留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁霍普金森杆实验技术及研究进展

王维斌 索涛 郭亚洲 李玉龙 聂海亮 刘会芳 金康华 杜冰 江斌

王维斌, 索涛, 郭亚洲, 李玉龙, 聂海亮, 刘会芳, 金康华, 杜冰, 江斌. 电磁霍普金森杆实验技术及研究进展. 力学进展, 2021, 51(4): 729-754 doi: 10.6052/1000-0992-20-024
引用本文: 王维斌, 索涛, 郭亚洲, 李玉龙, 聂海亮, 刘会芳, 金康华, 杜冰, 江斌. 电磁霍普金森杆实验技术及研究进展. 力学进展, 2021, 51(4): 729-754 doi: 10.6052/1000-0992-20-024
Wang W B, Suo T, Guo Y Z, Li Y L, Nie H L, Liu H F, Jin K H, Du B, Jiang B. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 2021, 51(4): 729-754 doi: 10.6052/1000-0992-20-024
Citation: Wang W B, Suo T, Guo Y Z, Li Y L, Nie H L, Liu H F, Jin K H, Du B, Jiang B. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 2021, 51(4): 729-754 doi: 10.6052/1000-0992-20-024

电磁霍普金森杆实验技术及研究进展

doi: 10.6052/1000-0992-20-024
基金项目: 高等学校创新引智计划资助(BP0719007); 国家自然科学基金资助项目(11527803, 11922211, 12172304, 12025205).
详细信息
    作者简介:

    李玉龙, 教授, 博士生导师. 美国约翰霍布金森大学、日本东京理科大学、法国巴黎第六大学等访问教授. 享受国务院政府特殊津贴, 2004年入选“国防科工委第二批国防科技工业‘511’人才工程”, 2006年被评为国防科工委“优秀教师”称号, 入选陕西省“三五人才”. 现任国际理论与实用力学联合会(IUTAM)材料力学工作委员会委员, 国家“863”专家组成员, 国务院学位委员会第六届学科评议组力学组成员, 第六届教育部科学技术委员会数理学部委员, 第十一届、第十二届国家自然科学基金委员会数理科学部专家评审组成员, 中国力学学会第九届理事会常务理事, 中国航空学会第八届理事会理事、结构与强度分会主任委员. 《Acta Mechanica Sinica》《固体力学学报》《航空学报》《爆炸与冲击》等杂志编委. 国家重点学科“固体力学”学科带头人, 国防重点学科实验室“飞行器结构力学 与强度技术”负责人, 教育部和国家外专局创新引智基地“结构力学行为科学与技术”负责人, 航空学院“先进结构与材料研究所”所长. 主要从事飞行器结构抗坠毁设计, 飞行器结构抗离散源撞击设计、分析与试验验证, 极端环境下先进材料及结构的力学行为及其优化设计等研究工作, 主持多项国家自然科学重点基金、国防预研以及重大工程应用项目的研究. 出版专著4本, 获美国、法国专利共计3项, 中国专利20余项, 获得省部级科技成果一等奖、二等奖共5项, 国家级教学成果一等奖2项. 发表论文260余篇, 被SCI检索100篇, 被EI检索137篇

    通讯作者:

    liyulong@nwpu.edu.cn

  • 中图分类号: O347.3

Experimental technique and research progress of electromagnetic Hopkinson bar

More Information
  • 摘要: 电磁霍普金森(E-Hopkinson)杆实验技术是利用电磁驱动的方式替代了传统霍普金森杆中子弹撞击加载杆来产生应力波, 是电磁驱动技术与霍普金森杆实验技术相结合而发展起来的一种新的动态加载技术. 本文综述了E-Hopkinson杆实验技术在单轴单向/双向及动态双轴对称压缩/拉伸、复合材料的层间断裂、金属动态包辛格效应等领域的应用现状, 涵盖了实验研究, 理论分析及数值模拟等, 最后对该实验技术未来发展方向进行了展望.

