留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于仿真和数据驱动的先进结构材料设计

李想 严子铭 柳占立 庄茁

李想, 严子铭, 柳占立, 庄茁. 基于仿真和数据驱动的先进结构材料设计[J]. 力学进展, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012
引用本文: 李想, 严子铭, 柳占立, 庄茁. 基于仿真和数据驱动的先进结构材料设计[J]. 力学进展, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012
LI Xiang, YAN Ziming, LIU Zhanli, ZHUANG Zhuo. Advanced structural material design based on simulation and data-driven method[J]. Advances in Mechanics, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012
Citation: LI Xiang, YAN Ziming, LIU Zhanli, ZHUANG Zhuo. Advanced structural material design based on simulation and data-driven method[J]. Advances in Mechanics, 2021, 51(1): 82-105. doi: 10.6052/1000-0992-20-012

基于仿真和数据驱动的先进结构材料设计

doi: 10.6052/1000-0992-20-012
基金项目: 

国家自然科学基金资助项目 (11722218, 11972205).

详细信息
    作者简介:

    *E-mail: liuzhanli@tsinghua.edu.cn
    柳占立, 男, 1981年出生, 清华大学航天航空学院长聘副教授、博导. 2004、2009年在清华大学工程力学系获学士和博士学位, 从2009年至2012年在美国西北大学机械工程系从事博士后研究. 现任清华大学航天航空学院工程力学系副主任, 中国力学学会计算力学专委会副主任, 国际期刊《International Journal of Fracture》Regional Editor. 主要围绕固体强度与断裂的数值仿真和工程设计开展研究, 包括爆炸冲击下结构动态失效和人体致伤机制分析、新型防护装备设计、基于机器学习的计算力学及反向工程设计等. 研究成果应用于爆炸冲击波防护装备研制、页岩水力压裂施工设计、飞行器穿盖弹射救生等国家重大工程. 在《JMPS》《IJSS》《CMAME》《IJNME》等力学期刊发表学术论文100余篇, 出版中英文专著3部. 2011年教育部全国百篇优秀博士论文获得者, 2015年获中国力学青年科技奖, 2017年获基金委优秀青年基金支持, 2018年获教育部自然科学奖一等奖(排名2), 2020年获钱令希计算力学青年奖.

    通讯作者:

    柳占立

  • 中图分类号: O34

Advanced structural material design based on simulation and data-driven method

More Information
    Corresponding author: LIU Zhanli
  • 摘要: 先进结构材料近年来受到材料和结构设计领域的广泛关注, 这些材料一般通过多个尺度的结构设计实现各种卓越的性能. 在早期的材料设计中, 有的基于设计者的丰富经验, 从天然拓扑结构中抽象出合理的数学力学模型; 有的基于生物系统的结构和功能特点提取出仿生力学模型. 然而, 仅依靠经验性的巧妙设计很难得到最优的设计方案, 通过反复迭代设计和试验来遍历设计空间也不切实际. 为此, 拓扑优化方法被成功应用于声子晶体、元胞材料等先进结构材料的优化设计中, 但现有的拓扑优化方法在实现精准的反向设计方面尚存挑战. 基于数据驱动的机器学习方法擅长建立数据空间多维变量复杂关系, 能够揭示传统力学研究方法难以发现的更深层次的力学机理和规律, 成为力学领域崭新的研究热点. 本文系统地回顾先进结构材料设计方法的发展历程, 对比阐述各种主流设计方法, 结合本课题组的相关工作介绍数值仿真和数据驱动在先进结构材料的智能化设计方面的应用现状, 并对该领域的未来研究趋势进行探讨和展望.

