留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导航波流体力学*

John W. M. Bush

John W. M. Bush. 导航波流体力学*[J]. 力学进展, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011
引用本文: John W. M. Bush. 导航波流体力学*[J]. 力学进展, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011
John W. M. Bush. Pilot-wave hydrodynamics*[J]. Advances in Mechanics, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011
Citation: John W. M. Bush. Pilot-wave hydrodynamics*[J]. Advances in Mechanics, 2021, 51(1): 155-177. doi: 10.6052/1000-0992-21-011

导航波流体力学*

doi: 10.6052/1000-0992-21-011
基金项目: 

感谢国家科学基金会项目 CBET-0966452 和 CMMI-1333242、麻省理工学院 – 法国项 目、麻省理工学院 – 巴西项目以及 CNPq – 科学无国界项目的经费支持.

详细信息
    通讯作者:

    John W. M. Bush

  • 中图分类号: O35

Pilot-wave hydrodynamics*

More Information
    Corresponding author: John W. M. Bush
  • 摘要: Yves Couder, EmmanuelFort和同事们最近发现能够维持在振荡液体表面的毫米液滴可以通过与自身诱导波场的共振作用自我推进. 这篇文章针对实验结果进行了综述, 发现行走的液滴呈现出某些以往被认为只属于微观量子领域的特征. 文章接着回顾了这种流体动力导航波系统的理论描述, 从而深入了解其类量子行为的起源. 量子化产生于导波场施加在液滴上的动态约束, 且多模态统计是混沌导航波动力学的一个特征. 在此, 尝试评估此流体力学系统作为量子比拟的可能性和局限性. 该流体力学系统与量子导航波理论的比较表明, 它明显不同于玻姆力学, 而与de Broglie最初的量子动力学概念密切相关, 这包括de Broglie的双解理论及其后研究者们在随机电动力学领域的拓展.

     