     

  • 图  1  Kolsky提出的实验装置示意图(Kolsky 1949)

    图  2  用于分离式Hopkinson压杆装置的电磁驱动装置原理图(Liu et al. 2014)

    图  3  微型双脉冲串联加载SHPB实验装置原理图(Huang et al. 2019)

    图  4  基于电磁加载的拉压杆集成装置原理图(Chen et al. 2014)

    图  5  单轴单向E-Hopkinson杆加载装置原理图(Nie et al. 2018a, 2018b)

    图  6  E-Hopkinson杆放电等效电路

    图  7  放电线圈与次级线圈结构图. (a)刨面图, (b)线圈简化模型图

    图  8  电磁场模型的网络划分

    图  9  次级线圈与入射杆结构场模型部分单元

    图  10  2 mF与4 mF电容在500 V及1 kV电压下的数值模拟和实验测试结果对比

    图  11  电磁场数值模拟结果: (a)次级线圈周围磁场云图, (b)次级线圈上磁力线分布

    图  12  数值模拟中得到的次级线圈底端与压杆内部的应力波对比

    图  13  压缩实验结果. (a)黄铜, (b)2024铝

    图  14  拉伸实验结果, (a)黄铜, (b)2024铝

    图  15  E-Hopkinson杆单轴双向压缩加载示意图

    图  16  E-Hopkinson杆双向加载数据推导示意图

    图  17  (a)单向压缩实验的原始波形及(b)试样两端应力、应变率及应力平衡系数, R(t)-时间曲线(江斌等 2020)

    图  18  (a)动态双向压缩实验的原始波形及(b)试样两端应力、应变率及应力平衡系数, R(t)-时间曲线(江斌 等 2020)

    图  19  动态双向加载层间断裂示意图

    图  20  高速摄像机拍摄的DCB试样变形过程. (a)对称加载, (b)单边加载

    图  21  (a)动态DCB实验入射波与反射波, (b)试样加载过程中I型和II型能量释放率变化曲线(Liu et al. 2018)

    图  22  包辛格效应动态单轴双向非同步加载E-Hopkinson杆系统示意图

    图  23  连续的预压缩−拉伸加载的入射波. (a)入射波加载过程, (b)压缩波与拉伸波的一致性

    图  24  应变率350 s−1下6061铝合金5%预压缩−拉伸的应力−应变曲线. (a)预压缩-卸载, (b)反向拉伸

    图  25  动态双轴E-Hopkinson杆实验装置布局图

    图  26  动态双轴E-Hopkinson杆实验装置实物图

    图  27  动态双轴E-Hopkinson 杆同步放电采集的四列应力波信号

    图  28  Ohtake等(1999)提出的三种十字型试样的夹持臂出现断裂失效而提出了三种解决方案. (a)切除部分区域, (b)减小测试区厚度, (c)试样臂上加工狭缝

    图  29  三轴动态加载装置构想图

  • [1] 郭伟国, 赵融, 魏腾飞, 等. 2010. 用于Hopkinson压杆装置的电磁驱动技术. 实验力学, 25: 682-689 (Guo W G, Zhao R, Wei T F. 2010. Electromagnetic drive technology for Hopkinson bar presses. Experimental Mechanics, 25: 682-689 (in Chinese)).
    [2] 江斌, 胡嘉奕, 郭亚洲, 等. 2020. 基于电磁Hopkinson杆的无机玻璃动态力学性能测试技术. 科学通报, 65: 3475-3484 (Jiang B, Hu J Y, Guo Y Z, et al. 2020. Dynamic mechanical properties testing technology of inorganic glass based on Electromagnetic Hopkinson bar. Chinese Science Bulletin, 65: 3475-3484 (in Chinese)). doi: 10.1360/TB-2020-0223
    [3] 李军, 严萍, 袁伟群. 2014. 电磁轨道炮发射技术的发展与现状. 高电压技术, 40: 1052-1064 (Li J, Yan P, Yuan W Q. 2014. Development and actuality of electromagnetic rail gun firing technology. High Voltage Technology, 40: 1052-1064 (in Chinese)).
    [4] 李玉龙, 聂海亮, 汤忠斌, 索涛. 2014a. 基于电磁力的霍普金森拉压杆应力波发生器及实验方法. 中国: CN103926138A, 2016-01-13