     

  • [1] Adibi A, Lee R, Xu Y, Yariv A, Scherer A. 2000. Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap. Electronics Letters, 36:1376-1378.
    [2] Allaire G, Jouve F, Toader A M. 2002. A level-set method for shape optimization. Comptes Rendus Mathematique, 334:1125-1130.
    [3] AlQuraishi M. 2019. AlphaFold at CASP13. Bioinformatics, 35:4862-4865.
    [4] Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59:345-359.
    [5] Arulkumaran K, Cully A, Togelius J. 2019. Alphastar: An evolutionary computation perspective. arXiv preprint arXiv: 1902. 01724.
    [6] Ballard D H. 1987. Modular learning in neural networks//The 6th National Conference on Artificial Intelligence (AAAI-87), 1987, Seattle, USA, 279-284.
    [7] Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O. 2014. High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences, 111:2453-2458.
    [8] Beigzadeh R, Rahimi M. 2012. Prediction of heat transfer and flow characteristics in helically coiled tubes using artificial neural networks. International Communications in Heat and Mass Transfer, 39:1279-1285.
    [9] Bertoldi K. 2017. Harnessing instabilities to design tunable architected cellular materials. Annual Review of Materials Research, 47:51-61.
    [10] Bessa M A, Glowacki P, Houlder M. 2019. Bayesian machine learning in metamaterial design: Fragile becomes supercompressible. Advanced Materials, 31:1904845.
    [11] Borel P I, Frandsen L H, Harp?th A, Kristensen M, Jensen J S, Sigmund O. 2005. Topology optimised broadband photonic crystal Y-splitter. Electronics Letters, 41:69-71.
    [12] Borel P I, Harp?th A, Frandsen L H, Kristensen M, Shi P, Jensen J S, Sigmund O. 2004. Topology optimization and fabrication of photonic crystal structures. Optics Express, 12:1996-2001.
    [13] Bourdin B, Chambolle A. 2003. Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, 9:19-48.
    [14] Bückmann T, Stenger N, Kadic M, Kaschke J, Fr?lich A, Kennerknecht T, Eberl C, Thiel M, Wegener M. 2012. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Advanced Materials, 24:2710-2714.
    [15] Butz T, Von Stryk O. 2002. Modelling and simulation of electro-and magnetorheological fluid dampers. ZAMM-Journal of Applied Mathematics and Mechanics, 82:3-20.
    [16] Caicedo J C, Lazebnik S. 2015. Active object localization with deep reinforcement learning//Proceedings of the IEEE International Conference on Computer Vision, 2015, Santiago, Chile, 2488-2496.
    [17] Carstensen J V, Lotfi R, Guest J K, Chen W, Schroers J. 2015. Topology optimization of cellular materials with maximized energy absorption//ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015, Boston, USA, 57083.
    [18] Chen C, Wang S, Shen X. 2001. Predicting models to estimate stability of rock slope based on artificial neural network. Chinese Journal of Geotechnical Engineering-Chinese Edition, 23:157-161.
    [19] Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. 2018. The rise of deep learning in drug discovery. Drug Discovery Today, 23:1241-1250.
    [20] Cheng Z, Yang Q, Sheng B. 2015. Deep colorization//Proceedings of the IEEE International Conference on Computer Vision, 2015, Santiago, Chile, 415-423.
    [21] Cheung K C, Gershenfeld N. 2013. Reversibly assembled cellular composite materials. Science, 341:1219-1221.
    [22] Chiu C C, Sainath T N, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss R J, Rao K, Gonina E. 2018. State-of-the-art speech recognition with sequence-to-sequence models//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, Calgary, Canada, 4774-4778.
    [23] Choi J, Lakes R. 1992. Non-linear properties of polymer cellular materials with a negative Poisson's ratio. Journal of Materials Science, 27:4678-4684.
    [24] Chu C, Graf G, Rosen D W. 2008. Design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 5:686-696.
    [25] Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J. 2019. Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials. arXiv preprint arXiv: 1911. 05020.