  • [1] Anderson J D. 2005. Ludwig Prandtl's boundary layer. Phys. Today, 58:45-48.
    [2] Bacchiagaluppi G, Valentini A. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge, UK: Cambridge Univ. Press.
    [3] Bach R, Pope D, Liou S, Batelaan H. 2013. Controlled double-slit electron diffraction. New J. Phys., 15:033018.
    [4] Bechhoeffer J, Ego V, Manneville S, Johnson B. 1995. An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech., 288:325-350.
    [5] Bell J S. 1966. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447-452.
    [6] Bell J S. 1982. On the impossible pilot wave. Found. Phys., 12:989-999.
    [7] Bell J S. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge, UK: Cambridge Univ. Press.
    [8] Benjamin T B, Ursell F. 1954. The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A, 225:505-515.
    [9] Berry M V, Chambers R G, Large M D, Upstill C, Walmsley J C. 1980. Wave front dislocations in the Aharanov-Bohm effect and its water wave analogue. Eur. J. Phys., 1:154-162.
    [10] Bohm D. 1952a. A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev., 85:166-179.
    [11] Bohm D. 1952b. A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev., 85:180-193.
    [12] Bohm D, Vigier J P. 1954. Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev., 96:208-216.
    [13] Bohm D, Hiley B J. 1982. The de Broglie pilot wave theory and the further development of new insights arising out of it. Found. Phys., 12:1001-1016.
    [14] Bohr N. 1935. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 48:696-702.
    [15] Boyer T H. 2010. Derivation of the Planck spectrum for relativistic classical scalar radiation from thermal equilibrium in an accelerating frame. Phys. Rev. D, 81:105024.
    [16] Boyer T H. 2011. Any classical description of nature requires classical electromagnetic zero-point radiation. Am. J. Phys., 79:1163-1167.
    [17] Buhler O. 2010. Wave-vortex interactions in fluids and superfluids. Annu. Rev. Fluid Mech., 42:205-228.
    [18] Burinskii A. 2008. The Dirac-Kerr-Newman electron. Gravit. Cosmol., 14:109-122
    [19] Bush J W M. 2010. Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA, 107:17455-17456.
    [20] Bush J W M, Oza A, Molá?ek J. 2014. The wave-induced addedmass of walking droplets. J. Fluid Mech., 755:R7. doi: 10.1017/jfm.2014.459.
    [21] Carmigniani R, Lapointe S, Symon S, McKeon B J. 2014. Influence of a local change of depth on the behavior of walking oil drops. Exp. Thermal Fluid Sci., 54:237-246.
    [22] Chebotarev L. 2000. Introduction: The de Broglie-Bohm-Vigier approach in quantum mechanics//Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics. Jeffers S, Lehnert B, Abramson N, Chebotarev L, eds. pp. 118. Montreal: Apeiron.
    [23] Cole D C, Zhou Y. 2003. Quantum mechanical ground state of hydrogen obtained from classical electrodynamics. Phys. Lett. A, 317:1420.
    [24] Coste C, Lund F, Umeki M. 1999. Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water. Phys. Rev. E, 60:4908-4916
    [25] Couder Y, Fort E. 2006. Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett., 97:154101.
    [26] Couder Y, Fort E. 2012. Probabilities and trajectories in a classical wave-particle duality. J. Phys. Conf. Ser., 361:012001.
    [27] Couder Y, Fort E, Gautier C H, Boudaoud A. 2005a. From bouncing to floating: Noncoalescence of drops on a fluid bath. Phys. Rev. Lett., 94:177801.
    [28] Couder Y, Protière S, Fort E, Boudaoud A. 2005b. Walking and orbiting droplets. Nature, 437:208.
    [29] Crommie M F, Lutz C P, Eigler D M. 1993a. Confinement of electrons to quantum corrals on a metal surface. Science, 262:218-220.
    [30] Crommie M F, Lutz C P, Eigler D M. 1993b. Imaging standing waves in a two-dimensional electron gas. Nature, 363:524-527.
    [31] Davisson C, Germer L H. 1927. The scattering of electrons by a single crystal of nickel. Nature, 119:558-560.
    [32] de Broglie L. 1923. Ondes et quanta. C. R. 177:507-510.
    [33] de Broglie L. 1926. Ondes et mouvements. Paris: Gautier-Villars.
    [34] de Broglie L. 1930. An Introduction to the Study of Wave Mechanics. London: Methuen & Co.