    Li Y L, Nie H L, Tang Z B, Suo T. 2014a. Hopkinson stress wave generator based on electromagnetic force and its experimental method. China: CN103926138A, 2016-01-13 (in Chinese)
    [5] 李玉龙, 聂海亮, 汤忠斌, 索涛, 吴蓓蓓. 2014b. 基于电磁力加载的分离式霍普金森压杆实验装置. 中国: CN103913382A, 2016-04-13

    Li Y L, Nie H L, Tang Z B, Suo T, Wu B B. 2014b. Separate Hopkinson pressure bar experiment device based on electromagnetic force loading. China: CN103913382A, 2016-04-13 (in Chinese)
    [6] 刘战伟, 吕新涛, 陈喜民, 等. 2013. 基于多级电磁发射的mini-SHPB装置. 实验力学, 28: 557-562 (Liu Z W, Lü X T, Chen X M, et al. 2013. Mini-shpb device based on multistage electromagnetic emission. Experimental Mechanics, 28: 557-562 (in Chinese)).
    [7] 牛润新, 何仁. 2006. 永磁式缓速器的稳健性设计. 江苏大学学报(自然科学版), 27: 493-496.

    Niu R X, He R. 2006. Robust design of permanent magnet retarder. Journal of Jiangsu University (Natural Science Edition), 27: 493-496. (in Chinese)
    [8] 宋玉普, 赵国藩. 1990. 平面应变状态下的混凝土变形和强度特性. 水利学报, 22-29 (Song Y P, Zhao G F. 1990. Deformation and strength characteristics of concrete under plane strain. Journal of Water Conservancy, 22-29 (in Chinese)). doi: 10.3321/j.issn:0559-9350.1990.05.003
    [9] 宋玉普, 赵国藩. 1994. 三向应力状态下钢纤维混凝土的强度特性及破坏准则. 土木工程学报, 27: 14-23 (Song Y P, Zhao G F. 1994. Strength characteristics and failure criteria of steel fiber reinforced concrete under triaxial stress. Chinese Journal of Civil Engineering, 27: 14-23 (in Chinese)).
    [10] 王传志, 过镇海, 张秀琴. 1987. 双轴和三轴受压混凝土的强度试验. 土木工程学报, 15-27 (Wang C Z, Guo Z H, Zhang X Q. 1987. Strength tests for biaxial and triaxial compression concrete. Chinese Journal of Civil Engineering, 15-27 (in Chinese)).
    [11] 王斌, 李夕兵, 尹士兵, 等. 2010. 饱水砂岩动态强度的SHPB试验研究. 岩石力学与工程学报, 29: 1003-1009 (Wang B, Li X B B, Yin S B, et al. 2010. SHPB experimental study on dynamic strength of saturated sandstone. Chinese Journal of Rock Mechanics and Engineering, 29: 1003-1009 (in Chinese)).
    [12] 谢倍欣, 汤立群, 姜锡权, 等. 2019. 用于软材料的双子弹电磁驱动SHPB系统. 爆炸与冲击, 39: 69-75 (Xie B X, Tang L Q, Jiang X Q, et al. 2019. Dual bullet electromagnetic driven SHPB system for soft materials. Explosion and Shock, 39: 69-75 (in Chinese)).
    [13] 谢祖荣, 车勇, 黄之初. 2002. 基于Matlab的RLC二阶电路零输入响应的研究. 武汉理工大学学报, 24: 46-49 (Xie Z R, Che Y, Huang Z C. 2002. Study on response to zero input of the second order RLC circuit based on matlab. Journal of Wuhan University of Technology, 24: 46-49 (in Chinese)). doi: 10.3321/j.issn:1671-4431.2002.01.014
    [14] 赵志衡, 汝楠, 马涌, 等. 2016. 强脉冲电磁力驱动的冲击载荷. 爆炸与冲击, 36: 710-714 (Zhao Z H, Ru N, Ma Y, et al. 2016. Impact loads driven by strong pulsed electromagnetic force. Explosion and Shock, 36: 710-714 (in Chinese)). doi: 10.11883/1001-1455(2016)05-0710-05
    [15] Bauschinger J. 1881. Changes of the elastic limit and the modulus of elasticity on various metals. Zivilingenieur, 27: 289-348.
    [16] Bushway RR. 2001. Electromagnetic aircraft launch system development considerations. IEEE Transactions on Magnetics, 37: 52-54. doi: 10.1109/20.911789
    [17] Chaves F J, de Moura M, da Silva L, Dillard D. 2014. Fracture characterization of bonded joints using the dual actuator load apparatus. Journal of Adhesion Science and Technology, 28: 512-524. doi: 10.1080/01694243.2013.845357
