, 三角形和平行四边形) 实现结构相变的相变手性超结构(Hector et al. 2019).

    图  14  点阵结构的缺陷不敏感性. (a) 具有马鞍状的二维网状点阵结构的孔洞结构缺陷不敏感力学设计(Liu J et al. 2021); (b) 具有螺旋形的三维微观结构的仿生点阵结构的缺陷不敏感设计, 并进一步通过磁控溅射导电纳米金属涂层实现电阻率的缺陷不敏感(Yan D et al. 2020); (c) 具有有聚合物涂层的复合陶瓷点阵结构强韧化、缺陷不敏感设计及制造(Sajadi et al. 2021); (d) 基于高熵合金纳米涂层涂覆高弹性聚合物纳米点阵结构实现强韧化和结构缺陷不敏感(Zhang X et al. 2018); (e) 基于高温热解碳技术制备纳米点阵结构的缺陷不敏感特性(Zhang X et al. 2019); (f) 基于脆性材料的点阵结构弹性模量的结构缺陷不敏感, 并通过空洞附近区域的局部增强设计来优化器缺陷不敏感特性和延展性(Jian L et al. 2019)

    图  15  具有随机分布特征的无序点阵结构. (a) 九参数控制的具有随机节点特征和各向异性的杆状点阵结构、最小曲面点阵结构设计(Oraid et al. 2021); (b) 基于结构张量和等效密度协同调控的具有随机杆件组元空间取向的各向异性点阵结构设计(Munford et al. 2020); (c) 通过随机点阵结构设计实现裂纹扩展扩展路径和断裂韧性提升(Xu Y et al. 2019); (d) 具有杆件组元随机空间取向特征的拉伸主导型、玩去主导型点阵结构设计及冲击吸能性能研究(Mueller et al. 2019); (e) 通过模仿骨骼多孔微结构, 设计具有随机结构特征的点阵结构, 实现比刚度 (强度) 、相对密度、各向异性率的独立设计, 满足钛合金骨移植替代物的实际应用需求(Mcgregor et al. 2021); (f) 通过在点阵结构节点处引入随机位移量生成随机点阵结构, 发现随着随机点阵结构的几何不规则度增加, 随机点阵结构的变形模式逐渐从拉伸主导型转变为弯曲主导型变形模式(Raghavendra et al. 2021)

    图  16  点阵超结构的强度、刚度设计

    图  17  点阵超结构的冲击吸能设计

    图  18  点阵超结构的疲劳设计

    图  19  点阵超结构的断裂性能设计

    图  20  晶体多尺度微结构特征启发的点阵结构设计、力学性能调控及物理机理

  • [1] 李增聪, 陈燕, 李红庆等. 2021. 面向集中力扩散的回转曲面加筋拓扑优化方法. 航空学报, 42: 378-390 (Li Z C, Chen Y, Li H Q, et al. 2021. Topology optimization method for stiffened surface of revolution for concentrated force diffusion. Acta Aeronautica Sinica, 42: 378-390).

    Li Z C, Chen Y, Li H Q, et al. 2021, Topology optimization method for stiffened surface of revolution for concentrated force diffusion. Acta Aeronautica Sinica, 42: 378-390).
    [2] 卢柯. 2015. 梯度纳米结构材料. 金属学报, 51: 10 (Lu K. 2015. Gradient nanostructured materials. Chinese Journal of Metals, 51: 10).

    (Lu K. 2015, Gradient Nanostructured Materials. Chinese Journal of Metals, 51: 10).
    [3] Alghamdi A, Maconachie T, Downing D, et al. 2020. Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. International Journal of Advanced Manufacturing Technology, 108: 1-15. doi: 10.1007/s00170-020-05074-7
    [4] Bacon D J, Kocks U F, Scattergood R O. 1973. The effect of dislocation self-interaction on the orowan stress. Philosophical Magazine, 28: 1241-1263. doi: 10.1080/14786437308227997
    [5] Benzerga A A, Leblond J B. 2010. Ductile fracture by void growth to coalescence. Advances in Applied Mechanics, 44: 169-305.