    [35] de Broglie L. 1956. Une interprétation causale et nonlinéaire de la Mechanique ondulatoire: la théorie de la double solution. Paris: Gautier-Villars.
    [36] de Broglie L. 1964. La thermodynamique cachée des particules. Ann. Inst. Henri Poincaré, 1:1-19.
    [37] de Broglie L. 1987. Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis Broglie, 12:1-23.
    [38] de Gennes P G, Brochard-Wyart F, Quéré D. 2002. Gouttes, bulles, perles et ondes. Paris: Belin.
    [39] de la Pen? L, Cetto A M. 1996. The Quantum Dice: An Introduction to Stochastic Electrodynamics. Dordrecht: Kluwer Acad.
    [40] Denardo B C, Puda J J, Larraza A. 2009. A water wave analog of the Casimir effect. Am. J. Phys., 77:1095-1101.
    [41] Donnelly RJ. 1993. Quantized vortices and turbulence in helium II. Annu. Rev. Fluid Mech., 25:327-371.
    [42] Dorbolo S, Terwagne D, Vandewalle N, Gilet T. 2008. Resonant and rolling droplets. New J. Phys., 10:113021.
    [43] Douady S. 1990. Experimental study of the Faraday instability. J. Fluid Mech., 221:383-409.
    [44] Durr D, Goldstein S, Zanghi N. 2012. Quantum Physics Without Quantum Philosophy. New York: Springer.
    [45] Eddi A, Boudaoud A, Couder Y. 2011a. Oscillating instability in bouncing drop crystals. Europhys. Lett., 94:20004.
    [46] Eddi A, Decelle A, Fort E, Couder Y. 2009a. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett., 87:56002.
    [47] Eddi A, Fort E, Moisy F, Couder Y. 2009b. Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett., 102:240401.
    [48] Eddi A, Moukhtar J, Perrard J, Fort E, Counder Y. 2012. Level splitting at a macroscopic scale. Phys. Rev. Lett., 108:264503.
    [49] Eddi A, Sultan E, Moukhtar J, Fort E, Rossi M, Couder Y. 2011b. Information stored in Faraday waves: The origin of path memory. J. Fluid Mech., 674:433-463.
    [50] Eddi A, Terwagne D, Fort E, Couder Y. 2008. Wave propelled ratchets and drifting rafts. Europhys. Lett., 82:44001.
    [51] Edwards W S, Fauve S. 1994. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech., 278:123-148.
    [52] Einstein A, Podolsky B, Rosen N. 1935. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777-780.
    [53] Everett H. 1957. Relative state formulation of quantum mechanics. Rev. Mod. Phys., 29:454-462.
    [54] Faraday M. 1831. On the forms and states of fluids on vibrating elastic surfaces. Philos. Trans. R. Soc. Lond., 121:319-340.
    [55] Feynman R P, Leighton R B, Sands M. 1964. The Feynman Lectures on Physics. New York: Addison-Wesley.
    [56] Fiete G A, Heller E J. 2003. Theory of quantum corrals and quantum mirages. Rev. Mod. Phys., 75:933-948.
    [57] Fort E, Couder Y. 2013. Trajectory eigenmodes of an orbiting wave source. Europhys. Lett., 102:16005.
    [58] Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y. 2010. Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA, 107:17515-17520.
    [59] Gamow G. 1928. The theory of nuclear disintegration. Nature, 122:805-807.
    [60] Gier S, Dorbolo S, Terwagne D, Vandewalle N, Wagner C. 2012. Bouncing of polymeric droplets on liquid interfaces. Phys. Rev. E, 86:066314.
    [61] Gilet T, Bush J W M. 2009a. Chaotic bouncing of a drop on a soap film. Phys. Rev. Lett., 102:014501.
    [62] Gilet T, Bush J W M. 2009b. The fluid trampoline: Droplets bouncing on a soap film. J. Fluid Mech., 625:167-203.
    [63] Gilet T, Bush J W M. 2012. Droplets bouncing on a wet, inclined surface. Phys. Fluids, 24:122103.
    [64] Gilet T, Terwagne D, Vandewalle N, Dorbolo S. 2008. Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett., 100:167802.
    [65] Gilet T, Vandewalle N, Dorbolo S. 2007. Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E, 76:035302.
    [66] Goldman D I. 2002. Pattern formation and fluidization in vibrated granular layers, and grain dynamics and jamming in a water fluidized bed. [PhD Thesis]. Univ. Tex.,Austin.
    [67] Goldstein S. 1987. Stochastic mechanics and quantum theory. J. Stat. Phys., 47:645-667.
    [68] Grossing G, Fussy S, Mesa Pascasio J, Schwabl H. 2012a. An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations. Ann. Phys., 327:421-427.
