留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定常升阻力普适理论的特色和升力的物理来源

吴介之 刘罗勤 刘天舒

吴介之, 刘罗勤, 刘天舒. 定常升阻力普适理论的特色和升力的物理来源[J]. 力学进展, 2021, 51(1): 106-129. doi: 10.6052/1000-0992-20-014
引用本文: 吴介之, 刘罗勤, 刘天舒. 定常升阻力普适理论的特色和升力的物理来源[J]. 力学进展, 2021, 51(1): 106-129. doi: 10.6052/1000-0992-20-014
WU Jiezhi, LIU Luoqin, LIU Tianshu. The universal steady lift and drag theory and the physical origin of lift[J]. Advances in Mechanics, 2021, 51(1): 106-129. doi: 10.6052/1000-0992-20-014
Citation: WU Jiezhi, LIU Luoqin, LIU Tianshu. The universal steady lift and drag theory and the physical origin of lift[J]. Advances in Mechanics, 2021, 51(1): 106-129. doi: 10.6052/1000-0992-20-014

定常升阻力普适理论的特色和升力的物理来源

doi: 10.6052/1000-0992-20-014
基金项目: 

国家自然科学基金资助项目 (11472016, 91752202).

详细信息
    作者简介:

    *E-mail: luoqin.liu@utwente.nl
    吴介之, 1940年生, 1966年在北京航空航天大学获硕士学位, 曾任中国航空研究院工程师、副研究员(1986)、研究员(1987). 1980——1982年为美国明尼苏达大学访问学者, 1986年起迄今为美国田纳西大学空间研究院访问学者、研究教授. 1999年起为北京大学湍流与复杂系统国家重点实验室教授、北京大学工学院特聘教授. 主要从事涡动力学、空气动力学和复杂流动的基础理论与工程应用研究. 著有《涡动力学引论》(1993),《Vorticity and Vortex Dynamics》 (2006, Springer)和《Vortical Flows》(2015, Springer) 等专著. 发表论文120余篇. 曾获得1994年美国航空宇航协会(AIAA)田纳西分会Arnold将军奖、2000年AIAA应用空气动力学最佳论文奖等科研奖励.

    通讯作者:

    刘罗勤

  • 中图分类号: V211.1

The universal steady lift and drag theory and the physical origin of lift

More Information
    Corresponding author: LIU Luoqin
  • 摘要: 现代空气动力学诞生一百多年来, 已经发展出众多关于升力和阻力的理论. 但是, 其远场合力理论一直停留在低速不可压流. 虽经几代人的努力, 但仍未能把它精确地推广到黏性可压缩流. 这种状况直到最近才得以突破. 本文作者及其合作者依据对远场线化Navier-Stokes方程解析解的研究, 获得了经典不可压二维定常流的Kutta-Joukowski升力定理的现代二、三维普适版这个核心结果, 从而突破了经典空气动力学基础理论延续了八九十年的一个缺口. 基于线性近似得到的简洁公式, 何以能在高度非线性的复杂流场中仍然精确成立, 这里涉及饶有兴趣的方法论问题, 很值得关注. 本文的第一个任务, 是在简要回顾普适理论基本成果的基础上, 反思其方法论特色和背后的物理机理. 尽管严格的量化升力理论已经得到航空实践的广泛检验, 但在各种出版物和媒体上仍常常出现关于升力物理来源的各种假说. 这种状况表明: 升力物理来源这个问题, 并没有在国内外众多的教科书、专著和课堂中得到彻底的澄清, 认真回答这个问题在现今仍然具有迫切的重要性. 普适理论的普遍有效性和高度简洁性使人们能用它以尽可能直接的方式为澄清升力来源提供逻辑严密的论据, 值得着重考察. 这是本文的第二个任务.

