1 Kailasanath K. Recent developments in the research on pulse detonation engines. AIAA Journal, 2003, 41(2):145-159
|
2 Roy G E, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci, 2004, 30(6): 545-672
|
3 Viguier C, Gourara A, Desbordes D. There-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. Proceedings of the Combustion Institute,1998, 27(2): 2207-2214
|
4 Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561
|
5 Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogenoxygen mixture in flow-type combustors. Combustion, Explosion and Shock Waves, 2009, 45(6): 716-728
|
6 Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine. In: Roy G, Frolov S, Sinibaldi J. eds. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006. 332-338
|
7 Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19(1): 1-10
|
8 俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程. 力学进展, 2005, 35(3): 315-322
|
9 Jiang Z, Zhao W, Yu H R. Demonstration of some concepts for developing long-test duration shock tunnels. In: Proceedings of 28th Symp on Shock Waves, July 16-23,2011
|
10 Hillebrandt W, Niemeyer J C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys., 2000,38(1): 191-230
|
11 Berthelot M, Vieille E. On the velocity of propagation of explosive processes in gases. C. R. Hebd. Sceances Acad. Sci., 1881, 93: 18-21
|
12 Chapman D L. On the rate of explosion in gases. Philos. Mag., 1899, 47: 90-104
|
13 Jouguet E. On the propagation of chemical reactions in gases. J. De Mathematiques Pures et Appliqquees, 1905,1: 347-425
|
14 Zel’dovich Y B. On the theory of the propagation of detonation in gaseous systems. Journal of experimental and theoretical physics, 1940, 10: 543-568
|
15 von Neumann J. Theory of detonation waves. In: John von Neumann. Collected Works. Vol.6, ed. A.J. Taub. New York: Macmillam, 1942
|
16 Döring W. On detonation processes in gases. Ann. Phys.,1943, 43: 421-436
|
17 White D R. Turbulent structure in gaseous detonations. Phys. Fluids, 1961, 4: 465-480
|
18 Soloukhin R. Multi-headed structure of gaseous detonation. Combust. Flame, 1965, 9: 51-58
|
19 Wang C, Jiang Z, Gao Y. Half -cell law of regular cellular detonation. Chinese Physics Letters, 2008, 25(10):3704-3707
|
20 Liu Y, Jiang Z. Reconsideration on the role of the specific heat ratio in Arrhenius law applications. Acta Mechanic Sinica, 2008, 24(1): 261-266
|
21 Lee J H S. Initiation of gaseous detonation. Ann. Rev. Phys. Chem, 1977, 28: 75-104
|
22 Zel’dovich Y B, Librovich V B, Makhviladze G M, et al. On the development of detonation in a non-uniformly preheated gas. Astronautica Acta, 1970, 15: 312-321
|
23 Lee J H S, Lee B H K, Knystautas R. Direct initiation of cylindrical gaseous detonations. Phys. Fluids, 1966, 9:221-222
|
24 Lee J H S. Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech., 1984, 16: 311-336
|
25 Lee J H S, Knystautas R, Frieman A. High-speed turbulent deflagration and transition to detonation in H2-Air mixtures. Combust. Flame, 1984, 56: 227-239
|
26 Urtiew P, Oppenheim A K. Experimental observation of the transition to detonation in an explosive gas. Proc. Roy. Soc. A, 1966, 295: 13-28
|
27 Lee J H S, Higgins A J. Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A,1999, 357: 3503-3521
|
28 Radulescu M I, Higgins A J, Murray S B. An experimental investigation of the direction initiation of cylindrical detonations. J. Fluid Mech., 2003, 480(1): 1-24
|