    [69] Grossing G, Fussy S, Mesa Pascasio J, Schwabl H. 2012b. The quantum as an emergent system. J. Phys. Conf. Ser., 361:021008.
    [70] Gutzwiller M C. 1990. Chaos in Classical and Quantum Mechanics. Berlin: Springer-Verlag.
    [71] Haisch B, Rueda A. 2000. On the relation between a zero-point-field-induced inertial effect and the Einsteinde Broglie formula. Phys. Rev. A, 268:224-227.
    [72] Haisch B, Rueda A, Dobyns Y. 2001. Inertial mass and the quantum vacuum fields. Ann. Phys., 10:393-414.
    [73] Harris D M, Bush J W M. 2013. The pilot-wave dynamics of walking droplets. Phys. Fluids, 25:091112.
    [74] Harris D M, Bush J W M. 2014a. Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech., 739:444-464.
    [75] Harris D M, Bush J W M. 2014b. Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib., in press.
    [76] Harris D M, Moukhtar J, Fort E, Couder Y, Bush J W M. 2013. Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E, 88:011001.
    [77] Hestenes D. 1990. The zitterbewegung interpretation of quantum mechanics. Found. Phys., 20:1213-1232.
    [78] Holland P R. 1993. The Quantum Theory of Motion: An Account of the De BroglieBohm Causal Interpretation of Quantum Mechanics. Cambridge, UK: Cambridge Univ. Press.
    [79] Jayaratne O W, Mason B J. 1964. The coalescence and bouncing of water drops at an air-water interface. Proc. R. Soc. Lond. A, 280:545-565.
    [80] Keller J. 1953. Bohm's interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev., 89:1040-1041.
    [81] Kracklauer A F. 1992. An intuitive paradigm for quantum mechanics. Phys. Essays, 5:226-234.
    [82] Kracklauer A F. 1999. Pilot wave steerage: A mechanism and test. Found. Phys. Lett., 12:441-453.
    [83] Kumar K. 1996. Parametric instability of the interface between two fluids. Proc. R. Soc. Lond. A, 452:1113-1126.
    [84] Kumar K, Tuckerman L S. 1994. Parametric instability of the interface between two fluids. J. Fluid Mech., 279:49-68.
    [85] Labousse M, Perrard S. 2014. Non-Hamiltonian features of a classical pilot-wave dynamics. Phys. Rev. E, 90:022913.
    [86] Lieber S I, Hendershott M C, Pattanaporkratana A, Maclennan J E. 2007. Self-organization of bouncing oil drops: Two-dimensional lattices and spinning clusters. Phys. Rev. E, 75:056308.
    [87] Lighthill J. 1956. Physics of gas flow at very high speeds. Nature, 178:343-345.
    [88] Madelung E. 1926. Quantentheorie in Hydrodynamischen form. Z. Phys., 40:322-326.
    [89] Miles J, Henderson D. 1990. Parametrically forced surface waves. Annu. Rev. Fluid Mech., 22:143-165.
    [90] Moisy F, Rabaud M, Salsac K. 2009. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids, 46:1021-1036.
    [91] Molá?ek J, Bush J W M. 2012. A quasi-static model of drop impact. Phys. Fluids, 24:127103.
    [92] Molá?ek J, Bush J W M. 2013a. Droplets bouncing on a vibrating fluid bath. J. Fluid Mech., 727:582-611.
    [93] Molá?ek J, Bush J W M. 2013b. Droplets walking on a vibrating fluid bath: Towards a hydrodynamic pilot-wave theory. J. Fluid Mech., 727:612-647.
    [94] Neitzel G P, Dell'Aversana P. 2002. Noncoalescence and nonwetting behavior of liquids. Annu. Rev. Fluid Mech., 34:267-289.
    [95] Nelson E. 1966. Derivation of the Schr?dinger equation from Newtonian mechanics. Phys. Rev., 150:1079-1085.
    [96] Nelson E. 2012. Review of stochastic mechanics. J. Phys. Conf. Ser., 361:012011
    [97] Newton I. 1979. Opticks: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light. Mineola, NY: Dover.
    [98] Okumura K, Chevy F, Richard D, Quéré D, Clanet C. 2003. Water spring: A model for bouncing drops. Europhys. Lett., 62:237-243.
    [99] Oza A, Harris D M, Rosales R R, Bush J W M. 2014a. Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech., 744:404-429.
    [100] Oza A, Rosales R R, Bush J W M. 2013. A trajectory equation for walking droplets: A hydrodynamic pilot-wave theory. J. Fluid Mech., 737:552-570.
    [101] Oza A, Wind-Willassen ?, Harris D M, Rosales R R, Bush J W M. 2014b. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits. Phys. Fluids, 26:082101
