[1] |
陈懋章. 2002. 黏性流体力学基础. 北京: 高等教育出版社(Chen M Z. 2002. Fundamentals of Viscous Fluid Dynamics. Beijing: Higher Education Press).
|
[2] |
董义道, 王东方, 王光学, 邓小刚. 2016. 雷诺应力模型的初步应用. 国防科技大学学报, 38(4):46-53(Dong Y D, Wang D F, Wang G X, Deng X G. 2016. Preliminary application of Reynolds stress model. Journal of National University of Defence Technology, 38(4):46-53).
|
[3] |
符松. 1994. 湍流模式--研究现状与发展趋势. 应用基础与工程科学学报, 2(1):1-15(Fu S. 1994. Turbulence models: Presnet status and future developement. Journal of Basic Science and Engineering, 2(1):1-15).
|
[4] |
傅德薰, 马延文, 李新亮, 王强. 2010. 可压缩湍流直接数值模拟. 北京: 科学出版社(Fu D X, Ma Y W, Li X L, Wang Q. 2010. Direct Numerical Simulation of Compressible Turbulence. Beijing: Science press).
|
[5] |
聂胜阳, 王垠, 刘志强, 金朋, 焦瑾. 2019. 基于S-A与SSG/LRR-$omega$两种湍流模型的CHN-T1标模计算与分析. 空气动力学学报, 37(2):310-319(Nie S Y, Wang Y, Liu Z Q, Jin P, Jiao J. 2019. Numerical inverstigation and discussion on CHN-T1 benchmark model using Spalart-Allmaras model and SSG/LRR-$omega $ model. Acta Aerodynamica Sinica, 37(2):310-319).
|
[6] |
是勋刚. 1992. 湍流. 天津: 天津工业大学出版社(Shi X G. 1992. Turbulent Flow. Tianjin: Tianjin Polytechnic University Press).
|
[7] |
王圣业. 2018. 高精度WCNS 格式在亚/跨声速分离流动中的应用研究. [博士论文]. 长沙: 国防科技大学(Wang S Y. 2018. Application research of high-order weighted compact nonlinear schemes in subsonic/transonic separated flows. [PhD Thesis]. Changsha: National University of Defense Technology).
|
[8] |
王圣业, 王光学, 董义道, 邓小刚. 2017. 基于雷诺应力模型的高精度分离涡模拟方法. 物理学报, 66:184701(Wang S Y, Wang G X, Dong Y D, Deng X G. 2017. High-order detached-eddy simulation method based on a Reynolds-stress background model. Acta Physica Sinica, 66:184701).
|
[9] |
王运涛, 刘刚, 陈作斌. 2019. 第一届航空CFD可信度研讨会总结. 空气动力学学报. 37(2):247-261(Wang Y T, Liu G, Chen Z B. 2019. Summary of the first aeronautical computational fluid dynamics credibility workshop. Acta Aerodynamica Sinica, 37(2):247-261).
|
[10] |
张伟伟, 朱林阳, 刘溢浪, 寇家庆. 机器学习在湍流模型构建中的应用进展. 空气动力学报, 37(3):444-454(Zhang W W, Zhu L Y, Liu Y L, Kou J Q. Progresses in the application of mechine learning in turbulence modeling. Acta Aerodynamica Sinica, 37(3):444-454).
|
[11] |
郑晓静, 王国华. 2020. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 42:522-537(Zheng X J, Wang G H. 2020. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 42:522-537).
|
[12] |
周培源. 1940. 关于Reynolds求似应力方法的推广和湍流的性质. 中国物理学报, 4:1.(Chou P Y. 1940. Chin. Journ. of Phys, 4:1).
|
[13] |
周铸, 黄江涛, 黄勇, 等. 2017. CFD 技术在航空工程领域的应用、挑战与发展. 航空学报, 38(3):020891(Zhou Z, Huang J T, Huang Y, et al. 2017. CFD technology in aeronautic engineering field: Applications, challenges and development. Acta Aeronautica et Astronautica Sinica, 38(3):020891).
|
[14] |
Al-Sharif S F. 2011. Reynolds stress transport modelling. Computational Simulations and Applications, InTech, 3-26.
|
[15] |
Bassi F, Crivellini A, Rebay S, Savini M. 2011. Disontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and $k$-$omega $ turbulence model equations. Comput. Fluids, 34:507-540.
