留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性钙钛矿太阳能电池机械稳定性研究进展

张美合 李志浩 李红刚 张超

张美合, 李志浩, 李红刚, 张超. 柔性钙钛矿太阳能电池机械稳定性研究进展. 力学进展, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057
引用本文: 张美合, 李志浩, 李红刚, 张超. 柔性钙钛矿太阳能电池机械稳定性研究进展. 力学进展, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057
Zhang M H, Li Z H, Li H G, Zhang C. A review on the mechanical stability of flexible perovskite solar cells. Advances in Mechanics, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057
Citation: Zhang M H, Li Z H, Li H G, Zhang C. A review on the mechanical stability of flexible perovskite solar cells. Advances in Mechanics, 2022, 52(2): 311-338 doi: 10.6052/1000-0992-21-057

柔性钙钛矿太阳能电池机械稳定性研究进展

doi: 10.6052/1000-0992-21-057
基金项目: 结构力学行为科学与技术创新引智基地(BP0719007)、国家自然科学基金(51706187)
详细信息
    作者简介:

    张超, 西北工业大学教授、博导, 民航学院副院长. 从事航空复合材料结构力学、新能源器件机械稳定性、多尺度多场耦合仿真方法等方面的研究工作, 主持国家自然科学基金、陕西省国际合作等项目20余项, 在《Compos Sci Technol》《Compos Part A》《J Power Sources》《Inter J Eng Sci》等领域内高影响力期刊发表论文80余篇, Google Scholar引用1700余次, H因子23, 参编中英文专著4部. 受邀担任国内外学术会议执行主席、分会主席20余次, 发表特邀报告20余次. 曾获2016年获世界计算力学大会旅行奖 (Travel Award) , 2017年入选国家级青年人才项目和陕西省青年百人, 2018年获爆炸力学优秀青年学者, 2021年获国家自然科学基金委和欧盟委员会“中欧人才项目”

    通讯作者:

    chaozhang@nwpu.edu.cn

  • 中图分类号: TM914.4

A review on the mechanical stability of flexible perovskite solar cells

More Information
  • 摘要: 钙钛矿太阳能电池凭借其低成本、高效能等优点近期备受科研领域的关注, 其光电转换效率已从初始的3.8%迅速提高到25.5%. 其中沉积于聚合物衬底的柔性钙钛矿太阳能电池相比刚性钙钛矿太阳能电池具有质量小、易弯曲等特点, 更适用于实际生产生活. 然而, 其光伏性能相比于刚性钙钛矿太阳能电池还存在一定的差距, 同时柔性电池在较大变形下的机械稳定性问题是影响其投入商业使用的主要瓶颈. 本文综述了近年来国内外科研团队在提升柔性钙钛矿太阳能电池机械稳定性方面的研究成果, 并从材料调控与结构创新两个方面进行了总结概述, 为柔性钙钛矿太阳能电池机械稳定性和综合效率的进一步提升提供了参考与建议. 此外, 针对柔性钙钛矿太阳能电池的创新发展与应用拓展, 简述了基于柔性钙钛矿太阳能电池的集能、储能、传感一体化柔性器件的研究现状与发展前景.

     

  • 图  1  (a) 钙钛矿材料理想晶体结构 (Kojima et al. 2009) , (b)沉积在TiO2表面的CH3NH3PbI3形貌 (Kojima et al. 2009) , (c)钙钛矿器件横截面SEM图及部分层间放大图 (Lee M et al. 2012b)

    图  2  柔性钙钛矿太阳能电池机械稳定性综述构想图

    图  3  (a) 用于钙钛矿太阳能制备材料的热膨胀系数 (Moloney et al. 2020) , (b) 热膨胀系数差别引起的晶格拉伸压缩应变 (Moloney et al. 2020) , (c) 改变I和Br的比例进而改变带隙宽度 (Moloney et al. 2020) , (d) 基于第一性原理密度泛函理论 (DFT) 方法计算拉伸应变, 无应变, 压缩应变下的能带结构 (Zhu et al. 2019)

    图  4  (a) A位阳离子替换示意图及引入Na+与EA+ J-V曲线对比 (Nishimura et al. 2019) , (b) 面外与面内晶格参数XRD衍射测量示意图 (Shai et al. 2018) , (c) MA(1Zn:100Pb)I3-xClx晶体面外与面内晶格参数XRD衍射图 (Shai et al. 2018) , (d) MA(1Zn:100Pb)I3-xClx晶体在垂直与水平方向产生压缩应变示意图 (Shai et al. 2018)