    [6] Beyerlein I J, Mara N A, Carpenter J S, et al. 2013. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. Journal of Materials Research, 28: 1799-1812. doi: 10.1557/jmr.2013.21
    [7] Bhuwal A S, Liu T, Ashcroft I, et al. 2021. Localization and coalescence of imperfect planar FCC truss lattice metamaterials under multiaxial loadings. Mechanics of Materials, 160: 103996. doi: 10.1016/j.mechmat.2021.103996
    [8] Bian Y, Yang F, Li P, et al. 2021. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals. Composite Structures, 271: 114103. doi: 10.1016/j.compstruct.2021.114103
    [9] Branko N, Klemenc J, Zupanic F, et al. 2022. Modelling and predicting of the LCF-behaviour of aluminium auxetic structures. International Journal of Fatigue, 156: 106673. doi: 10.1016/j.ijfatigue.2021.106673
    [10] Bertoldi K, Boyce M C, Deschanel S, et al. 2008. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56: 2642-2668. doi: 10.1016/j.jmps.2008.03.006
    [11] Chang Q, Feng J, Shu Y. 2021. Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B:Engineering, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
    [12] Chen P, Phuong T, Xuan H N, et al. 2020. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach. Composite Structures, 235: 111821. doi: 10.1016/j.compstruct.2019.111821
    [13] Chen W, Zheng X, Liu S. 2018. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing. Materials, 11: 2073. doi: 10.3390/ma11112073
    [14] Chen Y, Jin L. 2018. Geometric role in designing pneumatically actuated pattern transforming metamaterials. Extreme Mechanics Letters, 23: 55-66. doi: 10.1016/j.eml.2018.08.001
    [15] Chen Y, Li T, Jia Z, et al. 2018. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials & Design, 137: 226-234.
    [16] Chen Y, Ma Y, Yin Q, et al. 2021. Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 214: 108970. doi: 10.1016/j.compscitech.2021.108970
    [17] Chen Z, Xie Y M, Wu X, et al. 2019. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties. Materials & design, 183: 108109.
    [18] Chen Z, Kai L, Wen P, et al. 2020. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Advances in Engineering Software, 150: 102924. doi: 10.1016/j.advengsoft.2020.102924
    [19] Clough E C, Plaisted T A, Eckel Z C, et al. 2019. Elastomeric microlattice impact attenuators-science direct. Matter, 1: 1519-1531. doi: 10.1016/j.matt.2019.10.004
    [20] Conway K M, Kunka C, White B C, et al. 2021. Increasing fracture toughness via architected porosity. Materials & Design, 205: 109696.
    [21] Dalia M, Mohamed E. 2017. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A review. Journal of Manufacturing & Materials Processing, 1: 13.
    [22] Dallago M, Raghavendra S, Luchin V, et al. 2021. The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion. International Journal of Fatigue, 142: 105946. doi: 10.1016/j.ijfatigue.2020.105946
    [23] Dever J A, Nathal M V, Dicarlo J A. 2013. Research on high-temperature aerospace materials at NASA glenn research center. Journal of Aerospace Engineering, 26: 500-514. doi: 10.1061/(ASCE)AS.1943-5525.0000321
    [24] Duan S, Wen W, Fang D. 2020. Additively-manufactured anisotropic and isotropic 3D plate-lattice materials for enhanced mechanical performance: Simulations & experiments. Acta Materialia, 199: 397-412. doi: 10.1016/j.actamat.2020.08.063
    [25] Dunlop J, Fratzl P. 2013. Multilevel architectures in natural materials - ScienceDirect. Scripta Materialia, 68: 8-12. doi: 10.1016/j.scriptamat.2012.05.045
    [26] Elsayed M, Pasini D. 2010. Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials. Mechanics of Materials, 42: 709-725. doi: 10.1016/j.mechmat.2010.05.003
    [27] Evans A G, Hutchinson J W, Fleck N A, et al. 2001. The topological design of multifunctional cellular metals. Progress in Materials Science, 46: 309-327. doi: 10.1016/S0079-6425(00)00016-5
    [28] Gao Z, Li D, Dong G, et al. 2020. Crack path-engineered 2D octet-truss lattice with bio-inspired crack deflection. Additive Manufacturing, 36: 101539. doi: 10.1016/j.addma.2020.101539
    [29] Ge W, Ka-Cheung C, Lin Z. et al. 2017. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature, 545: 80-83. doi: 10.1038/nature21691
    [30] Gorguluarslan R M, Gungor O U, Yldz S, et al. 2021. Energy absorption behavior of stiffness optimized graded lattice structures fabricated by material extrusion. Meccanica, 56: 2825-2841. doi: 10.1007/s11012-021-01404-5
    [31] Groth J H, Anderson C, Magnini M, et al. 2021. Five simple tools for stochastic lattice creation. Additive Manufacturing, 49: 102488.