     

  • [1] 刘罗勤. 2016. 黏性可压缩外流升阻力的统一理论基础. [博士论文]. 北京: 北京大学

    (Liu L Q. 2016. Unified theoretical foundations of lift and drag in viscous and compressible external flows. [PhD Thesis]. Beijing: Peking University).
    [2] 吴介之. 1984. 向旋涡索取升力. 国际航空, 4:2-5, 31.
    [3] 吴介之, 杨越. 2020. 关于旋涡定义的思考. 空气动力学学报, 38:1-8

    (Wu J Z, Yang Y. 2020. Thoughts on vortex definition. Acta Aerodynamica Sinica, 38:1-8).
    [4] Ackroyd J A D. 2015. Babinsky's demonstration: The theory of flight and its historical background. Journal of Aeronautical History, Paper No. 2015/01.
    [5] Baker G R, Meiron D I, Orszag S A. 1982. Generalized vortex methods for free-surface flow problems. J. Fluid Mech., 123:477-450.
    [6] Batchelor G K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University.
    [7] Bloor D. 2011. The Enigma of the Aerofoil. Chicago: University of Chicago.
    [8] Bryant L W, Williams D H. 1926. An investigation of the flow of air around an aerofoil of infinite span. Phil. Trans. Roy. Soc. Lond., 225:199-237.
    [9] Burgers J M. 1920. On the resistance of fluids and vortex motion. Pro. K. Akad. Wet. Amsterdam, 23:774-782.
    [10] Cole J D, Cook L P. 1986. Transonic Aerodynamics. New York: North-Holland.
    [11] Darrigol O. 2005. Worlds of Flow. New York: Oxford University.
    [12] Filon L N G. 1926. The forces on a cylinder in a stream of viscous fluid. Proc. Roy. Soc. Lond. A, 113:7-27.
    [13] Finn R, Gilbarg D. 1957. Asymptotic behavior and uniqueness of plane subsonic flows. Commun. Pure Appl. Math., 10:23-63.
    [14] Finn R, Gilbarg D. 1958. Uniqueness and the force formulas for plane subsonic flows. Trans. Am. Math. Soc., 88:375-379.
    [15] Frisch U, Villone B. 2014. Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. The European Physical Journal H, 39:325-351.
    [16] Glauert H. 1926. The Elements of Aerofoil and Airscrew Theory. Cambridge: Cambridge University.
    [17] Goldstein S. 1929. The forces on a solid body moving through viscous fluid. Proc. Roy. Soc. Lond. A, 123:216-225.
    [18] Goldstein S. 1931. The forces on a solid body moving through viscous fluid. Proc. Roy. Soc. Lond. A, 131:198-208.
    [19] Goldstein S. 1969. Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech., 1:1-29.
    [20] Helmholtz H. 1858. On integrals of the hydrodynamical equations which express vortex-motion. J. Pure Appl. Math., 55:25-55.
    [21] Joukowski N E. 1906. On annexed vortices. Proc. Phys. Nat. Sci. Soc., 13:12-25.
    [22] Kang L L, Liu L L, Su W D, Wu J Z. 2018. Minimum-domain impulse theory for unsteady aerodynamic force. Phys. Fluids, 30:016107.
    [23] Lagerstrom P A, Cole J D, Trilling L. 1949. Problems in the Theory of Viscous Compressible Fluids. Pasadena: California Institute of Technology.
    [24] Lagrange J L. 1781. Memoir on the Theory of Fluid Motion. Berlin: Nouv. Mém. Acad.
    [25] Lamb H. 1932. Hydrodynamics. Cambridge: Cambridge University.
    [26] Landau L D, Lifshitz E M. 1959. Fluid Mechanics. New York: Pergamon Press.
    [27] Lighthill M J. 1963. Introduction. Boundary Layer Theory. New York: Dover.
    [28] Lighthill M J. 1979. Waves and hydrodynamic loading//Proc. 2nd Int. Conf. Behaviour of Offshore Structures, 1:1-40.