    图  5  (a) 添加PEG对钙钛矿晶体质量影响SEM图像及其对钙钛矿太阳能电池光伏性能影响 (Chang et al. 2015b) , (b) DS添加获得更大钙钛矿晶粒尺寸SEM图像及其对钙钛矿太阳能电池光伏性能影响 (Feng et al. 2018) , (c) 在 5000 次弯曲循环后, 基于MAPbI3-DS的柔性器件在不同弯曲曲率半径下的PCE变化 (Feng et al. 2018)

    图  6  (a) 仿“珍珠层”结构引入SBS与PU的钙钛矿材料示意图 (Hu et al. 2019) , (b) 柔性PSCs作为贴合人体皮肤的电源可为智能手表供电 (Hu et al. 2019) , (c) 引入SBS与PU材料弯曲, 拉伸载荷有限元仿真结果对比 (Hu et al. 2019) , (d) 分别在 0%, 10% 和 20% 拉伸应变量下测量的柔性PSCs J-V 曲线 (Hu et al. 2019)

    图  7  (a) PVA 在晶体边界处聚集及在钙钛矿薄膜中提供的保护机制 (Wang et al. 2021) , (b) 以PVA为添加剂的水分触发自修复机制 (Wang et al. 2021) , (c) 光电探测器响应程度在自修复过程中的变化, 干燥和潮湿环境的相对湿度分别为 5% 和 80% (Wang et al. 2021)

    图  8  (a) 分段互联式结构不同拉伸应变下有限元仿真结果 (Xu et al. 2013) , (b) 分段互联式结构电极示意图 (Xu et al. 2013) , (c) 平面结构, 波浪结构, 悬浮波浪结构应变分布有限元仿真比对 (Qi et al. 2015) , (d) 悬浮电极阵列制备流程示意图 (Qi et al. 2015)

    图  9  (a)基于Kirigami结构的拉伸、弯曲、褶皱示意图 (Wang et al. 2017) , (b) 基于Kirigami结构FPSCs结构示意图 ( Li H et al. 2020) , (c) 基于Kirigami结构FPSCs在不同应变量及拉伸循环次数下的光电性能变化 ( Li H et al. 2020)

    图  10  (a)“脊柱型”结构 (Qian et al. 2018) , (b) “Zigzag”型 (Liao et al. 2018) , (c) 新型双向蛇形折纸结构 (Li N et al. 2021)

    图  11  (a) 正式结构 (n-i-p) , (b) 反式结构 (p-i-n) , (c) 加热过程钙钛矿生长示意图, (d) 退火过程热应力促进裂纹产生示意图

    图  12  (a) 柔性钙钛矿凹弯曲与凸弯曲示意图 (Yang et al. 2019) , (b) 凹凸弯曲下光电性能测试曲线 (Yang et al. 2019) , (c) 为柔性钙钛矿太阳能电池引入保护层示意图 (Lee et al. 2019) , (d) 有无保护层对柔性PSCs性能影响 (Lee et al. 2019)

    图  13  (a) 仿人体脊椎结构钙钛矿材料示意图 (Meng et al. 2020 ) , (b)弯折前后钙钛矿材料表面SEM图像对比 (Meng et al. 2020 ) , (c) 基于 PEDOT:EVA 和 PEDOT:PSS 的柔性PSCs有限元仿真结果对比 (Meng et al. 2020 ) , (d) PEDOT:EVA释放应力示意图 (Meng et al. 2020 ) , (e) 引入PEDOT:EVA前后柔性PSCs归一化PCE随弯折循环次数变化曲线图 (Meng et al. 2020 )

    图  14  (a) CH3NH3PbI3太阳能电池与超级电容器集成示意图及实物图 (Xu X et al. 2015) , (b) PSCs与SC一体式集成 (Liu et al. 2017) , (c) 柔性固体电容器制备原理图 (Du et al. 2015)

    图  15  (a) 集能储能传感器件集成工作原理图 (Gurung et al. 2017) , (b) 利用DC-DC升压转换器实现PSCs与LIC集成 (Gurung et al. 2017) , (c) 太阳能电池与储能器件集成效率对比图 (Li C et al. 2019) , (d) 集能储能传感器件未来设想示意图 (Li C et al. 2019)