    [32] Gu X, Cao Y, Zhu J, et al. 2020. Shape optimization of SMA structures with respect to fatigue. Materials & Design, 189: 108456.
    [33] Guo Y, Ruan Q, Zhu S, et al. 2019. Temperature rise associated with adiabatic shear band: Causality clarified. Physical Review Letters, 122.
    [34] Ha N S, Pham T M, Hao H, et al. 2021. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. International Journal of Mechanical Sciences, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    [35] Hector K W, Restrepo D, Bonilla C T, et al. 2019. Mechanics of chiral honeycomb architectures with phase transformations. Journal of Applied Mechanics, 86: 111014. doi: 10.1115/1.4044024
    [36] Hu L, Zheng X, Wang G, et al. 2021. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements. International Journal of Mechanical Sciences, 210: 106731. doi: 10.1016/j.ijmecsci.2021.106731
    [37] Jia Z, Liu F, X Jiang, et al. 2020. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 127: 150901. doi: 10.1063/5.0004724
    [38] Jian L, Hong S, Yi Z, et al. 2019. Toward imperfection-insensitive soft network materials for applications in stretchable electronics. ACS Applied Materials & Interfaces, 11: 36100-36109.
    [39] Jnha B, Mbga C, Td B, et al. 2021. Design of isotropic porous plates for use in hierarchical plate-lattices. Materials & Design, 212: 110218.
    [40] Kollar A J, Fitzpatrick M, Houck A A. 2019. Hyperbolic lattices in circuit quantum electrodynamics. Nature, 571: 45-50. doi: 10.1038/s41586-019-1348-3
    [41] Kazem N, Bartlett M D, Majidi C. 2018. Extreme toughening of soft materials with liquid metal. Advanced Materials, 30: 1706594. doi: 10.1002/adma.201706594
    [42] Khajehtourian R, Kochmann D M. 2020. Phase transformations in substrate-free dissipative multistable metamaterials. Extreme Mechanics Letters, 37: 100700. doi: 10.1016/j.eml.2020.100700
    [43] Khakalo S, Balobanov V, Niiranen J. 2018. Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics. International Journal of Engineering Science, 127: 33-52. doi: 10.1016/j.ijengsci.2018.02.004
    [44] Khare E, Temple S, Tomov I, et al. 2018. Low fatigue dynamic auxetic lattices with 3d printable, multistable, and tuneable unit cells. Frontiers in Materials, 5: 2296-8016.
    [45] Khoda B, Ahsan A, Shovon A N, et al. 2021. 3D metal lattice structure manufacturing with continuous rods. Scientific Reports, 11.
    [46] Kolken H M A, Garvia A F, Plessis A D, et al. 2022. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials. Acta Biomaterialia, 138: 398-409. doi: 10.1016/j.actbio.2021.11.002
    [47] Kombaiah B, Murty K L. 2015. Coble, Orowan strengthening, and dislocation climb mechanisms in a Nb-modified zircaloy cladding. Metallurgical & Materials Transactions A, 46: 4646-4660.
    [48] Latture R M, Begley M R, Zok F W. 2019. Defect sensitivity of truss strength. Journal of the Mechanics and Physics of Solids, 124: 489-504. doi: 10.1016/j.jmps.2018.10.019
    [49] Latture R M, Rodriguez R X, Holmes L R, et al. 2018. Effects of nodal fillets and external boundaries on compressive response of an octet truss. Acta Materialia, 149: 78-87. doi: 10.1016/j.actamat.2017.12.060
    [50] Lee S, Fincher C D, Rowe R, et al. 2020. Making something out of nothing: Enhanced flaw tolerance and rupture resistance in elastomer-void "negative" composites. Extreme Mechanics Letters, 40: 100845. doi: 10.1016/j.eml.2020.100845
    [51] Lei H, Li C, Zhang X, et al. 2021. Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures. Additive Manufacturing, 37: 101674. doi: 10.1016/j.addma.2020.101674
    [52] Lei Y, Si W, Chun Y, et al. 2021. Fatigue properties of Ti-6Al-4V Gyroid graded lattice structures fabricated by laser powder bed fusion with lateral loading. Additive Manufacturing, 46: 102214. doi: 10.1016/j.addma.2021.102214
    [53] Li D, Liao W, Dai N, et al. 2019. Anisotropic design and optimization of conformal gradient lattice structures. Computer-Aided Design, 119: 102787.