    [26] Digaum J L, Pazos J J, Chiles J, D'Archangel J, Padilla G, Tatulian A, Rumpf R C, Fathpour S, Boreman G D, Kuebler S M. 2014. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Optics Express, 22:25788-25804.
    [27] Dissanayake M, Phan-Thien N. 1994. Neural-network-based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering, 10:195-201.
    [28] Dong H W, Su X X, Wang Y S. 2012. Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm//2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2012, Shanghai, China, 45-48.
    [29] Dong H W, Su X X, Wang Y S. 2014a. Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics D: Applied Physics, 47:155301.
    [30] Dong H W, Su X X, Wang Y S, Zhang C. 2014b. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50:593-604.
    [31] Dong H W, Wang Y S, Zhang C. 2017a. Topology optimization of chiral phoxonic crystals with simultaneously large phononic and photonic bandgaps. IEEE Photonics Journal, 9:1-16.
    [32] Dong H W, Zhao S D, Wang Y S, Zhang C. 2017b. Topology optimization of anisotropic broadband double-negative elastic metamaterials. Journal of the Mechanics and Physics of Solids, 105:54-80.
    [33] Dyskin A V, Estrin Y, Kanel-Belov A J, Pasternak E. 2001. A new concept in design of materials and structures: Assemblies of interlocked tetrahedron-shaped elements. Scripta Materialia, 44:2689-2694.
    [34] Dyskin A V, Estrin Y, Kanel-Belov A J, Pasternak E. 2003. Topological interlocking of platonic solids: A way to new materials and structures. Philosophical Magazine Letters, 83:197-203.
    [35] Eraslan G, Simon L M, Mircea M, Mueller N S, Theis F J. 2019. Single-cell RNA-seq denoising using a deep count autoencoder. Nature Communications, 10:390.
    [36] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. 2010. Three-dimensional invisibility cloak at optical wavelengths. Science, 328:337-339.
    [37] Faller W E, Schreck S J. 1997. Unsteady fluid mechanics applications of neural networks. Journal of Aircraft, 34:48-55.
    [38] Fan K, Liu Y M, Zhang Y H. 1998. Inverse analysis of rock soil mechanics parameters based on neural network. Journal of Hohai University (Nature Sciences), 4:98-102.
    [39] Feng X T, Wang Y J, Lu S Z. 1995. Neural network estimation of slope stability. Journal of Engineering Geology, 4:54-61.
    [40] Frandsen L H, Harp?th A, Borel P I, Kristensen M, Jensen J S, Sigmund O. 2004. Broadband photonic crystal waveguide 60 bend obtained utilizing topology optimization. Optics Express, 12:5916-5921.
    [41] Furukawa T, Yagawa G. 1998. Implicit constitutive modelling for viscoplasticity using neural networks. International Journal for Numerical Methods in Engineering, 43:195-219.
    [42] Gabrielli L H, Cardenas J, Poitras C B, Lipson M. 2009. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 3:461.
    [43] Gatys L A, Ecker A S, Bethge M. 2016. Image style transfer using convolutional neural networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 2414-2423.
    [44] Gawehn E, Hiss J A, Schneider G. 2016. Deep learning in drug discovery. Molecular Informatics, 35:3-14.
    [45] Gehring J, Auli M, Grangier D, Yarats D, Dauphin Y N. 2017. Convolutional sequence to sequence learning//Proceedings of the 34th International Conference on Machine Learning, 2017, Sydney, Australia, 1243-1252.
    [46] Ghaboussi J, Pecknold D A, Zhang M, Haj-Ali R M. 1998. Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering, 42:105-126.
    [47] Gholizadeh S, Salajegheh E, Torkzadeh P. 2008. Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. Journal of Sound and Vibration, 312:316-331.
    [48] Gibson I, Ashby M F. 1982. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382:43-59.
    [49] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014. Generative adversarial nets//Advances in Neural Information Processing Systems, 2014, Montréal, Canada, 2672-2680.
    [50] Gori M, Monfardini G, Scarselli F. 2005. A new model for learning in graph domains//Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Montréal, Canada, 729-734.
    [51] Gr?nbech C H, Vording M F, Timshel P N, S?nderby C K, Pers T H, Winther O. 2018. scVAE: Variational auto-encoders for single-cell gene expression data. bioRxiv, 36:318295.
