Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching
-
摘要:
利用脉冲大电流产生随时间平滑上升的磁压,实现对样品的准等熵平面压缩和超高速飞片发射,是近十年来发展和完善起来的一种新型的强动态斜波加载技术(ramp wave loading).本文简述了其原理、加载装置及数据处理方法等方面的研究进展,同时着重评述利用该技术和方法开展高压物态方程、材料动力学响应方面的研究进展,并对该技术在冲击动力学、天体物理和高能量密度物理等方面的应用前景进行了展望.
Abstract:It is a new loading technique characterized as ramp wave loading developted to explore the rapid response of material at pressures, temperatures and stress or strain rate not attainable in conventional shock experiments, which was firstly developed on Sandia Z accelerator in 1999. In this paper, its principle; and progress in loading apparatus and methodology for the analysis of experimental data are presented, and its applications in the study of EOS data and dynamic response of material characterization are reviewed.
-
1 Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Rev. Sci. Instrum., 2001, 72(9):3587-3595 2 Cauble R, Reisamn D B, Asay J R, et al. Isentropic compression experiments to 1mbar using magnetic pressure. J. Phys.: Condens. Matter, 2002, 14: 10821-10824 3 Pollington M, Thompson P, Maw J. Equations of state. Discovery: The Science and Technology Journal of AWE,2002, 5: 16-25 4 Asay J, Hall C A, Knudson M. Recent advances in highpressure equation-of-state capabilities. SAND2000-0849C 5 High-energy-density physics study report. A Comprehensive Study of the Role of High-EnergyDensity Physics in the Stockpile Stewardship Program, National Nuclear Security Administration, U.S.Department of Energy, April 2001. http://www.dp.doe.gov/dp web/doc/HEDP Study Report April 2001.pdf 6 Savage M. The Z pulsed power driver since refurbishment. In: The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics Suzhou, China, July 8-10, 2010 7 赵剑衡, 孙承纬, 谭福利, 等. 一维平面磁驱动等熵加载发射 飞片技术. 爆炸与冲击, 2005, 25(4): 303-308 8 Knoepfel H. Pulsed High Magnetic Fields. Amsterdam: North-Holland Pub. Co., 1970. 104-129 9 经福谦, 陈俊祥. 动高压原理与技术. 北京: 国防工业出版 社, 2006. 220-292 10 Aidun J B, Gupta Y M. Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves. J. Appl. Phys., 1991, 69(10): 6998-7014 11 Hayes D. Backward integration of the equations of motion to correct for free surface perturbaritz. SAND2001-1440, Sandia National Laboratories, 2001 12 Hayes D, Vorthman J, Fritz J. Backward integration of a spall VISAR record to the spall plane. LA-13830-MS, Los Alamos National Laboratory, 2001 13 Rothman S D. Characteristics analysis of isentropic compression experiments (ICE). PPN05/05, Atomic Weapons Establishment (AWE) Report 151/05, Feb. 2005 14 Maw J R. A characteristics code for analysis of isentropic compression experiments. Shock Compression of Condensed Matter–2003, 2004. 1217-1220 15 Rothman S D, Maw J R. Characteristics analysis of isentropic compression experiments (ICE). J. of Physics IV (Proceedings), 2006, 134:745-750 16 Cowperthwaite M, Williams R F. Determination of constitutive relationships with multiple gauges in nondivergent waves. J. Appl. Phys., 1971 42(1): 456-462 17 Davison L. Traditional analysis of nonlinear wave propagation in solids. In: Horie Y, Moshsen S, Davison L, et al., High-Pressure Shock Compression of Solids vol.IV, Old Paradigms & New Challenges, Springer, N.Y., 2003 18 Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading. International J. of Plasticity, 2009, 25: 671-694 19 Grady D, Young E. Evaluating constitutive properties from velocity interferometer data. Sandia National Laboratories,1975, SAND75-0650 20 Tasker D G, Fowler C M, Goforth J H, et al. Isentropic compression experiments using high explosive pulsed power, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 765-771, Moscow-St.-Petersburg, Russia, July 2002 21 Tasker D G, Goforth J H, Oona H, et al. Advances in isentropic compression experiments (ICE) using high explosive pulsed power. Shock Compression of Condensed Matter–2003, 2004. 1239-1242 22 Goforth J H, Atchison W L, Fowler C M, et al. Design of high explosive pulsed power systems for 20MB isentropic compression experiments, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 137-147, Moscow-St.-Petersburg, Russia, July 2002 23 Hereil P L, Lassalle F, Avrilland G, et al. GEPI: An ICE generator for dynamic material characterization and hypervelocity impact, Shock Compression of Condensed Matter–2003, 2004. 1209-1212 24 Avrillaud G, Courtois L, Guerre J, et al. GEPI: a compact pulsed power driver for isentropic compression experiments and for non shocked high velocity flyer plates. In: 14th IEEE International Pulsed Power Conf., 2003.913-916 25 Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experimemnts. Rev. Sci. Instrum., 2008 79: 013903 26 孙承纬. 磁驱动等熵压缩和高速飞片的实验技术. 高能量密 度物理, 2006, 1: 1-7 27 Glover S F, Davis J P, Puissant J G, et al. Genesis: a 5-ma programmable pulsed-power driver for isentropic compression experiments. IEEE Transactions on Plasma Science,2010, 38(10): 2620-2626 28 赵剑衡, 孙承纬, 唐小松, 等. 高效能电炮实验装置的研制. 实验力学, 2006, 21(3): 369-375 29 Sun C W, Wang G J, Zhao J H, et al. Magnetically driven isentropic compression and flyer plate experiments using a compact capacitor bank. Shock Compression of Condensed Matter–2007, 2007. 