    [54] Li K, Seiler P E, Deshpande V S, et al. 2020. Regulation of notch sensitivity of lattice materials by strut topology. International Journal of Mechanical Sciences, 192: 106137.
    [55] Li T, Fja B, Arab C, et al. 2021. Additive manufactured semi-plate lattice materials with high stiffness, strength and toughness. International Journal of Solids and Structures, 230-231: 111153. doi: 10.1016/j.ijsolstr.2021.111153
    [56] Li W, Fan H, Bian Y, et al. 2021. Plastic deformation and energy absorption of polycrystalline-like lattice structures. Social Science Electronic Publishing, 198: 109321.
    [57] Li X, Tan Y H, Wang P, et al. 2020. Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. Composites Part A Applied Scienceand Manufacturin, 135: 105934. doi: 10.1016/j.compositesa.2020.105934
    [58] Li X, Yu X, Chua J W, et al. 2021. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption. Small, 17: 2100336. doi: 10.1002/smll.202100336
    [59] Liu C, Lertthanasarn J, Pham M S. 2021. The origin of the boundary strengthening in polycrystal-inspired architected materials. Nature Communications, 12: 3674. doi: 10.1038/s41467-021-23938-8
    [60] Liu J, Yan D, Zhang Y. 2021. Mechanics of unusual soft network materials with rotatable structural nodes. Journal of the Mechanics and Physics of Solids, 146: 104210. doi: 10.1016/j.jmps.2020.104210
    [61] Liu J, Zhu X, Shen Z, et al. 2021. Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. Acta Mech, 37: 1050-1062. doi: 10.1007/s10409-021-01087-x
    [62] Liu K, Xiao C, Peng Z, et al. 2022. Dynamic mechanical performances of enhanced anti-tetra-chiral structure with rolled cross-section ligaments under impact lo ading. International Journal of Impact Engineering, 166: 104204. doi: 10.1016/j.ijimpeng.2022.104204
    [63] Liu W, Song H, Huang C. 2020. Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures. Additive Manufacturing, 35: 101257. doi: 10.1016/j.addma.2020.101257
    [64] Liu W, Song H, Wang Z, et al. 2019. Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials & Design, 181: 108065.
    [65] Liu X, Wada T, Suzki A, et al. 2021. Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion. Materials and Design, 199: 109416. doi: 10.1016/j.matdes.2020.109416
    [66] Liu Y. 2021. Mechanical properties of a new type of plate–lattice structures. International Journal of Mechanical Sciences, 192: 106141. doi: 10.1016/j.ijmecsci.2020.106141
    [67] Liu Y, Zhang J, Gu X, et al. 2020. Mechanical performance of a node reinforced body-centred cubic lattice structure manufactured via selective laser melting. Scripta Materialia, 189: 95-100. doi: 10.1016/j.scriptamat.2020.08.015
    [68] Liu Y, Wang L. 2015. Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler. Composite Structures, 128: 274-283. doi: 10.1016/j.compstruct.2015.03.064
    [69] Liu Y, Schaedler T A, Jacobsen A J, et al. 2014. Quasi-static energy absorption of hollow microlattice structures. Composites Part B, 67: 39-49. doi: 10.1016/j.compositesb.2014.06.024
    [70] Long B A, Cheng G A, Xc A, et al. 2021. Quasi-Static compressive responses and fatigue behaviour of Ti-6Al-4V graded lattice structures fabricated by laser powder bed fusion. Materials & Design, 210: 110110.
    [71] Lu Z, Yan W, Yan P, et al. 2020. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism. Applied Sciences, 10: 7525. doi: 10.3390/app10217525
    [72] Manno R, Gao W, Benedetti I. 2019. Engineering the crack path in lattice cellular materials through bio-inspired micro-structural alterations. Extreme Mechanics Letters, 26: 8-17. doi: 10.1016/j.eml.2018.11.002
    [73] Mcgregor M, Patel S, Mclachlin S, et al. 2021. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing. Additive Manufacturing, 39: 107633.