    [52] Gu G X, Takaffoli M, Buehler M J. 2017. Hierarchically enhanced impact resistance of bioinspired composites. Advanced Materials, 29:1700060.
    [53] Gu G X, Takaffoli M, Hsieh A J, Buehler M J. 2016. Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mechanics Letters, 9:317-323.
    [54] Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J, Valdevit L. 2016. Multistable shape-reconfigurable architected materials. Advanced Materials, 28:7915-7920.
    [55] Hajela P, Lee E. 1995. Genetic algorithms in truss topological optimization. International Journal of Solids and Structures, 32:3341-3357.
    [56] Halkj?r S, Sigmund O, Jensen J S. 2005. Inverse design of phononic crystals by topology optimization. Zeitschrift für Kristallographie-Crystalline Materials, 220:895-905.
    [57] Han S C, Lee J W, Kang K. 2015. A new type of low density material: Shellular. Advanced Materials, 27:5506-5511.
    [58] Hashash Y M, Jung S, Ghaboussi J. 2004. Numerical implementation of a neural network based material model in finite element analysis. International Journal for numerical methods in engineering, 59:989-1005.
    [59] He J, Kang Z. 2018. Achieving directional propagation of elastic waves via topology optimization. Ultrasonics, 82:1-10.
    [60] He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 770-778.
    [61] Heaton J, Polson N, Witte J H. 2017. Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33:3-12.
    [62] Hermann K M, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P. 2015. Teaching machines to read and comprehend//Advances in Neural Information Processing Systems, 2015, Montréal, Canada, 1693-1701.
    [63] Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313:504-507.
    [64] Ho K M, Cheng C K, Yang Z, Zhang X, Sheng P. 2003. Broadband locally resonant sonic shields. Applied Physics Letters, 83:5566-5568.
    [65] Hu X, Shen Y, Liu X, Fu R, Zi J. 2004. Superlensing effect in liquid surface waves. Physical Review E, 69:030201.
    [66] Huang H, Sun C. 2012. Continuum modeling of a composite material with internal resonators. Mechanics of Materials, 46:1-10.
    [67] Huang X, Radman A, Xie Y. 2011. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Computational Materials Science, 50:1861-1870.
    [68] Huang X, Zhou S, Xie Y, Li Q. 2013. Topology optimization of microstructures of cellular materials and composites for macrostructures. Computational Materials Science, 67:397-407.
    [69] Ivakhnenko A G. 1971. Polynomial theory of complex systems. IEEE transactions on Systems, Man, and Cybernetics: 364-378.
    [70] Jensen J S, Sigmund O. 2004. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends. Applied Physics Letters, 84:2022-2024.
    [71] Jensen J S, Sigmund O. 2005. Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide. Journal of the Optical Society of America B, 22:1191-1198.
    [72] Jensen J S, Sigmund O. 2011. Topology optimization for nano-photonics. Laser & Photonics Reviews, 5:308-321.
    [73] Jeon K, Yang S, Kang D, Na J, Lee W B. 2019. Development of surrogate model using CFD and deep neural networks to optimize gas detector layout. Korean Journal of Chemical Engineering, 36:325-332.
    [74] Ji G, Li F, Li Q, Li H, Li Z. 2011. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Materials Science and Engineering: A, 528:4774-4782.
    [75] Jin C Y, Ma Z Y, Zhang Y L, Sha R H, Chen Q F. 2006. Application of neural network to back analysis of mechanical parameters and initial stress field of rock masses. Rock and Soil Mechanics, 27:1263-1266.
    [76] John S. 1987. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58:2486.
    [77] Jung S, Ghaboussi J. 2006. Neural network constitutive model for rate-dependent materials. Computers & Structures, 84:955-963.
    [78] Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A. 2017. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8:10883.
    [79] Killoran N, Lee L J, Delong A, Duvenaud D, Frey B J. 2017. Generating and designing DNA with deep generative models. arXiv preprint arXiv: 1712. 06148.