|
[16] |
Boussinesq J. 1877. Theorie de l' Ecoulement Tourbillant. Mem. Presents par Divers Savants Acad. Sci. Inst. Fr, 23:46-50.
|
[17] |
Brandt A. 2005. Multiscale solvers and systematic upscaling in computational physics. Computer Physics Communications, 169(1-3):438-441.
|
[18] |
Brun G, Herard J M, Jeandel D, Uhlmann M. 2000. An approximate Roe-type Riemann solver for a class of realizable second order closure. Int. J. Comput. Fluid Dyn., 13:223-249.
|
[19] |
Cecora R D, Radespiel R, Eisfeld B, et al. 2015. Differential Reynolds-stress modeling for aeronautics. AIAA Journal, 53(3):739-755.
|
[20] |
Chaouat B. 2006. Reynolds stress transport modeling for high-lift airfoil flows. AIAA J. 44(10):2390-2403.
|
[21] |
Chaouat B. 2011. An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations. Int. J. Numer. Methods Fluids, 67:1207-1233.
|
[22] |
Chaouat B. 2017. The State of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow Turbulence Combust, 99:279-327
|
[23] |
Chassaing J C, Gerolymos G A, Vallet I. 2003. Efficient and robust Reynolds-stress model computation of three-dimensional compressible flows. AIAA J., 41(5):763-773.
|
[24] |
Cheng Y, Canuto V M, Howard A M. 2005. Nonlocal convective PBL model based on new third- and fourth-order moments. Journal of Atmospheric Science, 62:2189-2204.
|
[25] |
Chien K Y. 1982. Predictions of channel and boundary-layer flows with a low-Reynolds-Number turbulence model. AIAA J., 20(1):33-38.
|
[26] |
Chou P Y. 1945. On the velocity correlations and the solution of the equations of turbulent fluctuation. Quart. Appl. Math., 3:38.
|
[27] |
Chow J S, Zilliac G G, Bradshaw P. 1993. Measurements in the near-field of a turbulent wingtip vortex//31st Aerospace Sciences Meeting, AIAA Paper 1993-0551.
|
[28] |
Chow J S, Zilliac G G, Bradshaw P. 1997. Mean and turbulence measurements in the near field of a wingtip vortex. AIAA Journal, 35(10):1561-1567.
|
[29] |
Chu J, Luckring J. 1996. Experimental surface pressure data obtained on $65^circ$ delta wing across Reynolds number and Mach number ranges. NASA TM 4645.
|
[30] |
Craft T J. 1998. Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows. Int. J. Heat Fluid Flow, 19(5):541-548.
|
[31] |
Craft T J, Launder B E. 1992. New wall-reflection model applied to the turbulent impinging jet. AlAA Journal, 30(12):2970-2972.
|
[32] |
Craft T J, Launder B E. 1996. A Reynolds stress closure designed for complex geometries. Int. J. Heat Fluid Flow, 17(3):245-254.
|
[33] |
Crow S C. 1968. Viscoelastic properties of fine-grained incompressible turbulence. Journal of Fluid Mechanics, 33(1):1-20.
|
[34] |
Daly B J. 1970. Transport equations in turbulence. Phys. Fluids, 13(11):2634-2649.
|
[35] |
Deardorff J. 1973. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng., ASME, 95:429-438.
|
[36] |
Deardorff J. 1974. Three-dimensional numerical study of the height and mean structure of heated planetary boundary layer. Bound.-Layer Meteorol, 7:81-106.
|
[37] |
Dekeyser I, Launder B E. 1985. A comparison of triple-moment temperature-velocity correlations in the asymmetric heated jet with alternative closure models//Turbulent Shear Flows 4, Springer Berlin Heidelberg, 102-117.
|
[38] |
Deng G B, Visonneau M. 1997. Near-wall modelization for dissipation in second-moment closures//11th Symposium on Turbulent Shear Flows, 2: P2-101-P2-106.
|
[39] |
Deng X G, Mao M L, Tu G H, Liu H Y, Zhang H X. 2011. Geometric conservation law and application to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 230:1100-1115.