    [74] Mercer C, Lee J, Balint D S. 2015. An investigation of the mechanical fatigue behavior of low thermal expansion lattice structures. International Journal of Fatigue, 81: 238-248. doi: 10.1016/j.ijfatigue.2015.08.009
    [75] Minh-Son P, Chen L, Todd L, et al. 2019. Damage-tolerant architected materials inspired bycrystal microstructure. Nature, 565: 305-311. doi: 10.1038/s41586-018-0850-3
    [76] Mo C, Raney J R. 2019. Spatial programming of defect distributions to enhance material failure characteristics. Extreme Mechanics Letters, 34: 100598.
    [77] Moestopo W P, Mateos A J, Fuller R M, et al. 2020. Pushing and pulling on ropes: Hierarchical woven materials. Advanced Science, 7: 20011271.
    [78] Mousanezhad D, Haghpanah B, Ghosh R, et al. 2016. Elastic properties of chiral, anti-chiral and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 6: 81-96. doi: 10.1016/j.taml.2016.02.004
    [79] Mueller J, Matlack K H, Shea K, et al. 2019. Energy absorption properties of periodic and stochastic 3D lattice materials. Advanced Theory and Simulations, 2: 1900081. doi: 10.1002/adts.201900081
    [80] Mueller J, Shea K. 2018. Stepwise graded struts for maximizing energy absorption in lattices. Extreme Mechanics Letters, 25: 7-15. doi: 10.1016/j.eml.2018.10.006
    [81] Munford M, Hossain U, Gh Ouse S, et al. 2020. Prediction of anisotropic mechanical properties for lattice structures. Additive Manufacturing, 32: 101041. doi: 10.1016/j.addma.2020.101041
    [82] Niknam H, Akbarzadeh A H. 2020. Graded lattice structures: Simultaneous enhancement in stiffness and energy absorption. Materials & Design, 196: 109-129.
    [83] Oftadeh R, Haghpanah B, Vella D, et al. 2014. Optimal fractal-like hierarchical honeycombs. Physical Review Letters, 113: 104301. doi: 10.1103/PhysRevLett.113.104301
    [84] Oraid K T, Lee D W, Rashid K. 2021. Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Additive Manufacturing, 48: 102418. doi: 10.1016/j.addma.2021.102418
    [85] Pan C, Han Y, J Lu. 2020. Design and optimization of lattice structures: A review. Applied Sciences, 10: 6374. doi: 10.3390/app10186374
    [86] Pang Y, Chen S, Y Chu, et al. 2019. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 66: 104131. doi: 10.1016/j.nanoen.2019.104131
    [87] Peirce D, Asaro R J, Needleman A. 1982. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 30: 1087-1119. doi: 10.1016/0001-6160(82)90005-0
    [88] Portela C M, Greer J R, Kochmann D M. 2018. Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mechanics Letters, 22: 138-148. doi: 10.1016/j.eml.2018.06.004
    [89] Portela C M, Vidyasagar A, Krdel S, et al. 2020. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proceedings of the National Academy of Sciences of the United States of America, 117: 5686-5693. doi: 10.1073/pnas.1916817117
    [90] Polley C, Radlof W, Hauschulz C, et al. 2022. Morphological and mechanical characterisation of three-dimensional gyroid structures fabricated by electron beam melting for the use as a porous biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 125: 104882. doi: 10.1016/j.jmbbm.2021.104882
    [91] Qi D, Lu Q, He C W, et al. 2019a. Impact energy absorption of functionally graded chiral honeycomb structures. Extreme Mechanics Letters, 32: 100568. doi: 10.1016/j.eml.2019.100568
    [92] Qi D, Yu H, Liu M, et al. 2019b. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams. International Journal of Mechanical Sciences, 163: 105091. doi: 10.1016/j.ijmecsci.2019.105091
    [93] Quang T D, Nguyen C H P, Choi Y. 2021. Homogenization-based optimum design of additively manufactured Voronoi cellular structures-ScienceDirect. Additive Manufacturing, 45: 102057. doi: 10.1016/j.addma.2021.102057
    [94] Queyreau S, Monnet G, Devince B, et al. 2010. Orowan strengthening and forest hardeningsuperposition examined by dislocation dynamics simulations. Acta Materialia, 58: 5586-5595. doi: 10.1016/j.actamat.2010.06.028
    [95] Rafiee M, Farahani R D, The Rr Iault D. 2020. Multi-material 3D and 4D printing: A survey. Advanced Science, 7: 1902307. doi: 10.1002/advs.201902307
    [96] Raghavendra S, Molinari A, Dallago M, et al. 2021. Uniaxial static mechanical properties of regular, irregular and random additively manufactured cellular materials: Nominal vs. real geometry. Forces in Mechanics, 2: 100007. doi: 10.1016/j.finmec.2020.100007
    [97] Refai K, Brugger C, Montemurro M, et al. 2020. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (SLM). International Journal of Fatigue, 138: 105623. doi: 10.1016/j.ijfatigue.2020.105623
    [98] Restrepo D, Mankame N, Zavattieri P, et al. 2015. Phase transforming cellular materials. Extreme Mechanics Letters, 4: 52-60. doi: 10.1016/j.eml.2015.08.001
    [99] Roberts A D. 1949. Symposium on internal stresses in metals and alloys. Nature, 164: 420-5. doi: 10.1038/164420a0
    [100] Roters F, Eisenlohr P, Bieler T R, et al. 2010. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. John Wiley & Sons.