    [80] Kingma D P, Welling M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv: 1312. 6114.
    [81] Kong W, Wang C, Jia C, Kuang Y, Pastel G, Chen C, Chen G, He S, Huang H, Zhang J. 2018. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Advanced Materials, 30:1801934.
    [82] Kr?del S, Thomé N, Daraio C. 2015. Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4:111-117.
    [83] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B. 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71:2022.
    [84] Lagaris I E, Likas A, Fotiadis D I. 1998. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9:987-1000.
    [85] Larsen U D, Signund O, Bouwsta S. 1997. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6:99-106.
    [86] LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521:436.
    [87] Lee J H, Wang L, Kooi S, Boyce M C, Thomas E L. 2010. Enhanced energy dissipation in periodic epoxy nanoframes. Nano Letters, 10:2592-2597.
    [88] Lefebvre L P, Banhart J, Dunand D C. 2008. Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10:775-787.
    [89] Lei X, Liu C, Du Z, Zhang W, Guo X. 2019. Machine learning-driven real-time topology optimization under moving morphable component-based framework. Journal of Applied Mechanics, 86:011004.
    [90] Li X, Liu Z, Cui S, Luo C, Li C, Zhuang Z. 2019. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deeping learning. Computer Methods in Applied Mechanics and Engineering, 347:735-753.
    [91] Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z. 2020. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods in Applied Mechanics Engineering, 361:112737.
    [92] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv: 1509. 02971.
    [93] Lim J, Ryu S, Kim J W, Kim W Y. 2018. Molecular generative model based on conditional variational autoencoder for de novo molecular design. Journal of Cheminformatics, 10:31.
    [94] Lin Z, Groever B, Capasso F, Rodriguez A W, Lon?ar M. 2018. Topology-optimized multilayered metaoptics. Physical Review Applied, 9:044030.
    [95] Lipperman F, Ryvkin M, Fuchs M. 2009. Design of crack-resistant two-dimensional periodic cellular materials. Journal of Mechanics of Materials and Structures, 4:441-457.
    [96] Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M. 2005. Design of a compact photonic-crystal-based polarizing beam splitter. IEEE Photonics Technology Letters, 17:1435-1437.
    [97] Liu Y, Qin Z, Wan T, Luo Z. 2018. Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks. Neurocomputing, 311:78-87.
    [98] Liu Z, Meyers M A, Zhang Z, Ritchie R O. 2017. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 88:467-498.
    [99] Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C T, Sheng P. 2000. Locally resonant sonic materials. Science, 289:1734-1736.
    [100] Liu Z, Zhu D, Rodrigues S P, Lee K T, Cai W. 2018. Generative model for the inverse design of metasurfaces. Nano letters, 18:6570-6576.
    [101] Luo C, Ning S, Liu Z, Zhuang Z. 2020. Interactive inverse design of layered phononic crystals based on reinforcement learning. Extreme Mechanics Letters, 36:100651.
    [102] Ma W, Cheng F, Liu Y. 2018. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12:6326-6334.
    [103] Ma W, Cheng F, Xu Y, Wen Q, Liu Y. 2019. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Advanced Materials, 31:1901111.
    [104] Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. 2015. Adversarial autoencoders. arXiv preprint arXiv: 1511. 05644.
    [105] Malek A, Beidokhti R S. 2006. Numerical solution for high order differential equations using a hybrid neural network——optimization method. Applied Mathematics and Computation, 183:260-271.
    [106] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H. 2018. Deep learning for the design of nano-photonic structures//2018 IEEE International Conference on Computational Photography (ICCP), 2018, Pittsburgh,USA, 1-14.
    [107] McCarthy J, Hayes P J. 1981. Some philosophical problems from the standpoint of artificial intelligence. Readings in Artificial Intelligence, 431-450.
    [108] McCulloch W S, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5:115-133.