    [29] Lighthill M J. 1995. Fluid Mechanics//Brown L M, Pais A, Sir B Pippard. eds. Twentieth Century Physics, Vol. II. New York: AIP Press., pp. 795-912.
    [30] Liu L Q. 2018. Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows. Singapore: Springer.
    [31] Liu L Q. 2019. The sole measure of aerodynamic forces in steady far field//IUTAM Symposium on Vortex Dynamics in Science, Nature and Technology, 24-28 June, SIO, La Jolla, USA.
    [32] Liu L Q, Kang L L, Wu J Z. 2017a. Zonal structure of unbounded external-flow and aerodynamics. Fluid Dyn. Res., 49:045508.
    [33] Liu L Q, Shi Y P, Zhu J Y, Su W D, Zou S F, Wu J Z. 2014. Longitudinal-transverse aerodynamic force in viscous compressible complex flow. J. Fluid Mech., 756:226-251.
    [34] Liu L Q, Wu J Z, Su W D, Kang L L. 2017b. Lift and drag in three-dimensional steady viscous and compressible flow. Phys. Fluids, 29:116105.
    [35] Liu L Q, Zhu J Y, Wu J Z. 2015. Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech., 784:304-341.
    [36] Noca F, Shiels D, Jeon D. 1997. Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct., 11:345-350.
    [37] Panton R L. 1984. Incompressible Flow. New York: Wiley.
    [38] Prandtl L. 1904. On the motion of fluids with very little friction//Proceedings of III International Mathematical Congress, Heidelberg.
    [39] Prandtl L, Tietjens O G. 1934. Applied Hydro- and Aeromechanics. New York: McGraw-Hill.
    [40] Rayleigh J W S. 1878. On the irregular flight of a tennis-ball. Mess. Math., 7:14-16.
    [41] Regis E. 2020. The enigma of aerodynamic lift. Scientific American, 322:44-51.
    [42] Saffman P. 1992. Vortex Dynamics. Cambridge: Cambridge University.
    [43] Schlichting H, Gersten K. 2000. Boundary-Layer Theory. Berlin: Springer.
    [44] Taylor G I. 1926. Note on the connection between the lift on an airfoil in a wind and the circulation round it. Phil. Trans. Roy. Soc. Lond., 225:238-245.
    [45] Thomson W. (Lord Kelvin) 1869. On vortex motion. Trans. R. Soc. Edinb., 25:217-260.
    [46] Truesdell C A. 1954. The Kinematics of Vorticity. Bloomington: Indiana University.
    [47] von Kármán T, Burgers J M. 1935. General Aerodynamic Theory——Perfect Fluids. Berlin: Springer.
    [48] Wu J C. 1981. Theory for aerodynamic force and moment in viscous flows. AIAA J., 19:432-441.
    [49] Wu J C. 1982. Problems of General Viscous Flow//Benerjee P K, ed. Developments in Boundary Element Methods. London: Applied Science Press.
    [50] Wu J Z, Liu L Q, Liu T S. 2018. Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aero. Sci., 99:27-63.
    [51] Wu J Z, Ma H Y, Zhou M D. 2006. Vorticity and Vortex Dynamics. Berlin: Springer.
    [52] Wu J Z, Ma H Y, Zhou M D. 2015. Vortical Flows. Berlin: Springer.
    [53] Wu J Z, Pan Z L, Lu X Y. 2005. Unsteady fluid dynamic force solely in terms of control-surface integral. Phys. Fluids, 17:098102.
    [54] Zhu J Y, Liu T S, Liu L Q, Zou S F, Wu J Z. 2015. Causal mechanisms in airfoil circulation formation. Phys. Fluids, 27:123601.
    [55] Zou S F, Wu J Z, Gao A K, Liu L Q, Kang L L, Shi Y P. 2019. On the concept and theory of induced drag for viscous and incompressible steady flow. Phys. Fluids, 31:065106.
  • 加载中
计量
  • 文章访问数:  1827
  • HTML全文浏览量:  300
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 刊出日期:  2021-03-25

目录

    /

    返回文章
    返回