  • [1] 陈永亮, 唐亚文, 陈沛润, 等. 2020. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 69: 138401 (Chen Y, Tang Y, Chen P, et al. 2020. Progress in perovskite solar cells based on different buffer layer materials. Acta Phys Sin, 69: 138401). doi: 10.7498/aps.69.20200543

    Chen Y, Tang Y, Chen P, et al. 2020. Progress in perovskite solar cells based on different buffer layer materials. Acta Phys Sin, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [2] NREL. A chart of the highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, plotted from 1976 to the present. https://www.nrel.gov/pv/cell-efficiency.html.
    [3] Bai L, Lei Y, Huang H, et al. 2021. Flexible light-responsive self-healing polymeric composite film based on two-dimensional MoS2 - organic halide perovskite longitudinal heterostructure. Chemical Engineering Journal, 425: 131450. doi: 10.1016/j.cej.2021.131450
    [4] Ball J, Lee M, Hey A, et al. 2013. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ, 6: 1739. doi: 10.1039/c3ee40810h
    [5] Bi D, Yi C, Luo J, et al. 2016. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 1: 16142. doi: 10.1038/nenergy.2016.142
    [6] Cai Y, Cui J, Chen M, et al. 2021. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv Funct Mater, 31: 2005776. doi: 10.1002/adfm.202005776
    [7] Carlson D, Wronski C, Pankove J I. 1977. Properties of amorphous silicon and a-Si solar cells. RCA Review, 38: 211-225.
    [8] Chang C, Chu C, Huang Y, et al. 2015a. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl Mater Interfaces, 7: 4955-4961. doi: 10.1021/acsami.5b00052
    [9] Chang P, Liu X, Zeng L, et al. 2015b. Hole mobility in InSb-Based devices: Dependence on surface orientation, body thickness, and strain. Solid-State Electron, 113: 68-72. doi: 10.1016/j.sse.2015.05.017
    [10] Chen Y, Lu B, Chen Y, et al. 2016. Biocompatible and ultra-flexible inorganic strain sensors attached to skin for long-term vital signs monitoring. IEEE Electron Device Lett, 37: 496-499. doi: 10.1109/LED.2016.2536036
    [11] Chen Y, Li M, Chen P, 2018. Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells. Sci Rep. 8, 7646.
    [12] Chen Z, John W F, Wang C, et al. 2014. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Advanced energy materials, 4: 1400207. doi: 10.1002/aenm.201400207
    [13] Du P, Hu X, Yi C, et al. 2015. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater, 25: 2420-2427. doi: 10.1002/adfm.201500335
    [14] Feng J, Zhu X, Yang Z, et al. 2018. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 30: 1801418. doi: 10.1002/adma.201801418
    [15] Goyal A, Reddy A, Ajayan P. 2011. Flexible carbon nanotube–Cu2O hybrid electrodes for li-ion batteries. Small, 7: 1709-1713. doi: 10.1002/smll.201002051
    [16] Gurung A, Chen K, Khan R, et al. 2017. Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv Energy Mater, 7: b1602105. doi: 10.1002/aenm.201602105
    [17] Gong C, Zhang L, Meng X, et al. 2021. A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Sci China Chem, 64: 834-843. doi: 10.1007/s11426-020-9951-1
    [18] Grätzel, M. Photoelectrochemical cells. 2001. Nature, 414: 338–344.
    [19] Han Z, Cheng Z, Chen Y, et al. 2019. Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. Nanoscale, 11: 5942-5950. doi: 10.1039/C8NR08341J
    [20] Hashemi S, Ramakrishna S Aberle A. 2020. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ Sci, 13: 685-743. doi: 10.1039/C9EE03046H
    [21] Hu L, Wu H, La M, et al. 2010. Thin, flexible secondary Li-ion paper batteries. ACS nano, 4: 5843-5848. doi: 10.1021/nn1018158
    [22] Hu X, Huang Z, Li F, et al. 2019. Nacre-inspired crystallization and elastic “brick-and-mortar” strucrure for a wearable perovskite solar module. Energy Environ. Sci, 12: 979-987. doi: 10.1039/C8EE01799A
    [23] Hu X, Huang Z, Zhou X, et al. 2017. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv Mater, 29: 1703236. doi: 10.1002/adma.201703236