|
[40] |
Deng X G, Min Y B, Mao M L, Liu H Y, Tu G H, Zhang H X. 2013. Further study on geometric conservation law and application to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 239:90-111.
|
[41] |
Donaldson C duP, Rosenbaum H. 1968. Calculation of the turbulent shear flows through closure of the reynolds equations by invariant modeling. ARAP Report 127, Aeronautical Research Associates of Princeton, Princeton, NJ.
|
[42] |
Eisfeld B, Brodersen O. 2005. Advanced turbulence modelling and stress analysis for the DLR-F6 configuration//23rd AIAA Applied Aerodynamics Conference, AIAA Paper 2005-4727.
|
[43] |
Eisfeld B, Rumsey C L, Togiti V. 2016. Verification and validation of a second-moment-closure model. AIAA Journal, 54(5):1524-1541.
|
[44] |
Eisfeld B, Rumsey C L. 2020. Length-scale correction for Reynolds-stress modeling. AIAA Journal, 58(4):1518-1528.
|
[45] |
Frohlich J, von Terzi D. 2008. Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44:349-377.
|
[46] |
Fu S. 1998. Modelling of pressure-strain correlations for Taylor-Proudman turbulence. Science in China ( Series A), 41(6):638-646.
|
[47] |
Fu S, Launder B E, Leschziner M A. 1987. Modeling strongly swirling recirculating jet flow with Reynolds-stress transport closures//Sixth Symposium on Turbulent Shear Flows, Toulouse, France.
|
[48] |
Fu S, Launder B E, Tselepidakis D P. 1987. Accommodating the effects of high strain rates in modelling the pressure-strain correlation. Technical Report TFD/87/5.
|
[49] |
Georgiadis N, Rizzetta D P, Fureby C. 2010. Large-eddy simulation: Current capabilities, recommended practices, and future research. AIAA Journal, 48(8):1772-1784.
|
[50] |
Gerolymos G A, Vallet I. 2007. Low-diffusion approximate Riemann Solvers for Reynolds-stress transport//18th AIAA Computational Fluid Dynamics Conference, Miami, FL, AIAA paper 2007-4467.
|
[51] |
Gibson M M, Launder B E. 1978. Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 86(3):491-511.
|
[52] |
Gilbert N, Kleiser L. 1991. Turbulence model testing with the aid of direct numerical simulation results//8th Symp. on Turbulent Shear Flows, TU Munchen, p. 29. 1.
|
[53] |
Gordeyev S, Post M, McLaughlin T, et al. 2007. Aero-optical environment around a conformal-window turret. AIAA Journal, 45(7):1514-1524.
|
[54] |
Greschner B, Thiele F, Jacob M, et al. 2008. Prediction of sound generated by a rod--airfoil configuration using EASM DES and the generalised Lighthill/FW-H analogy. Computers & Fluids, 37:402-413.
|
[55] |
Grossman S A, Narayan R. 1993. A Theory of nonlocal mixing-length convection. 2: Generalized smoothed particle hydrodynamics simulations. Astrophysical Journal Supplement Series, 89:361-394.
|
[56] |
Gryanik V M, Hartmann J, Raasch S, Schroter M. 2005. A renement of the Millionshchikov quasi-normality hypothesis for convective boundary layer turbulence. Journal of Atmospheric Sciences, 62:2632-2638.
|
[57] |
Hanjalic K, Jakirlic S. 1993. A model of stress dissipation in second-moment closures. Appl. Sci. Res, 51:513-518.
|
[58] |
Hanjalié K, Launder B E. 1976. Contribution towards a Reynolds stress closure for low-Reynolds-number turbulence. Journal of Fluid Mechanics, 74(4):593-610.
|
[59] |
Hanjali? K, Launder B. 2011. Modelling Turbulence in Engineering and the Environment, Second-Moment Routes to Closure. Cambridge: Cambridge University Press.
|
[60] |
Hanjali? K, Jakirli? S, Had?i? I. 1997. Expanding the limits of "equilibrium" second-moment turbulence closures. Fluid Dyn. Res., 20(1-6):25-41.
|
[61] |
Hartmann R, Held J, Leicht T. 2011. Adjoint-based error estimation and adaptive mesh refinement for the RANS and $k$-$omega $ turbulence model equations. J. Comput. Phys, 230(11):4268-4284.