    [18] Chen X M, Liu Z W, He G, et al. 2014. A novel integrated tension-compression design for a mini split Hopkinson bar apparatus. Review of Scientific Instruments, 85: 676-476.
    [19] Davies R, Austin ER. 1970. Developments in High Speed Metal Forming. Machinery Publishing, 284
    [20] Davies R M. 1948. A critical study of the Hopkinson pressure bar. Philosophical Transactions of the Royal Society of London. Series A. Mathematical Physical & Engineer Sciences, 240: 375-457.
    [21] Demmerle S, Boehler J P. 1993. Optimal design of biaxial tensile cruciform specimens. Journal of the Mechanics and Physics of Solids, 41: 143-181. doi: 10.1016/0022-5096(93)90067-P
    [22] Deng J H, Tang C, Zhan Y R, et al. 2013. Distribution of magnetic flux density and magnetic force in EMR. Advanced Materials Research, 652-654: 2248-2253.
    [23] Deng J H, Yu H P, Li C F. 2009. Numerical and experimental investigation of electromagnetic riveting. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 499: 242-247. doi: 10.1016/j.msea.2008.05.049
    [24] Duffy J, Campbell J D, Hawley R H. 1971. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum. Journal of Applied Mechanics, 38: 83-91. doi: 10.1115/1.3408771
    [25] Hauser F E, Simmons JA, Dorn J E. 1961. Strain rate effects in plastic wave propagation. //Shewmon P G , Zackay V F, eds, Response of Metals to High Velocity Deformation, Interscience, New York, 93-114
    [26] Hidayetoglu T K, Pica P N, Haworth W L. 1985. Aging dependence of the Bauschinger effect in aluminum alloy 2024. Materials Science and Engineering, 73: 65-76.
    [27] Hopkinson B. 1914. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London. Series A. Mathematical Physical&Engineer Sciences, 213: 437-456.
    [28] Huang W K, Chen G X, Hu M B, et al. 2019. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch. Review of Scientific Instruments, 90: 025110. doi: 10.1063/1.5077051
    [29] Huang W K, Huan S, Xiao Y, et al. 2017. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch. Review of Scientific Instruments, 88: 094703. doi: 10.1063/1.5001844
    [30] Jeremic R. 1999. Some aspects of time-temperature super-position principle applied for predicting mechanical properties of solid rocket propellants. Propellants, Explosives, Pyrotechnics, 24: 221-223. doi: 10.1002/(SICI)1521-4087(199908)24:4<221::AID-PREP221>3.0.CO;2-U
    [31] Kolsky H. 1949. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society Section B, 62: 676-700. doi: 10.1088/0370-1301/62/11/302
    [32] Krafft J M, Sullivan A M, Tipper C F. 1954. The effect of static and dynamic loading and temperature on the yield stress of iron and mild steel in compression. Proceedings of the Royal Society of London. Series A.Mathematical and Physical Sciences, 221: 114-127.
    [33] Liu H F, Nie H L, Zhang C, Li Y L. 2018. Loading rate dependency of Mode I interlaminar fracture toughness for unidirectional composite laminates. Composites Science and Technology, 167: 215-223. doi: 10.1016/j.compscitech.2018.07.040