    [24] Hu X, Meng X, Yang X, et al. 2021. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci Bull, 66: 527-535. doi: 10.1016/j.scib.2020.10.023
    [25] Jiao Y, Yi S, Wang H, et al. 2021. Strain engineering of metal halide perovskites on coupling anisotropic behaviors. Adv Funct Mater, 31: 2006243. doi: 10.1002/adfm.202006243
    [26] Jung H S, Han G S, Park N G, et al. 2019. Flexible perovskite solar cells. Joule, 3: 1850-1880. doi: 10.1016/j.joule.2019.07.023
    [27] Khang D Jiang H, Huang Y, et al. 2006. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 311: 208-212. doi: 10.1126/science.1121401
    [28] Kim B, Kim D, Lee Y, et al. 2015. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ, 8: 916-921. doi: 10.1039/C4EE02441A
    [29] Kim D, Song J, Choi W, et al. 2008. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences, 105: 18675-18680. doi: 10.1073/pnas.0807476105
    [30] Kim D, Kim Y, Wu J, et al. 2009. Ultrathin silicon circuits with strain‐isolation layers and mesh layouts for high‐performance electronics on fabric, vinyl, leather, and paper. Advanced Materials, 21: 3703-3707. doi: 10.1002/adma.200900405
    [31] Klug M, Osherov A, Haghighirad A, et al. 2017. Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy Environ, 10: 236-246. doi: 10.1039/C6EE03201J
    [32] Kojima A, Teshima K, Shirai Y, et al. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Am Chem Soc, 131: 6050-6051. doi: 10.1021/ja809598r
    [33] Lamoureux A, Lee K, Shlian M, et al. 2015. Dynamic kirigami structures for integrated solar tracking. Nat Commun, 6: 8092. doi: 10.1038/ncomms9092
    [34] Lee G, Kim M, Choi Y, et al. 2019. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ, 12: 3182-3191. doi: 10.1039/C9EE01944H
    [35] Lee H, Yoo J, Park J, et al. 2012a. A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation. Adv Energy Mater, 2: 976-982. doi: 10.1002/aenm.201100725
    [36] Lee J, Wu J, Shi M, et al. 2011. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv, Mater,23: 986-991.
    [37] Lee M M, TeuscherJ, Miyasaka T, et al. 2012b. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338: 643-647. doi: 10.1126/science.1228604
    [38] Li C, Cong S, Tian Z, et al. 2019. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 60: 247-256. doi: 10.1016/j.nanoen.2019.03.061
    [39] Li H, Wang W, Yang Y, et al. 2020. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano, 14: 1560-1568. doi: 10.1021/acsnano.9b06562
    [40] Li N, Chen H, Yang S, et al. 2021. Bidirectional planar flexible snake-origami batteries. Adv, 8: e2101372.
    [41] Li R, Chen S, Li X, et al. 2020. Zn doped MAPbBr3 single crystal with advanced structural and optical stability achieved by strain compensation. Nanoscale, 12: 3692-3700. doi: 10.1039/C9NR09657D
    [42] Li Y, Qi X, Liu G, et al. 2019. High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 65: 19-25. doi: 10.1016/j.orgel.2018.10.028
    [43] Liao W, Zhao D, Yu Y, et al. 2016. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater, 28: 9333-9340.
    [44] Liao X, Shi C, Wang T, et al. 2018. High-energy-density foldable battery enabled by zigzag-like design. Adv Energy Mater, 9: 1802998.
    [45] Lin H, Weng W, Jing, et al. 2014. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Advanced Materials, 26: 1217-22. doi: 10.1002/adma.201304319
    [46] Liu Z, Zhong Y, Sun B, et al. 2017. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage. ACS Appl. Mater. Interfaces, 9: 22361-22368. doi: 10.1021/acsami.7b01471
    [47] Lu L, Zheng T, Wu, Q, et al. 2015. Recent advances in bulk heterojunction polymer solar cells. Chem Rev, 115: 12666-12731. doi: 10.1021/acs.chemrev.5b00098
    [48] Major J D. 2016. Grain boundaries in CdTe thin film solar cells: A review. Semicond, Sci Technol, 31: 093001. doi: 10.1088/0268-1242/31/9/093001
    [49] Masi S, Rizzo A, Aiello F, et al. 2015. Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 7: 18956-18963. doi: 10.1039/C5NR04715C