    [101] Sajadi S M, Vásárhelyi L, Mousavi R, et al. 2021. Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 7: 5028. doi: 10.1126/sciadv.abc5028
    [102] Saleh B, Jiang J, Fathi R, et al. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods. Applications and Future Challenges. Composites Part B Engineering, 201: 108376. doi: 10.1016/j.compositesb.2020.108376
    [103] Savio G, Rosso S, Curtarello A, et al. 2019. Implications of modeling approaches on the fatigue behavior of cellular solids. Additive Manufacturing, 25: 50-58. doi: 10.1016/j.addma.2018.10.047
    [104] Shyu T C, Damasceno P F, Dodd P M, et al. 2015. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 14: 785-789. doi: 10.1038/nmat4327
    [105] Somera A, Poncelet M, Auffray N, et al. 2022. Quasi-periodic lattices: Pattern matters too. Scripta Materialia, 209: 114378. doi: 10.1016/j.scriptamat.2021.114378
    [106] Suard M, Plancher E, Martin G, et al. 2020. Surface defects sensitivity during the unfolding of corrugated struts made by powder-bed additive manufacturing. Advanced Engineering Materials, 22: 2000315. doi: 10.1002/adem.202000315
    [107] Surjadi J U, Feng X, Zhou W, et al. 2021. Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices. International Journal of Extreme Manufacturing, 3: 025101. doi: 10.1088/2631-7990/abd8e8
    [108] Tamburrino F. 2018, The design process of additively manufactured mesoscale lattice structures: A review. Journal of Computing and Information Science in Engineering, 18: 040801.
    [109] Tancogne-Dejean T, Mohr D. 2018a. Elastically-isotropic elementary cubic lattices composed of tailored hollow beams. Extreme Mechanics Letters, 22: 13-18. doi: 10.1016/j.eml.2018.04.005
    [110] Tancogne-Dejean T, Mohr D. 2018b. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. International Journal of Mechanical Sciences, 141: 101-116. doi: 10.1016/j.ijmecsci.2018.03.027
    [111] Tankasala H C, Fleck N A. 2019. The crack growth resistance of an elastoplastic lattice. International Journal of Solids and Structures, 188-189: 233-243.
    [112] Tao W, Leu M C. 2016. Design of lattice structure for additive manufacturing. International Symposium on Flexible Automation (ISFA). IEEE, 10: 7790182.
    [113] Taylor C M, Smith C W, Miller W, et al. 2012. Functional grading in hierarchical honeycombs: Density specific elastic performance. Composite Structures, 94: 2296-2305. doi: 10.1016/j.compstruct.2012.01.021
    [114] Taylor C M. 2012. A hierarchical honeycomb formed from a super-and sub-structural honeycombs, both hexagonal cell. Exeter University, 7.
    [115] Tancogne-Dejean T, Diamantopoulou M, Gorji M B, et al. 2018. 3D Plate-lattices: An emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Advanced Materials, 30: 180334.
    [116] Torres A M, Trikanad A A, Aubin C A, et al. 2019. Bone-inspired microarchitectures achieve enhanced fatigue life. Proceedings of the National Academy of Sciences, 116: 201905814.
    [117] Torres A M, Trikanad A A, Aubin C A, et al. 2019. Bone-inspired microarchitectures achieve enhanced fatigue life. Proceedings of the National Academy of Sciences, 116: 24457-24462. doi: 10.1073/pnas.1905814116
    [118] Traxel K D, Groden C, Valladares J, et al. 2021, Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V. Materials Science and Engineering A, 809: 140925.