|
[62] |
Jakirli? S, Hanjali? K. 2002. A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech., 459:139-166.
|
[63] |
Jeyapaul E, Coleman G N, Rumsey C L. 2014. Assessment of higher-order rans closures in a decelerated planar wall-bounded turbulent flow. Int. J. Heat and Fluid Flow, 10(4):282-300.
|
[64] |
Jovanovi'c J, Durst F, Johansson T G. 1993. Statistical analysis of the dynamic equations for higher-order moments in turbulent wall bounded flows. Physics of Fluids A: Fluid Dynamics, 5:2886-2900.
|
[65] |
Kalitzin G, Gould A, Benton J. 1996. Application of two-equation turbulence models in aircraft design//34th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1996-0327.
|
[66] |
Kawamura H, Sasaki J, Kobayashi K. 1995. Budget and modelling of triple-moment velocity correlations in a turbulent channel flow based on DNS//10th Symposium on Turbulent Shear Flows, August 14-16, 1995, pp. 13-18.
|
[67] |
Kebede W, Launder B E, Younis B A. 1985. Large-amplitude periodic pipe flow: A Second-Moment Closure study//5th Symp. on Turbulent Shear Flows, Cornell University, Ithaca, New York, p. 16. 23. 1.
|
[68] |
Kok J C, Spekreijse S P. 2000. Efficient and accurate implementation of the $k$-$omega $ turbulence model in the NLR multi-block Navier-Stokes system. NAL NLR-TP-2000-144.
|
[69] |
Kolmogorov A N. 1941. Local Structure of turbulence in incompressible viscous fluid for very large reynolds number. Dokl. Akad. Nauk SSSR, 30:299-303.
|
[70] |
Kurbatskii A F, Poroseva S V. 1997. A model for calculating the three components of the excess for the turbulent field of flow velocity in a round pipe rotating about its longitudinal axis. High Temperature, 35(3):432-440.
|
[71] |
Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12):2894-2906.
|
[72] |
Launder B E. 1996. An introduction to single-point closure methodology. Simulation and Modeling of Turbulent Flows, Oxford University Press, 243-310.
|
[73] |
Launder B E, Reece G L, Rodi W. 1975. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3):537-566.
|
[74] |
Launder B E, Tselepidakis D P. 1993. Progress and paradoxes in modelling near-wall turbulence. Turbulent Shear Flows, 8:81-96.
|
[75] |
Lav C, Sandberg R D, Philip J. 2019. A framework to develop data-driven turbulence models for flows with organised unsteadiness. Journal of Computational Physics, 383:148-165.
|
[76] |
Lee-Rausch E M, Rumsey C L, Eisfeld B. 2016. Application of a full reynolds stress model to high lift flows. AIAA 2016-3944.
|
[77] |
Levy D W, Laflin K R, Tinoco E N, et al. 2013. Summary of data from the fifth AIAA CFD Drag Prediction Workshop. AIAA Paper 2013-0046.
|
[78] |
Liu C B, Nithiarasu P T P T. 2010. Wall distance calculation using the Eikonal/Hamilton-Jacobi equations on unstructured meshes. Eng. Comput., 27:645-657.
|
[79] |
Lumley J L. 1978. Computational modeling of turbulent flows. Adv. Appl. Mech. 18(4b):123-176.
|
[80] |
Lumley J L. 1983. Turbulence modeling. J. Appl. Mech., 50:1097-1103.
|
[81] |
Lumley J L, Khajeh-Nouri B. 1974. Computational modeling of turbulent transport. Advances in Geophysics, 18A:169-192.
|
[82] |
Malik M R, Bushnell D, eds. 2012. Role of Computational fluid dynamics and wind tunnels in aeronautics R&D. NASA TP 2012-217602.
|
[83] |
Mellor G L, Herring H J. 1973. A survey of mean turbu1ent fie1d closure mode1s. AlAA Journal, 11(5):590-599.
|
[84] |
Menter F R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 32(8):1598-1605.
|
[85] |
Menter F, Kuntz M, Bender R. 2003. A scale-adaptive simulation model for turbulent flow predictions. AIAA Paper 2003-0767.
|
[86] |
Menter F R, Langtry R B, Likki S R, et al. 2006. A correlation based transition model using local variables part 1: Model formulation. Journal of Turbomachinery, 128(3):413-422.