    [109] Mcnulty T, Bhate D, Zhang A, Kiser M, Ferry L, Suder A, Bhattacharya S, Boradkar P. 2017. Framework for the Design of Biomimetic Cellular Materials for Additive Manufacturing//Proceedings of the 2017 Annual International Solid Freeform Fabrication Symposium, 2017, Austin, USA, 7-9.
    [110] Meade Jr A J, Fernandez A A. 1994. Solution of nonlinear ordinary differential equations by feedforward neural networks. Mathematical and Computer Modelling, 20:19-44.
    [111] Mehrkanoon S, Suykens J A. 2015. Learning solutions to partial differential equations using LS-SVM. Neurocomputing, 159:105-116.
    [112] Men H, Lee K Y, Freund R M, Peraire J, Johnson S G. 2014. Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Optics Express, 22:22632-22648.
    [113] Mi Y, Ishii M, Tsoukalas L. 2001. Flow regime identification methodology with neural networks and two-phase flow models. Nuclear Engineering and Design, 204:87-100.
    [114] Mirkhalaf M, Barthelat F. 2017. Design, 3D printing and testing of architectured materials with bistable interlocks. Extreme Mechanics Letters, 11:1-7.
    [115] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv: 1312. 5602.
    [116] Mohammadi S, Eftekhar A A, Khelif A, Hunt W D, Adibi A. 2008. Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Applied Physics Letters, 92:221905.
    [117] Mutitu J G, Shi S, Chen C, Creazzo T, Barnett A, Honsberg C, Prather D W. 2008. Thin film silicon solar cell design based on photonic crystal and diffractive grating structures. Optics Express, 16:15238-15248.
    [118] Nanthakumar S, Zhuang X, Park H S, Nguyen C, Chen Y, Rabczuk T. 2019. Inverse design of quantum spin hall-based phononic topological insulators. Journal of the Mechanics and Physics of Solids, 125:550-571.
    [119] Narasimhan K, Kulkarni T, Barzilay R. 2015. Language understanding for text-based games using deep reinforcement learning. arXiv preprint arXiv: 1506. 08941.
    [120] N$breve{e}$mec H, Ku?el P, Duvillaret L, Pashkin A, Dressel M, Sebastian M. 2005. Highly tunable photonic crystal filter for the terahertz range. Optics Letters, 30:549-551.
    [121] Nguyen B, Zhuang X, Park H, Rabczuk T. 2019. Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal. Journal of Applied Physics, 125:095106.
    [122] Niu B, Yan J, Cheng G. 2009. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Structural and Multidisciplinary Optimization, 39:115.
    [123] Ohsaki M. 1995. Genetic algorithm for topology optimization of trusses. Computers & Structures, 57:219-225.
    [124] Overvelde J T, Weaver J C, Hoberman C, Bertoldi K. 2017. Rational design of reconfigurable prismatic architected materials. Nature, 541:347-352.
    [125] Papadrakakis M, Lagaros N D. 2002. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 191:3491-3507.
    [126] Papadrakakis M, Lagaros N D, Tsompanakis Y. 1998. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 156:309-333.
    [127] Park J H, Ma P S, Kim Y Y. 2015. Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Structural and Multidisciplinary Optimization, 51:1199-1209.
    [128] Pennec Y, Djafari-Rouhani B. 2016. Fundamental properties of phononic crystal//Phononic Crystals. New York: Springer, 23-50.
    [129] Peterson R D, Cunningham B T, Andrade J E. 2014. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosensors and Bioelectronics, 56:320-327.
    [130] Popova M, Isayev O, Tropsha A. 2018. Deep reinforcement learning for de novo drug design. Science Advances, 4: eaap7885.
    [131] Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, Cui T, Sui S. 2019. Deep learning: a rapid and efficient route to automatic metasurface design. Advanced Science, 6:1900128.
    [132] Radman A, Huang X, Xie Y. 2013. Topology optimization of functionally graded cellular materials. Journal of Materials Science, 48:1503-1510.
    [133] Rajeswar S, Subramanian S, Dutil F, Pal C, Courville A. 2017. Adversarial generation of natural language. arXiv preprint arXiv: 1705. 10929.
    [134] Rampáe?ek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. 2019. Dr. VAE: Improving drug response prediction via modeling of drug perturbation effects. Bioinformatics, 35:3743-3751.