    [34] Lin S B, Ding J L, Zbib H M, Aifantis E C. 1993. Characterization of yield surfaces using balanced biaxial tests of cruciform plate specimens. Scripta Metallurgica et Materialia, 28: 617-622. doi: 10.1016/0956-716X(93)90206-8
    [35] Liu Z W, Chen X M, Lü X T, et al. 2014. A mini desktop impact test system using multistage electromagnetic launch. Measurement, 49: 68-76. doi: 10.1016/j.measurement.2013.11.029
    [36] Moan G D, Embury J D. 1979. A study of the Bauschinger effect in Al-Cu alloys. Acta Metallurgica, 27: 903-914. doi: 10.1016/0001-6160(79)90125-1
    [37] Nie H L, Suo T, Shi X P, Liu H F, Li Y L, Zhao H. 2018b. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators. International Journal of Impact Engineering, 122: 73-82. doi: 10.1016/j.ijimpeng.2018.08.004
    [38] Nie H L, Suo T, Wu B H, Li Y L, Zhao H. 2018a. A versatile split Hopkinson pressure bar using electromagnetic loading. International Journal of Impact Engineering, 116: 94-104. doi: 10.1016/j.ijimpeng.2018.02.002
    [39] Ohtake Y, Rokugawa S, Masumoto H. 1999. Geometry determination of cruciform-type specimen and biaxial tensile test of C/C composites. Key Engineering Materials, 164-1: 151-154.
    [40] Park H, Kim J Y. 2005. Plasticity model using multiple failure criteria for concrete in compression. Journal of Solids and Structures, 42: 2303-2322. doi: 10.1016/j.ijsolstr.2004.09.029
    [41] Rittel D, Lee S, Ravichandran G. 2002. A shear-compression specimen for large strain testing. Experimental Mechanics, 42: 58-64. doi: 10.1007/BF02411052
    [42] Silva C M A, Rosa P, Martins P. 2009. An innovative electromagnetic compressive split Hopkinson bar. International Journal of Mechanics and Materials in Design, 5: 281-288. doi: 10.1007/s10999-009-9101-y
    [43] Takatsu N, Kato M, Sato K, et al. 1988. High-speed forming of metal sheets by electromagnetic force. JSME International Journal, 31: 142-148.
    [44] Thakur A, Nemat-Nasser S, Vecchio K S. 1996. Dynamic Bauschinger effect. Acta Metallurgica, 44: 2797-2807.
    [45] Wang G, Chen X, Cai J, et al. 2016. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments. Review of Scientific Instruments, 87: 35-87.
    [46] Xie B X, Xu P D, Tang L Q, et al. 2019. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system. International Journal of Applied Mechanics, 11: 1950018.
    [47] Xie H P. Zhu J B. Zhou T. Zhang K. Zhou C T. 2020. Conceptualization and preliminary study of engineering disturbed rock dynamics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(2). DOI: 10.1007/s40948-020-00157-x
    [48] Yu W, Wang P, Zhou C. 2009. General stress decomposition in nonlinear oscillatory shear flow. Journal of Rheology, 53: 215-238. doi: 10.1122/1.3037267
    [49] Yu Y, Wan M, Wu X D, Zhou X B. 2002. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. Journal of Materials Processing Technology, 123: 67-70. doi: 10.1016/S0924-0136(02)00062-6
  • 加载中
图(29)
计量
  • 文章访问数:  2667
  • HTML全文浏览量:  982
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 录用日期:  2021-08-18
  • 网络出版日期:  2021-09-01
  • 刊出日期:  2021-11-26

目录

    /

    返回文章
    返回