|
[87] |
Menter F, Kuntz M, Langtry R. 2003. Ten years of industrial experience with the SST turbulence model. Begell House, 2003: 625-632.
|
[88] |
Millionshtchikov M D. 1941. On the theory of homogeneous isotropic turbulence. C. R. Acad. Sci. SSSR, 32:615-619.
|
[89] |
Mor-Yossef Y. 2014. Unconditionally stable time marching scheme for Reynolds stress models. Journal of Computational Physics, 276:635-664.
|
[90] |
Mor-Yossef Y. 2016. Robust turbulent flow simulations using a Reynolds-stress-transport model on unstructured grids. Computers and Fluids, 129:111-133.
|
[91] |
Nasr N B, Gerolymos G A, Vallet I. 2014. Low-diffusion approximate Riemann solvers for Reynolds-stress transport. J. Comput. Phys., 268(1):186-235.
|
[92] |
Nie S Y, Krimmelbein N, Krumbein A, Grabe C. 2018. Coupling of a Reynolds stress model with the $gamma $-$Re_{ heta t}$ transition model. AIAA Journal, 56(1):146-157.
|
[93] |
Pope S B. 2000. Turbulent Flows. Cambridge: Cambridge University Press.
|
[94] |
Probst A, Radespiel R, Knopp T. 2011. Detached-eddy simulation of aerodynamic flows using a Reynolds-stress background model and algebraic RANS-LES sensors//20th AIAA Computational Fluid Dynamics Conference, 27-30 June 2011, Honolulu, Hawaii, AIAA 2011-3206.
|
[95] |
Reynolds W C. 1970. Computation of turbulent flows-state of the art. Report No. MD-27, Dept. Mech. Eng, Stanford University,CA.
|
[96] |
Rotta J C. 1951. Statistische theorie nichthomogener turbulenz. Zeitschrift fur Physik, 129:547-572.
|
[97] |
Rubinstein R, Barton J M. 1990. Nonlinear Reynolds stress models and the renormalization group. Phys.Fluids A, 8:1472-1476
|
[98] |
Rumsey C L. 2015. Application of Reynolds stress models to separated aerodynamic flows//Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics, Eisfeld B. eds. Springer Tracts in Mechanical Engineering, Springer, New York, 19-37.
|
[99] |
Rumsey C L. 2020. Turbulence Modeling Resource. NASA Langley Research Center, Hampton, VA, http://turbmodels.larc.nasa.gov.
|
[100] |
Rumsey C L, Neuhart D H, Kegerise M A. 2016. The NASA juncture flow experiment: Goals, progress, preliminary testing//54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1557.
|
[101] |
Sanchez-Rocha M, Menon S. 2009. The compressible hybrid RANS/LES formulation using an additive operator. Journal of Computational Physics, 228(6):2037-2062.
|
[102] |
Schoenawa S, Hartmann R. 2014. Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model. Journal of Computational Physics, 262:194-216.
|
[103] |
Schumann U. 1977. Realizability of Reynolds-stress turbulence models. Phys. Fluids, 20:721-725.
|
[104] |
Shih T H, Mansour N, Chen J Y. 1987. Reyno1ds stress models of homogeneous turbulence. studying turbulence using numerical simulation databases, NASA Ames/Stanford CTR-S87, pp 9.
|
[105] |
Shima N. 1998. Low-Reynolds-number second-moment closure without wall-reflection redistribution terms. Int. J. Heat Fluid Flow, 19(5), 549-555.
|
[106] |
Shur M L, Strelets M K, Travin A K, Spalart P R. 2000. Turbulence modeling in rotating and curved channels: assessing the spalart-shur correction. AIAA Journal, 38(5):784-792.
|
[107] |
Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D. 2014. CFD vision 2030 study: A path to revolutionary computational aerosciences. NASA/CR-2014-218178.
|
[108] |
Smagorinsky J. 1963. General circulation experiments with the primitive equations. I. the basic experiment. Mon. Weather Rev., 91:99-164.
|
[109] |
Smits A J, Young S. Bradshaw P. 1979. The Effect of short regions of high surface curvature on turbulent boundary layers. J. Fluid Mech., 94(2):209-242.
|
[110] |
Spalart P, Allmaras S. 1994. A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale, 1:5-21.