    [50] Meng X, Cai Z, Zhang Y, et al. 2020. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun, 11: 3016. doi: 10.1038/s41467-020-16831-3
    [51] Meng X, Xing Z, Hu X, et al. 2020. Stretchable perovskite solar cells with recoverable performance. Angew Chemint Ed, 59: 16602. doi: 10.1002/anie.202003813
    [52] Miura K . 2009. The science of miura-ori: A review. CRC Press
    [53] Moloney E G, Yeddu Y, Saidaminov M M. 2020. Strain engineering in halide perovskites. ACS Materials Letters, 2: 1495-1508. doi: 10.1021/acsmaterialslett.0c00308
    [54] Nainani A, Bennett B R, Brad Boos J, et al. 2012. Enhancing hole mobility in III-V semiconductors. Appl Phys 111, 103706.
    [55] Nishimura K, Hirotani D, Kamarudin M, et al. 2019. Relationship between lattice strain and efficiency for sn-perovskite solar cells. ACS Appl Mater Interfaces, 11: 31105-31110. doi: 10.1021/acsami.9b09564
    [56] Park M, Kim H, Jeong I, et al. 2015. Mechanically recoverable and highly efficientperovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv Energy Mater, 5: 1501406. doi: 10.1002/aenm.201501406
    [57] Park M, Kim, J, Son H, et. al. 2016. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 26: 208. doi: 10.1016/j.nanoen.2016.04.060
    [58] Pei L, Yu H, Zhang Q, et al. 2020. Concave and convex bending influenced mechanical stability in flexible perovskite solar cells. Phys Chem C, 124: 2340-2345. doi: 10.1021/acs.jpcc.9b10407
    [59] Polman A, Knight M, Garnett E C, et al. 2016. Photovoltaic materials: Present efficiencies and future challenges. Science, 352: 4424-4424. doi: 10.1126/science.aad4424
    [60] Qi D, Liu Z, Liu Y, et al. 2015. Suspended wavy graphene microribbons for highly stretchable micro supercapacitors. Adv Mater, 27: 5559-5566. doi: 10.1002/adma.201502549
    [61] Qian G, Zhu B, Liao X, et al. 2018. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv Mater, 30: 1704947. doi: 10.1002/adma.201704947
    [62] Ramanujam J, Singh U. 2017. Copper indium gallium selenide based solar cells: A review. Energy Environ Sci, 10: 1306-1319. doi: 10.1039/C7EE00826K
    [63] Rong Y, Liu L, Mei A, et al. 2015. Beyond efficiency: The challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater, 5: 1501066. doi: 10.1002/aenm.201501066
    [64] Salau A M. 1980. Fundamental absorption edge in PbI2: KI alloys. Solar Energy Materials, 2: 327-332. doi: 10.1016/0165-1633(80)90008-8
    [65] Schlenker D, Miyamoto T, Chen Z, et al. 2000. Inclusion of strain effect in miscibility gap calculations for III–V semiconductors. Jpn Appl Phys, 39: 5751. doi: 10.1143/JJAP.39.5751
    [66] Shah A, Schade H, Vanecek M, et al. 2004. Thin-film silicon solar cell technology. Prog Photovolt: Res Appl, 12: 113-142. doi: 10.1002/pip.533
    [67] Shai X, Zuo L, Sun P, et al. 2017. Efficient planar perovskite solar cells using halide Sr-substituted Pbperovskite. Nano Energy, 36: 213-222. doi: 10.1016/j.nanoen.2017.04.047
    [68] Shai X, Wang J, Sun P, et al. 2018. Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 48: 117-127. doi: 10.1016/j.nanoen.2018.03.047
    [69] Song J, Jiang H, Choi W, et al. 2008. An analytical study of two-dimensional buckling of thin films on compliant substrates. Journal of Applied Physics, 103: 014303. doi: 10.1063/1.2828050
    [70] Song J, Jiang H, Huang Y, et al. 2009. Mechanics of stretchable inorganic electronic materials. Journal of Vacuum Science & Technology A, 27: 1107-1125.
    [71] Song Z, Wang X, Lv C et al. 2015. Kirigami-based stretchable lithium-ion batteries. Sci Rep, 5: 10988. doi: 10.1038/srep10988
    [72] Sun Y, Sills R B, Hu X, et al. 2015. A Bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett, 15: 3899-3906. doi: 10.1021/acs.nanolett.5b00738
    [73] Sutherland B, Sargent E. 2016. Perovskite photonic sources. Nature Photon, 10: 295-302. doi: 10.1038/nphoton.2016.62
