留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生风传种子三维微电子飞行器

宋吉舟

宋吉舟. 仿生风传种子三维微电子飞行器. 力学进展, 2022, 52(1): 196-200 doi: 10.6052/1000-0992-21-055
引用本文: 宋吉舟. 仿生风传种子三维微电子飞行器. 力学进展, 2022, 52(1): 196-200 doi: 10.6052/1000-0992-21-055
Song J Z. Passively driven three-dimensional microfliers inspired by wind-dispersed seeds. Advances in Mechanics, 2022, 52(1): 196-200 doi: 10.6052/1000-0992-21-055
Citation: Song J Z. Passively driven three-dimensional microfliers inspired by wind-dispersed seeds. Advances in Mechanics, 2022, 52(1): 196-200 doi: 10.6052/1000-0992-21-055

仿生风传种子三维微电子飞行器

doi: 10.6052/1000-0992-21-055
详细信息
    作者简介:

    宋吉舟:浙江大学教授, 应用力学研究所所长, 浙江省软体机器人与智能器件研究重点实验室副主任. 主要从事可延展柔性电子器件力学、先进转印集成技术与人机交互研究. 曾获香港求是科技基金会求是杰出青年学者奖、国家自然科学基金委优秀青年科学基金、中国力学学会青年科技奖等. 担任中国力学学会理事、对外交流与合作工作委员会副主任委员

    通讯作者:

    jzsong@zju.edu.cn

  • 中图分类号: TN602

Passively driven three-dimensional microfliers inspired by wind-dispersed seeds

More Information
  • 摘要: 研究者通过模仿风传种子, 研发了一类以风为被动驱动力的微飞行器, 降低了飞行功耗, 实现了长时滞空飞行.

     

  • 图  1  (a) 风传植物种子与“种子”飞行器; (b) 力学屈曲组装三维微飞行器结构; (c) 薄膜结构飞行器下落示意; (d) 飞行器对照经典圆盘结构的阻力系数与雷诺数关系; (e) 不同尺度飞行器终端速度与海拔关系; (f) 羽毛及其微结构, 局部放大图展示纤毛结构; (g) 多孔结构微飞行器; (h) 孔隙率对终端速度影响; (i) 集成电子电路的功能型飞行器; (j) 空气污染监测功能示例

  • [1] Cummins C, Seale M, Macente A, Certini D, Mastropaolo E, Viola I M, Nakayama N, 2018. A separated vortex ring underlies the flight of the dandelion. Nature, 562: 414-418.
    [2] Kim B H, Li K, Kim J T, Park Y, Jang H, Wang X, Xie Z, Won S M, Yoon H J, Lee G, et al. 2021. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature, 597: 503-510.
    [3] Lentink D, Dickson W B, van Leeuwen J L, Dickinson M H, 2009. Leading-edge vortices elevate lift of autorotating plant seeds. Science, 324: 1438-1440.
    [4] Luo H, Wang C, Linghu C, Yu K, Wang C, Song J, 2019. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. National Science Review, 7: 296-304.
    [5] Nathan R, Katul G G, Horn H S, Thomas S M, Oren R, Avissar R, Pacala S W, Levin S A, 2002. Mechanisms of long-distance dispersal of seeds by wind. Nature, 418: 409-413
    [6] Wood R J, 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics, 24: 341-347.
    [7] Wang C, Linghu C, Nie S, Li C, Lei Q, Tao X, Zeng Y, Du Y, Zhang S, Yu K, et al. 2020. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Science Advances, 6: eabb2393.
    [8] Xu S, Yan Z, Jang K I, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J, Wang R, et al. 2015. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347: 154-159.
    [9] Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers J A, 2017. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2: 17019.
  • 加载中
图(1)
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  514
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2021-12-15
  • 网络出版日期:  2021-12-24
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回