-
摘要: 多分辨率拓扑优化(multi-resolution topology optimization, MTOP)方法将有限元网格和密度网格解耦, 采用较粗的网格(超单元)进行有限元分析, 从而大大降低了拓扑优化过程中的结构分析成本. 但MTOP方法每次迭代都需要根据超单元内的平均密度计算有限元单刚, 不仅精度不够且在过滤半径较小的情况容易出现棋盘格现象和QR模式. 为解决相应问题, 本文将超单元视为子结构, 通过静态凝聚得到超单元刚度阵, 并进一步根据拓扑优化过程中子结构的密度分布特征组建了其模板库, 从而省去了超单元单刚的重复计算, 显著提高了MTOP方法的分析精度, 有效抑制了数值不稳定现象.Abstract: In the multi-resolution topology optimization (MTOP) method, by decoupling the finite element mesh and discretization of density field, the finite element analysis is carried out with a coarser mesh (i.e., super-elements), and the computational cost is thus greatly reduced in the process of topology optimization. However, the elemental stiffness matrix is calculated each iteration using the average density of super-elements, and this treatment is actually not only inaccurate but also leads to the checkerboard phenomenon and QR patterns when the filter radius is relatively small. In order to alleviate such issues, the super-element is treated as a substructure and the corresponding elemental stiffness matrix is obtained using static condensation. Furthermore, a template library is developed for the substructure based on its density distribution during the topology optimization process. By this means, the elemental stiffness matrix is not required to be calculated repeatedly, the accuracy of the MTOP method is improved significantly and the checkerboard patterns are effectively inhibited as well.
-
Key words:
- multi-resolution topology optimization /
- substructure /
- template
-
表 1 结果对比
优化结果 目标函数 单次循环时间/s 模板法 10.71(10.69) 98.95 SIMP法 10.54 115.67 表 2 密度阈值对比
密度阈值 优化结果 目标函数 0.1 11.8551
(10.7433)0.45 10.71
(10.69)0.8 11.0542
(11.5824) -
[1] Borrvall T, Petersson J. 2001. Large-scale topology optimization in 3D using parallel computing. Computer Methods in Applied Mechanics and Engineering, 190: 6201-6229. doi: 10.1016/S0045-7825(01)00216-X [2] Bruns T E, Tortorelli D A. 2003. An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. International Journal for Numerical Methods in Engineering, 57: 1413-1430. doi: 10.1002/nme.783 [3] de Sturler E, Paulino G H, Wang S. 2008. Topology optimization with adaptive mesh refinement// Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM (pp. 28-31). [4] Groen J P, Langelaar M, Sigmund O, Ruess M. 2017. Higher‐order multi‐resolution topology optimization using the finite cell method. International Journal for Numerical Methods in Engineering, 110: 903-920. doi: 10.1002/nme.5432 [5] Guo X, Zhang W, Zhong W. 2014. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. Journal of Applied Mechanics, 81: 081009. doi: 10.1115/1.4027609 [6] Gupta D K, Langelaar M, van Keulen F. 2018. QR-patterns: artefacts in multiresolution topology optimization. Structural and Multidisciplinary Optimization, 58: 1335-1350. doi: 10.1007/s00158-018-2048-6 [7] Guyan R J. 1965. Reduction of stiffness and mass matrices. AIAA Journal, 3: 380-380. doi: 10.2514/3.2874 [8] Liang Y, Cheng G. 2019. Topology optimization via sequential integer programming and canonical relaxation algorithm. Computer Methods in Applied Mechanics and Engineering, 348: 64-96. doi: 10.1016/j.cma.2018.10.050 [9] Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X. 2018. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Structural and Multidisciplinary Optimization, 58: 2455-2479. doi: 10.1007/s00158-018-2114-0 [10] Nguyen T H, Le C H, Hajjar J F. 2017. Topology optimization using the p-version of the finite element method. Structural and Multidisciplinary Optimization, 56: 571-586. doi: 10.1007/s00158-017-1675-7 [11] Nguyen T H, Paulino G H, Song J, Le C H. 2010. A computational paradigm for multiresolution topology optimization (MTOP). Structural and Multidisciplinary Optimization, 41: 525-539. doi: 10.1007/s00158-009-0443-8 [12] Ortigosa R, Martínez-Frutos J. 2021. Multi-resolution methods for the topology optimization of nonlinear electro-active polymers at large strains. Computational Mechanics, 1-23. [13] Park J, Zobaer T, Sutradhar A. 2021. A two-scale multi-resolution topologically optimized multi-material design of 3D printed craniofacial bone implants. Micromachines, 12: 101. doi: 10.3390/mi12020101 [14] Querin O M, Steven G P, Xie Y M. 1998. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations, 15: 1031-1048. doi: 10.1108/02644409810244129 [15] Sigmund O. 2001. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21: 120-127. doi: 10.1007/s001580050176 [16] Svanberg K. 1987. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24: 359-373. doi: 10.1002/nme.1620240207 [17] Wang H, Liu J, Wen G. 2020. An efficient multi-resolution topology optimization scheme for stiffness maximization and stress minimization. Engineering Optimization, 1-21. [18] Wang M Y, Wang X, Guo D. 2003. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192: 227-246. doi: 10.1016/S0045-7825(02)00559-5 [19] Xie Y M, Steven G P. 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49: 885-896. [20] Yoo J, Jang I G, Lee I. 2021. Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency. Structural and Multidisciplinary Optimization, 63: 1743-1766. doi: 10.1007/s00158-020-02774-2 [21] Zhang W, Yang W, Zhou J, Li D, Guo X. 2017. Structural topology optimization through explicit boundary evolution. Journal of Applied Mechanics, 84: 011011. doi: 10.1115/1.4034972