    [74] Tian B, Zheng X, Kempa T, et al. 2007. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 449: 885-889. doi: 10.1038/nature06181
    [75] Tournié E, Trampert A, Ploog K. 1994. Interplay betweenSurface Stabilization, growth mode and strain relaxation during molecular-beam epitaxy of highly mismatched III-V SemiconductorLayers. Europhys Lett, 25: 663-668. doi: 10.1209/0295-5075/25/9/005
    [76] Tsao J, Dodson B. 1988. Excess stress and the stability of strained heterostructures. Appl Phys Lett, 53: 848-850. doi: 10.1063/1.100091
    [77] Wang F, Jin P, Feng Y, et al. 2021. Flexible doppler ultrasound device for the monitoring of blood flow velocity. Science Advances, 7: 9283. doi: 10.1126/sciadv.abi9283
    [78] Wang H, Zhu C, Liu L et al. 2019. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 31: 1904408. doi: 10.1002/adma.201904408
    [79] Wang M, Sun H, Cao F, et al. 2021. Moisture-Triggered self-healing flexible perovskitephotodetectors with excellent mechanical stability. Adv Mater, 33: 2100625. doi: 10.1002/adma.202100625
    [80] Wang X, Gu Y, Xiong Z, et al. 2014. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 26: 1336-1342. doi: 10.1002/adma.201304248
    [81] Wang Z, Zhang L, Duan S et al. 2017. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Mater Chem C, 5: 8714-8722. doi: 10.1039/C7TC01727H
    [82] Wu H, Huang Y A, Xu F, et al. 2016. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv Mater, 28: 9881-9919. doi: 10.1002/adma.201602251
    [83] Xiao D, Li X, Wang D, et al. 2017. CdTe thin film solar cell with NiO as a back contact buffer layer. Sol Energ Mat Sol C, 169: 61-67. doi: 10.1016/j.solmat.2017.05.006
    [84] Xu C, Zhang Z, Zhang S, et al. 2021. Manipulation of perovskite crystallization kinetics via lewis base additives. Adv Funct Mater, 31: 2009425. doi: 10.1002/adfm.202009425
    [85] Xu J, Chen Y, Dai L. 2015. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat Commun, 6: 8103. doi: 10.1038/ncomms9103
    [86] Xu S, Zhang Y, Cho J, et al. 2013. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 4: 1543. doi: 10.1038/ncomms2553
    [87] Xu X, Li S, Zhang H, et al. 2015. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano, 9: 1782-1787. doi: 10.1021/nn506651m
    [88] Yang D, Yang R, Zhang J et al. 2015. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ, 8: 3208-3214. doi: 10.1039/C5EE02155C
    [89] Yang D, Yang R, Priya S, et al. 2019. Recent advances in flexible perovskite solar cells: Fabrication and applications. Angew Chem Int Ed, 58: 4466-4483. doi: 10.1002/anie.201809781
    [90] Yoon J, Kim U, Yoo Y, et al. 2021. Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv Sci, 8: 2004092. doi: 10.1002/advs.202004092
    [91] Yu J S, Jung G H, Jo J, et al. 2013. Transparent conductive film with printable embedded patterns for organic solar cells. Solar Energy Materials and Solar Cells, 109: 142-147. doi: 10.1016/j.solmat.2012.10.013
    [92] Zhang H, Lu Y, Han W et al. 2020. Solar energy conversion and utilization: towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal, 393: 124766. doi: 10.1016/j.cej.2020.124766
    [93] Zhang J, Zhang W, Cheng H, et al. 2020. Critical review of recent progress of flexible perovskite solar cells. Materials Today, 39: 66-88. doi: 10.1016/j.mattod.2020.05.002
    [94] Zhang Y, Bai W, Cheng X, et al. 2014. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 53: 14564-14568. doi: 10.1002/anie.201409366
    [95] Zhao J J, Deng Y, Wei H et al. 2017. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv, 3: 5616. doi: 10.1126/sciadv.aao5616
    [96] Zhao J J, Su X, Mi Z, et al. 2022. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination. Rare Met, 41: 96-105. doi: 10.1007/s12598-021-01800-6
    [97] Zhu C, Niu X, Fu Y et al. 2019. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 10: 815. doi: 10.1038/s41467-019-08507-4
  • 加载中
图(15)
计量
  • 文章访问数:  3310
  • HTML全文浏览量:  1187
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回