    [135] Ramuhalli P, Udpa L, Udpa S S. 2005. Finite-element neural networks for solving differential equations. IEEE Transactions on Neural Networks, 16:1381-1392.
    [136] Rayleigh L. 1888. XXVI. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26:256-265.
    [137] Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: Unified, real-time object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 779-788.
    [138] Riesselman A J, Ingraham J B, Marks D S. 2017. Deep generative models of genetic variation capture mutation effects. arXiv preprint arXiv: 1712. 06527.
    [139] Robert F. 1985. An isotropic three-dimensional structure with Poisson's ratio,$=-1$. Journal of Elasticity, 15:427-430.
    [140] Rosenblatt F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386.
    [141] Sallab A E, Abdou M, Perot E, Yogamani S. 2017. Deep reinforcement learning framework for autonomous driving. Electronic Imaging, 2017: 70-76.
    [142] Sánchez-Dehesa J, Caballero D, Cervera F, Sanchis L, Sánchez-Perez J, Martinez-Sala R, Rubio C, Meseguer F, Lopez C. 2002. Refractive acoustic devices for airborne sound. The Journal of the Acoustical Society of America, 112:2413-2413.
    [143] Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361:360-365.
    [144] Scarpa F, Ciffo L, Yates J. 2003. Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 13:49.
    [145] Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. 2008. The graph neural network model. IEEE Transactions on Neural Networks, 20:61-80.
    [146] Schriemer H P, Cowan M L, Page J H, Sheng P, Liu Z, Weitz D A. 1997. Energy velocity of diffusing waves in strongly scattering media. Physical Review Letters, 79:3166.
    [147] Shalev-Shwartz S, Shammah S, Shashua A. 2016. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv preprint arXiv: 1610. 03295.
    [148] Sharma A C, Jana T, Kesavamoorthy R, Shi L, Virji M A, Finegold D N, Asher S A. 2004. A general photonic crystal sensing motif: Creatinine in bodily fluids. Journal of the American Chemical Society, 126:2971-2977.
    [149] Sigmund O, S?ndergaard Jensen J. 2003. Systematic design of phononic band--gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361:1001-1019.
    [150] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A. 2017. Mastering the game of go without human knowledge. Nature, 550:354-359.
    [151] Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N. 2018. Processing bulk natural wood into a high-performance structural material. Nature, 554:224-228.
    [152] Speck T, Mühaupt R, Speck O. 2013. Self-healing in plants as bio-inspiration for self-repairing polymers. Self-healing Polymers, 1:61-89.
    [153] Srivastava G P. 2019. The Physics of Phonons. New York: Taylor & Francis Group.
    [154] Sun Y, Zeng W, Zhao Y, Qi Y, Ma X, Han Y. 2010. Development of constitutive relationship model of Ti600 alloy using artificial neural network. Computational Materials Science, 48:686-691.
    [155] Tahersima M H, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K. 2018. Deep neural network inverse design of integrated nanophotonic devices. arXiv preprint arXiv: 1809. 03555.
    [156] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X. 2008. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455:376.
    [157] Vlasov Y A, O'boyle M, Hamann H F, McNab S J. 2005. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438:65.
    [158] Wang D. 2009. Impact behavior and energy absorption of paper honeycomb sandwich panels. International Journal of Impact Engineering, 36:110-114.
    [159] Wang D, Liao W. 2004. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 14:111.
    [160] Wang F, Jensen J S, Sigmund O. 2011. Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. JOSA B, 28:387-397.
    [161] Wang L, Boyce M C, Wen C Y, Thomas E L. 2009. Plastic dissipation mechanisms in periodic microframe-structured polymers. Advanced Functional Materials, 19:1343-1350.
    [162] Wang P, Shim J, Bertoldi K. 2013. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88:014304.