    [119] Vangelatos Z, Komvopoulos K, Grigoropoulos C P. 2020. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification. Journal of the Mechanics and Physics of Solids, 144: 104112. doi: 10.1016/j.jmps.2020.104112
    [120] Vangelatos Z, Komvopoulos K, Spanos J, et al. 2020. Anisotropic and curved lattice members enhance the structural integrity and mechanical performance of architected metamaterials. International Journal of Solids and Structures, 193–194: 287-301.
    [121] Vangelatos Z, Melissinaki V, Farsari M, et al. 2019. Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Mathematics and Mechanics of Solids, 24: 2636-2648. doi: 10.1177/1081286519848041
    [122] Vangelatos Z, Sheikh H M, Marcus P S, et. al. 2021. Strength through defects: A novel Bayesian approach for the optimization of architected materials. Science Advances, 7: 2218.
    [123] Wagner M A, Lumpe T S, Chen T, et al. 2019. Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. Extreme Mechanics Letters, 29: 100461. doi: 10.1016/j.eml.2019.100461
    [124] Wang B, Ding Q, Sun Y, et al. 2019. Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic Voronoi substructures. Results in Physics, 12: 1190-1196. doi: 10.1016/j.rinp.2018.12.068
    [125] Wang B, Hao P, Li G, et al. 2014. Optimum design of hierarchical stiffened shells for low imperfection sensitivity. Acta Mechanica Sinica, 30: 391-402. doi: 10.1007/s10409-014-0003-3
    [126] Wang P, Yang F, Ru D H, et al. 2021. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. Materials & Design, 210: 110116. doi: 10.1016/j.matdes.2021.110116
    [127] Wang Y, Sigmund O. 2020. Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extreme Mechanics Letters, 34: 100596. doi: 10.1016/j.eml.2019.100596
    [128] Weeger O. 2021. Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials. International Journal of Solids and Structures, 224: 111037. doi: 10.1016/j.ijsolstr.2021.03.024
    [129] White B C, Garland A, Alberdi R, et al. 2020. Interpenetrating lattices with enhanced mechanical functionality. Additive Manufacturing, 38: 101741.
    [130] Wu Q, Vaziri A, Asl M E, et al. 2019. Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps. Journal of the Mechanics and Physics of Solids, 125: 112-114. doi: 10.1016/j.jmps.2018.12.006
    [131] Wu W, Hu W, Qian G, et al. 2019. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & design, 180: 107950.
    [132] Wu W, Kim S, Ramazani A, et al. 2022. Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structure, 291: 115580. doi: 10.1016/j.compstruct.2022.115580
    [133] Wu W, Tao Y, Xia Y, et al. 2017. Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mechanics Letters, 16: 18-32. doi: 10.1016/j.eml.2017.08.004
    [134] Wu X, Yang M, Yuan F, et al. 2015. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences of the United States of America, 112: 14501. doi: 10.1073/pnas.1517193112
    [135] Xiao R, Li X, Jia H, et al. 2021. 3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles. Materials & Design, 206: 109767.
    [136] Xiao Z, Howon L, Weisgraber T D, et al. 2014. Ultrastiff mechanical metamaterials. Science, 344: 1373-1377. doi: 10.1126/science.1252291
    [137] Xue R, Cui X, Zhang P, et al. 2020. Mechanical design and energy absorption performances of novel dual scale hybrid plate-lattice mechanical metamaterials. Extreme Mechanics Letters, 100918.
    [138] Xu F, Zhang X, Zhang H. 2018. A review on functionally graded structures and materials for energy absorption. Engineering Structures, 171: 309-325. doi: 10.1016/j.engstruct.2018.05.094
    [139] Xu Y, Zhang H, Avija B, et al. 2019. Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials & Design, 162: 143-153.
    [140] Yan D, Chang J, Zhang H, et al. 2020. Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 11: 1180. doi: 10.1038/s41467-020-14996-5
    [141] Yang D, Jin L, Martinez R, et al. 2015. Phase-transforming and switchable metamaterials. Extreme Mechanics Letters, 6: 1-9.