29 Lee J H S, Knystautas R, Yoshikawa N. Photochemical initiation of gaseous detonations. Acta Astronautica, 1978,5:971-982
|
30 Thomas G O, Jones A. Some observations of the jet initiation of detonation. Combust. Flame, 2000, 120: 392-398
|
31 Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame, 1999, 119: 400-416
|
32 Bartenev A M, Gelfand B E. Spontaneous initiation of detonations. Progress in Energy and Combustion Science,2002, 26: 29-55
|
33 Montgomery C J, Khokhlov A M, Oran E S. The effect of mixing irregularities on mixed-region critical length for deflagration-to-detonation transition. Combust. Flame,1998, 115: 38-50
|
34 Sharpe G J, Short M. Detonation ignition from a temperature gradient for a two-step chain-branching kinetics model. J. Fluid Mech., 2003, 476: 267-292
|
35 Ng H D, Lee J H S. Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech., 2003, 476(1):179-211
|
36 Gu X J, Emerson D R, Bradley D. Modes of reaction front propagation from hot spots. Combust. Flame, 2003, 133:63-74
|
37 Teng H, Jiang Z. Gasdynamics characteristics of toroidal shock and detonation waves focusing. Science in China Series G-Physics and Astronomy, 2005, 48(6): 739-749
|
38 王春, 张德良, 姜宗林. 多障碍物通道中激波诱导气相爆轰 的数值研究. 力学学报, 2006, 38(5): 586-592
|
39 Oran E S, Gamezo V N. Origins of the deflagration-todetonation transition in gas-phase combustion. Combust. Flame, 2007, 148: 4-47, 586-592
|
40 Brailovsky I, Sivashinsky G. Hydraulic resistance as a mechanism for deflagrationto-detonation transition. Combust. Flame, 2000, 122: 492-499
|
41 Kagan L, Sivashinsky G. The transition from deflagration to detonation in thin channels. Combust. Flame, 2003,134: 389-397
|
42 Kaneshige K, Shepherd J E. Detonation database, explosion dynamics laboratory report FM97-8. California Institute of Technology, Pasadena, CA, September, 1999
|
43 Gavrikov A I, Efimenko A A, Dorofeev S B. A model for detonation cell size prediction from chemical kinetics. Combust. Flame, 2000, 120: 19-33
|
44 Oran E S, Weber J W, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame, 1998,113: 147-163
|
45 Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 1999, 9: 11-17
|
46 Gamezo V N, Desbordes D, Oran E S. Formation and evolution of two-dimensional cellular detonations. Combust. Flame, 1999, 116: 154-165
|
47 Radulescu M I, Lee J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame, 2002, 131: 29-46
|
48 Sharpe G J. Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech., 2001, 447(1): 31-51
|
49 Pintgen F, Eckett C A, Austin J M, et al. Direct observations of reaction zone structure in propagating detonations. Combust. Flame, 2003, 133: 211-229
|
50 Mass L, Austin J M, Jackson T L. Triple-point shear layers in gaseous detonation waves. J. Fluid Mech., 2007,586(2): 205-248
|
51 Jiang Z, Han G, Wang C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame, 2009, 156(8): 1653-1661
|
52 Williams D N, Bauwens L, Oran E S. Detailed structure and propagation of three-dimensional detonations. Proceedings of the Combustion Institute, 1996, 26(2): 2991-2998
|
53 Tsuboi N, Katoh S, Hayashi A K. Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proceedings of the Combustion Institute, 2002, 29(2): 2783-2788
|
54 Tsuboi N, Eto K, Hayashi A K. Detailed structure of spinning detonation in a circular tube. Combust. Flame, 2007,149: 144-161
|
55 Tsuboi N, Daimon Y, Hayashi A K. Three-demensional numerical simulation of detonations in coaxial tubes. Shock Waves, 2008, 18(5): 379-392