|
[111] |
Spalart P, Jou W H, Strelets M, et al. 1997. Comments on the feas1ibility of LES for wings, on a hybrid RANS/LES approach//Proceedings of first AFOSR international conference on DNS/LES.
|
[112] |
Spalart P R. 2000. Strategies for turbulence modelling and simulation. International Journal of Heat and Fluid Flow, 21:252-263.
|
[113] |
Spalart P, Rumsey C. 2007. Effective inflow conditions for the turbulence models in aerodynamic calculations. AIAA Journal, 45(10):2544-2553.
|
[114] |
Speziale C, Abid R, Durbin P. 1994. On the realizability of Reynolds stress turbulence closures. Journal of Scientific Computing, 9:369-403.
|
[115] |
Speziale C G, Abid R, Anderson E C. 1992. Critical evaluation of two-equation models for near-wall turbulence. AIAA J., 30(2), 324-331.
|
[116] |
Speziale C G, Sarkar S, Gatski T B. 1991. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech., 227:245-272.
|
[117] |
Stoellinger M, Heinz S, Saha P. 2015. Reynolds stress closure in hybrid RANS-LES methods//S. Girimaji et al. (eds.), Progress in Hybrid RANS-LES Modelling, 319-328.
|
[118] |
Thompson K B, Hassan H A. 2015. Simulation of a variety of wings using a Reynolds stress model. Journal of Aircraft, 52(5):1668-1680.
|
[119] |
Togiti V, Eisfeld B, Brodersen O. 2014. Turbulence model study for the flow around the NASA Common Research Model. Journal of Aircraft, 51(4):1331-1343.
|
[120] |
Togiti V K, Eisfeld B. 2015. Assessment of $g$-equation formulation for a second-moment reynolds stress turbulence model//22nd AIAA Computational Fluid Dynamics Conference, AIAA 2015-2925.
|
[121] |
Tracey B D, Duraisamy K, Alonso J J. 2015. A machine learning Strategy to assist turbulence model development//53rd AIAA Aerospace Science Meeting, AIAA Paper 2015-1287.
|
[122] |
Tucker H J, Reynolds A J. 1968. The Distortion of turbulence by irrotational plane strain. Journal of Fluid Mechanics, 32(4):657-673.
|
[123] |
Vassberg J C, DeHaan M A, Rivers S M, Wahls R A. 2008. Development of a common research model for applied CFD validation studies. AIAA Paper 2008-6919source.
|
[124] |
Visbal R M, Gaitonde D V. 2002. On the Use of higher-order finite-difference schemes on curvilinear and deforming meshes. Journal of Computational Physics, 181:155-185.
|
[125] |
Wang S Y, Deng X G, Wang G X, Yang X L. 2020. Blending the eddy-viscosity and Reynolds-stress models using uniform high-order discretization. AIAA Journal, Article in Advance.
|
[126] |
Wang S Y, Dong Y D, Deng X G, et al. 2018. High-order simulation of aeronautical separated flows with a Reynolds stress model. Journal of Aircraft, 55(3):1177-1190.
|
[127] |
Wilcox D C. 1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 26(11),1299-1310.
|
[128] |
Wilcox D C. 2006. Turbulence modeling for CFD. Third edition, DCW Industies, Inc.
|
[129] |
Wilcox D C, Chambers T L. 1977. Streamline curvature effects on turbulent boundary layers. AIAA Journal, 15(4):574-580.
|
[130] |
Wilcox D C, Rubesin M W. 1980. Progress in turbulence modeling for complex flow fie1ds including effects of compressibility. NASA TP-1517.
|
[131] |
Yakhot V, Orszag S A. 1986. Renormalization group analysis of turbulence: I. Basic theory. Journal of Scientific Computing, 1(1):1-51.
|
[132] |
Yap J C. 1987. Turbulent heat and momentum transfer in recirculating and impinging flows. [PhD Thesis]. Manchester: University of Manchester, Faculty of Technology.
|
[133] |
Zhang Z J, Duraisamy K. 2015. Machine learning methods for data-driven turbulence modeling//22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2015-2406.
|
[134] |
Zhou Y. 2010. Renormalization group theory for fluid and plasma turbulence. Physics Reports, 488:1-49.
|