    [102] Perrard S, Labousse M, Fort E, Couder Y. 2014a. Chaos driven by interfering memory. Phys. Rev. Lett., 113:104101.
    [103] Perrard S, Labousse M, Miskin M, Fort E, Couder Y. 2014b. Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun., 5:3219.
    [104] Philippidis C, Dewdney C, Hiley B J. 1979. Quantum interference and the quantum potential. Nuovo Cimento, 52B:15-28.
    [105] Pitaevskii L, Stringari S. 2003. Bose-Einstein Condensation. New York: Oxford Univ. Press.
    [106] Prosperetti A, Oguz H N. 1993. The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech., 25:577-602.
    [107] Protière S, Bohn S, Couder Y. 2008. Exotic orbits of two interacting wave sources. Phys. Rev. E, 78:036204.
    [108] Protière S, Boudaoud A, Couder Y. 2006. Particle wave association on a fluid interface. J. Fluid Mech., 554:85-108.
    [109] Protière S, Couder Y, Fort E, Boudaoud A. 2005. The self-organization of capillary wave sources. J. Phys. Condens. Matter, 17:S3529-S3535.
    [110] Pucci G, Ben Amar M, Couder Y. 2013. Faraday instability in floating liquid lenses: The spontaneous mutual adaptation due to radiation pressure. J. Fluid Mech., 725:402-427.
    [111] Pucci G, Fort E, Ben Amar M, Couder Y. 2011. Mutual adaptation of a Faraday instability pattern with its flexible boundaries in floating fluid drops. Phys. Rev. Lett., 106:024503.
    [112] Reynolds O. 1886. On the theory of lubrication. Philos. Trans. R. Soc. Lond. A, 177:157-234.
    [113] Rueda A, Haisch B. 2005. Gravity and the quantum vacuum inertia hypothesis. Ann. Phys., 14:479-498.
    [114] Schr?dinger E. 1930. Uber die kraftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys. Math. Kl., 24:418-428.
    [115] Shirikoff D. 2013. Bouncing droplets on a billiard table. Chaos, 23:013115.
    [116] Spiegel E. 1980. Fluid dynamical form of the linear and nonlinear Schr?dinger equations. Physica D, 1:236-240.
    [117] Surdin M. 1974. L'éctrodynamique stochastique et l'interprétation de la Mécanique Quantique. C. R. Acad. Sci. Paris B, 278:881-883.
    [118] Taylor G I. 1909. Interference fringes with feeble light. Proc. Camb. Philos. Soc., 15:114-115.
    [119] Terwagne D. 2012. Bouncing droplets, the role of deformations. [PhD Thesis]. Univ. Liége.
    [120] Terwagne D, Gilet T, Vandewalle N, Dorbolo S. 2009. Metastable bouncing droplets. Phys. Fluids, 21:054103.
    [121] Terwagne D, Gilet T, Vandewalle N, Dorbolo S. 2010. From a bouncing compound drop to a double emulsion. Langmuir, 26:11680-11685.
    [122] Terwagne D, Ludewig F, Vandewalle N, Dorbolo S. 2013. The role of droplet deformations in the bouncing droplet dynamics. Phys. Fluids, 25:122101.
    [123] Terwagne D, Vandewalle N, Dorbolo S. 2007. Lifetime of a bouncing droplet. Phys. Rev. E, 76:056311.
    [124] Towler M. 2009. De Broglie-Bohm pilot-wave theory and the foundations of quantum mechanics: A graduate lecture course. Univ. Camb. http://www.tcm.phy.cam.ac.uk/$sim $mdt26/pilotwaves.html.
    [125] von Neumann J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.
    [126] Walker J. 1978. Drops of liquid can be made to float on the liquid. What enables them to do so? Sci. Am., 238:151-158.
    [127] Weinberg S. 1995. The Quantum Theory of Fields, Vol. I: Foundations. Cambridge, UK: Cambridge Univ. Press.
    [128] Weinstein A, Pounder J R. 1945. An electromagnetic analogy in mechanics. Am. Math. Mon., 52:434-438.
    [129] Wind-Willassen ?, Molá?ek J, Harris D M, Bush J W M. 2013. Exotic states of bouncing and walking droplets. Phys. Fluids, 25:082002.
    [130] Yang A L, Chien W, King M, Grosshandler W L. 1997. A simple piezoelectric droplet generator. Exp. Fluids, 23:445-447.
    [131] Yarin A L. 2006. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech., 38:159-192
    [132] Young T. 1804. The Bakerian Lecture: Experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond., 94:1-16.
  • 加载中
计量
  • 文章访问数:  2032
  • HTML全文浏览量:  472
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 刊出日期:  2021-03-25

目录

    /

    返回文章
    返回