1196-1199 30 Wang G J, Sun C W, Zhao J H, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments. Rev. Sci. Instrum., 2008, 79(5): 053904 31 Trainor R J, Parsons W M, Ballard E O, et al. Overview of the Atlas project. In: Proc. 11th IEEE Int’l Pulsed Power Conf., 37-46, Baltimore, MD USA, June 1997 32 Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Physics of Plasma, 2005, 12: 056310 33 Davis J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys., 2006, 99: 103512 34 Hall C A, Asay J R, Knudson M D, et al. Recent advances in quasi-isentropic compression experiments (ICE) on the Sandia Z accelerator, Shock Compression of Condensed Matter–2001, 2002. 1163-1168 35 Hayes D B, Hall C A, Asay J R, et al. Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys., 2004, 96(10): 5520-5527 36 Davis Jean-Paul, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Phys. Plasmas, 2005, 12: 056310 37 Reisman D B, Torr A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys., 2001, 89(3): 1625-1633 38 Hall C A. Isentropic compression experiments on the Sandia Z accelerator. Phys. Plasmas, 2000, 7(5): 2069-2075 39 Hereil P L, Avrillaud G. J. IV France, 2006, 134: 535-540 40 Rothman S D, Evans A M, Graham P, et al. Measurements of the equation of state of lead under varying conditions by multiple methods. Shock Compression of Condensed Matter–2001, 2002. 79-82 41 Rothman S D, Parker K W, Davis J P, et al. Isentropic compression of lead and lead alloy using the Z machine. Shock Compression of Condensed Matter–2003,2004. 1235-1238 42 Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W. Shock Compression of Condensed Matter–2007, 2007. 1177-1180 43 Asay J R, Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys., 1978, 49(7): 4242-4247 44 Asay J R, Ao T, Davis J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression. J. Appl. Phys., 2008, 103: 083514 45 Ding J L, Asay J R. Material characterization with ramp wave experiments. J. Appl. Phys., 2007, 101: 073517 46 Huang H, Asay J R. Compressive strength measurements in aluminum dor shock compression over the stress range of 4-22 GPa. J. Appl. Phys., 2005, 98: 033524 47 Ao T, Asay J R, Davis J P, et al. High-pressure quasiisentropic compression loading and unloading of interferometer windows on the Veloce pulsed power generator. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29,2007. 1157-1160 48 Ao T, Knudson M D, Asay J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa. Jour. Appl. Phys., 2009, 106: 103507 49 Asay J R, Ao T, Vogler T J, et al. Yield strength of tantalum for shockless compression to 18GPa. Jour. Appl. Phys., 2009, 106: 073515 50 Wise J L, Jones S C, Hall C A, et al. Dynamic response of Kovar to shock and ramp wave compression. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29, 2007.1024-1027 51 Lawrence R J, Grady D E, Hall C A. The response of ceramic powders to high-level quasi-isentropic dynamic loads. In: 13th APS Topical conference on Shock Compression of Condensed Matter, 2003. 1213-1216 52 Baer M R, Hall C A, Gustavsen R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents. J. Appl. Phys., 2007, 101: 034906 53 Baer M R, Hall C A, Gustavsen R L, et al., Isentropic Compression Experiments for Mesoscale Studies of Energetic Composites. AIP Conference Proceedings, 2006,845: 1307-1310 54 Hare D E, Reisman D B, Garcia F, et al. The Isentrope of Unreacted LX-04 to 170 kbar, Michael D F, Yogendra M G, Jerry W F, Eds. AIP, 2004. 145-148 55 Hare D E, Forbes J W, Reisman D B, et al. Isentropic compression loading of octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine (HMX) and the pressureinduced phase transition at 27 GPa. Applied Physics Letters, 2004, 85: 949-951 56 Reisman D B, Forbes J W, Tarver C M, et al. Isentropic Compression of LX-04 on the Z Accelerator. In: Michael D F, Naresh N T, Yasuyuki H, eds. AIP, 2002. 849-852 57 Hooks D E, Hayes D B, Hare D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa. Journal of Applied Physics,2006, 99: 124901 58 Asay J R, Hall C A, Holland K G, et al. Isentropic compression on iron with the Z accelerator, Shock Compression of Condensed Matter–1999, 2000. 1151-1154 59 Hereil P L, Lassalle F, Avrillaud G. GEPI: a nice generator for dynamic material characterisation and hypervelocity impact. In: Furnish M D, Gupta Y M Forbes J W, eds. Shock Compression of Condensed Matter-2003, 2004.1209-1212 60 Hall C A, Knudson M D, Asay J R, et al. High velocity flyer plate launch capability on the sandia z accelerator. Int,l J. Impact Eng'g, 2001, 26: 275-287 61 Matzen M K, Sweeney M A, Adams R G, et al. Pulsedpowerdriven high energy density physics and inertial confinement fusion research. Phys. Plasmas, 2005, 12:055503 62 Knudson M D, Lemke R W, Hayes D B, et al. Nearabsolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys., 2003, 94(7): 4420-4431 63 Bergstresser T, Becker S. Temperature measurement of isentropically accelerated flyer plates. Shock Compression of Condensed Matter–2001, 2002. 1169-1172 64 Knudson M D, Asay J R, Deeney C. Adiabatic release measurements in aluminum from 240to 500-GPa states on the principal Hugoniot. J. Appl. Phys., 2005, 97:073514
计量
- 文章访问数: 1881
- HTML全文浏览量: 181
- PDF下载量: 2785
- 被引次数: 0