|
56 Li C, Kailasanath K, Oran E S. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6(4): 1600-1611
|
57 Choi J Y, Kim D W, Jeung I S. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute,2007, 31(2): 2473-2480
|
58 董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性 研究. 兵工学报, 2010, 31(4): 401-408
|
59 Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations. Journal of Propulsion and Power, 2006,22(6) : 1204-1216
|
60 张旭东, 范宝春, 归明月, 等. 旋转爆轰的三维结构和侧向稀 疏波的影响. 爆炸与冲击, 2010, 30(4): 338-341
|
61 邵业涛, 王健平, 唐新猛, 等. 连续旋转爆轰发动机流场三维 数值模拟. 航空动力学报, 2010, 25(8): 1717-1722
|
62 Erpenbeck J J. Stability of idealized one-reaction detonations. Phys. Fluids, 1964, 7: 684-696
|
63 Erpenbeck J J. Nonlinear theory of two-dimensional detonations. Phys. Fluids, 1970, 13: 2007-2026
|
64 He L, Lee J H S. The dynamical limit of one-dimensional detonations. Phys. Fluids, 1995, 7(5): 1151-1158
|
65 Sharpe G J, Falle S A E G. One-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A, 1999, 455: 1203-1214
|
66 Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combustion Theory and Modelling, 2005, 9: 385-401
|
67 Short M, Quirk J J. On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech., 1997, 339(1):89-119
|
68 Watt S D, Sharpe G J. Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech., 2005, 522: 329-356
|
69 Clavin P, He L, Willams F A. Multidimensional stability analysis of overdriven gaseous detonations. Phys. Fluids,1997, 9 (12): 3764-3785
|
70 Clavin P, Denet B. Diamond patterns in the cellular front of an overdriven detonation. Physical Review Letters,2002, 88: 044502
|
71 Yao J, Stewart D S. On the dynamics of multi-dimensional detonation waves. J. Fluid Mech., 1996, 309: 225-275
|
72 Stewart D S. The shock dynamics of multidimensional condensed and gas-phase detonations. Proceedings of the Combustion Institute, 1998, 27(2): 2189-2205
|
73 Ohyagi S, Obara T, Hoshi S, et al. Diffraction and reinitiation of detonations behind a backward-facing step. Shock Waves, 2002, 12: 221-226
|
74 Jones D A, Kemister G, Tonello N A, et al. Numerical simulation of detonation reignition in H2-O2 mixtures in area expansions. Shock Waves, 2000, 10: 33-41
|
75 Arient M, Shepherd J E. A numerical study of detonation diffraction. J. Fluid Mech., 2005, 529: 117-146
|
76 李辉煌, 朱雨建, 杨基明. 爆轰波通过扩张喷管的双曝光全 息实验和数值研究. 爆炸与冲击, 2005, 25(5): 445-450
|
77 邓博, 胡宗民, 滕宏辉, 等. 变截面管道中爆轰胞格演变机 制的数值模拟研究. 中国科学G 辑: 物理学力学天文学,2008, 38(2): 206-216
|
78 Li H, Ben-Dor G. A modified CCW theory for detonation waves. Combust. Flame, 1998, 113(1): 1-12
|
79 Thomas G O, Williams R L. Detonation interaction with wedges and bends. Shock Waves, 2002, 11: 481-492
|
80 Guo C M, Zhang D L, Xie W. The mach reflection of a detonation based on soot track measurements. Combust. Flame, 2001, 127: 2051-2058
|
81 胡宗民, 高云亮, 张德良, 等. 爆轰波在楔面上反射数值分析. 力学学报, 2004, 7(4): 385-392
|
82 Hu Z, Jiang Z. Wave dynamic processes in cellular detonation reflection from wedges. Acta Mechanica Sinica,2007, 23(1): 33-41
|
83 Chao J, Lee J H S. The propagation mechanism of high speed turbulent deflagrations. Shock Waves, 2003, 12:277-289
|
84 朱雨建, 杨基明, Lee J H S. 两种不同气体中的高速爆燃波 及其向爆轰的转变. 实验力学, 2008, 23(2): 110-117
|
85 Wang C J, Xu S L, Guo C M. Gaseous detonation propagation in a bifurcated tube. J. Fluid Mech., 2008, 599(1):81-110
|
86 王昌建, 徐胜利, 费立森, 等. 弯管内爆轰波传播的流场显示 和数值模拟. 力学学报, 2006, 38(1): 9-15
|