    [163] Wang Q, Wang J, Zhao D, Zhang J, Li Z, Chen Z, Zeng J, Miao L, Shi J. 2016. Investigation of terahertz waves propagating through far infrared/CO$_2$ laser stealth-compatible coating based on one-dimensional photonic crystal. Infrared Physics & Technology, 79:144-150.
    [164] Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L. 2017. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Advanced Materials, 29:1702498.
    [165] Webb S. 2018. Deep learning for biology. Nature, 554:555-557.
    [166] Wen J, Wang G, Yu D, Zhao H, Liu Y. 2005. Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure. Journal of Applied Physics, 97:114907.
    [167] Wen Y, Zhang K, Li Z, Qiao Y. 2016. A discriminative feature learning approach for deep face recognition//European Conference on Computer Vision, 2016, Amsterdam, The Netherlands, 499-515.
    [168] Xia Y Y, Xiong H F. 2004. Sensibility analysis of slope stability based on artificial neural network. Chinese Journal of Rock Mechanics and Engineering, 16:2703-2707.
    [169] Xie Y M, Steven G P. 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49:885-896.
    [170] Xiong W, Droppo J, Huang X, Seide F, Seltzer M, Stolcke A, Yu D, Zweig G. 2016. Achieving human parity in conversational speech recognition. arXiv preprint arXiv: 1610. 05256.
    [171] Xu B, Arias F, Brittain S T, Zhao X M, Grzybowski B, Torquato S, Whitesides G M. 1999. Making negative Poisson's ratio microstructures by soft lithography. Advanced Materials, 11:1186-1189.
    [172] Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L. 2018. Flexible lithium--CO$_2$ battery with ultrahigh capacity and stable cycling. Energy Environmental Science, 11:3231-3237.
    [173] Yablonovitch E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58:2059.
    [174] Yang L C, Chou S Y, Yang Y H. 2017. MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv: 1703. 10847.
    [175] Zeng Y H, Huai W X. 2009. Application of artificial neural network to predict the friction factor of open channel flow. Communications in Nonlinear Science and Numerical Simulation, 14:2373-2378.
    [176] Zhang J, Ashby M. 1994. Mechanical selection of foams and honeycombs used for packaging and energy absorption. Journal of Materials Science, 29:157-163.
    [177] Zhang Q, Lin D, Deng B, Xu X, Nian Q, Jin S, Leedy K D, Li H, Cheng G J. 2017. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Advanced Materials, 29:1605506.
    [178] Zhang R, Li W, Tan W, Mo T. 2017. Deep and shallow model for insurance churn prediction service//2017 IEEE International Conference on Services Computing (SCC), 2017, Honolulu, USA, 346-353.
    [179] Zhang W, Kang Z. 2017. Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. International Journal for Numerical Methods in Engineering, 110:31-56.
    [180] Zhang X, He J, Takezawa A, Kang Z. 2018. Robust topology optimization of phononic crystals with random field uncertainty. International Journal for Numerical Methods in Engineering, 115:1154-1173.
    [181] Zhang X, Takezawa A, Kang Z. 2019a. A phase-field based robust topology optimization method for phononic crystals design considering uncertain diffuse regions. Computational Materials Science, 160:159-172.
    [182] Zhang X, Takezawa A, Kang Z. 2019b. Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method. Computer Methods in Applied Mechanics and Engineering, 344:766-797.
    [183] Zheng X, Lee H, Weisgraber T H, Shusteff M, DeOtte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A. 2014. Ultralight, ultrastiff mechanical metamaterials. Science, 344:1373-1377.
    [184] Zhou J, Wei Q, Liu G. 2004. Back analysis on rock mechanics parameters for highway tunnel by BP neural network method. Chinese Journal of Rock Mechanics and Engineering, 23:941-945.
    [185] Zhu Z, Liang D, Zhang S, Huang X, Li B, Hu S. 2016. Traffic-sign detection and classification in the wild//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Las Vegas, USA, 2110-2118.
  • 加载中
计量
  • 文章访问数:  1406
  • HTML全文浏览量:  275
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 刊出日期:  2021-03-25

目录

    /

    返回文章
    返回