    [142] Yang J, Gu D, Lin K, et al. 2021. Laser additive manufacturing of cellular structure with enhanced compressive performance inspired by Al–Si crystalline microstructure. CIRP Journal of Manufacturing Science and Technology, 32: 26-36. doi: 10.1016/j.cirpj.2020.11.003
    [143] Yavari S A, Ahmadi S M, Wauthle R, et al. 2015. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 43: 91-100. doi: 10.1016/j.jmbbm.2014.12.015
    [144] Yin S, Chen H, Yang R, et al. 2020. Tough nature-inspired helicoidal composites with printing-induced voids. Cell Reports Physical Science, 1: 100109. doi: 10.1016/j.xcrp.2020.100109
    [145] Yin S, Guo W, Wang H, et al. 2021. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites. Journal of the Mechanics and Physics of Solids, 149: 104341. doi: 10.1016/j.jmps.2021.104341
    [146] Yu K, Feng Z, Du H, et al. 2021. Photosynthesis-assisted remodeling of three-dimensional printed structures. Proceedings of the National Academy of Sciences, 118: 2016524118. doi: 10.1073/pnas.2016524118
    [147] Yu W, Qing Y, Xia L, et al. 2021. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. International Journal of Mechanical Sciences, 213: 106857.
    [148] Yu Z, Yu L, Ying L, et al. 2021. 3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation. Thin-Walled Structures, 164: 107795. doi: 10.1016/j.tws.2021.107795
    [149] Yue W, Fei L, Xin Z, et al. 2021. Cell-size graded sandwich enhances additive manufacturing fidelity and energy absorption. International Journal of Mechanical Sciences, 211: 106798. doi: 10.1016/j.ijmecsci.2021.106798
    [150] Zadpoor A A. 2020. On bone fatigue and its relevance for the design of architected materials. Proceedings of the National Academy of Sciences, 117: 6985. doi: 10.1073/pnas.1922857117
    [151] Zargarian A, Esfahanian M, Kadkhodapour J, et al. 2016. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Materials Science & Engineering C Materials for Biological Applications, 60: 339-347.
    [152] Zhang J, Lu G, You Z. 2020. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Composites Part B:Engineering, 201: 108340. doi: 10.1016/j.compositesb.2020.108340
    [153] Zhang J, Song B, Yang L, et al. 2020. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion. Composites Part B Engineering, 202: 108417. doi: 10.1016/j.compositesb.2020.108417
    [154] Zhang L, Hu Z, Wang Y, et al. 2021. Hierarchical sheet triply periodic minimal surface lattices: design, geometric and mechanical performance. Materials & Design, 209: 109931. doi: 10.1016/j.matdes.2021.109931
    [155] Zhang S, Le C, Gain A L, et al. 2019. Fatigue-based topology optimization with non-proportional loads. Computer Methods in Applied Mechanics and Engineering, 345: 805-825. doi: 10.1016/j.cma.2018.11.015
    [156] Zhang W, Chen J, Li X, et al. 2020. Metamaterials: Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability. Small, 16: 2070252. doi: 10.1002/smll.202070252
    [157] Zhang X, Jia Y, Bin L, et al. 2018. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off. Nano Letters, 18: 4247-4256. doi: 10.1021/acs.nanolett.8b01241
    [158] Zhang X, Vyatskikh A, Gao H, et al. 2019. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences, 116: 6665-6672. doi: 10.1073/pnas.1817309116
    [159] Zhang Y, Hsieh M T, Valdevit L. 2021. Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Composite Structures, 263: 113693. doi: 10.1016/j.compstruct.2021.113693
    [160] Zhao S, Li J, Hou W T, et al. 2016. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 59: 251-264. doi: 10.1016/j.jmbbm.2016.01.034
    [161] Zhao Z, Yuan C, Lei M, et al. 2019. Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Physical Review Applied, 11: 044074.
    [162] Zheng Q, Fan H. 2021. Equivalent continuum method of plane-stress dominated plate-lattice materials. Thin-Walled Structures, 164: 107865. doi: 10.1016/j.tws.2021.107865
    [163] Zheng X, Smith W, Jackson J, et al. 2016. Multiscale metallic metamaterials. Nature Materials, 15: 1100-1106. doi: 10.1038/nmat4694
    [164] Zian J, Li W. 2019. 3D printing of biomimetic composites with improved fracture toughness. Acta Materialia, 173: 61-73. doi: 10.1016/j.actamat.2019.04.052
    [165] Zok F W. 2019. Integrating latt ice materials science into the traditional processing-structure- properties paradigm. MRS Communications, 9: 1284-1291. doi: 10.1557/mrc.2019.152
    [166] Zok F W, Latture R M, Begley M R. 2016. Periodic truss structures. Journal of the Mechanics & Physics of Solids, 96: 184-203.
  • 加载中
图(20)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  15
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回