留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性激励控制翼型流动分离研究综述

刘志勇 罗振兵 袁先旭 涂国华

刘志勇, 罗振兵, 袁先旭, 涂国华. 周期性激励控制翼型流动分离研究综述[J]. 力学进展, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019
引用本文: 刘志勇, 罗振兵, 袁先旭, 涂国华. 周期性激励控制翼型流动分离研究综述[J]. 力学进展, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019
LIU Zhiyong, LUO Zhenbing, YUAN Xianxu, TU Guohua. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019
Citation: LIU Zhiyong, LUO Zhenbing, YUAN Xianxu, TU Guohua. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(1): 202007. doi: 10.6052/1000-0992-19-019

周期性激励控制翼型流动分离研究综述

doi: 10.6052/1000-0992-19-019
基金项目: 

国家自然科学基金资助项目 (11872374, 11602299).

详细信息
    作者简介:

    罗振兵, 教授, 博士生导师, 国防科技大学空天科学学院主动流动控制技术团队学术带头人, 军委科技委国防科技创新特区领域专家, 主要从事主动流动控制、主动热管理、临近空间飞行器以及冲压发动机技术研究, 发表论文100余篇, 授权发明专利20余项, 获部委级科技进步一等奖2项、二等奖2项, 荣立二等功1次. 2000年、2002年、2006年分别获国防科学技术大学本科、硕士、博士学位, 2003年获首届全军优秀硕士学位论文奖, 2009年获全国百篇优秀博士学位论文奖. 担任《空气动力学学报》和《实验流体力学》首届青年编委会主任、Chinese Journal of Aeronautics和《航空学报》首届青年编委、《空气动力学学报》和《气体物理》编委等.

    通讯作者:

    罗振兵

  • 中图分类号: V11

Review of controlling flow separation over airfoils with periodic excitation

More Information
    Corresponding author: LUO Zhenbing
  • 摘要: 主动流动控制技术是21世纪最具发展潜力的航空航天技术之一,未来可以作为飞行器设计的一个新自由度.将主动流动控制技术应用于翼型流动分离控制,在基础研究与应用研究方面具有重要意义.鉴于周期性激励的能量效率高、应用方便,本文对周期性激励控制翼型流动分离的研究进行综述, 介绍了评估参数,讨论了激励频率、强度、施加位置和雷诺数的影响.接着介绍了文献中提出的三个值得注意的方面: 一是能量效率评估标准,可以指导对激励器和控制策略的选择; 二是声学激励模态,在高频激励下发现扰动以声波为主, 可能使流动分离恶化;三是阻力异常现象, 在某种条件下发现有激励时形阻大于总阻的情况.最后梳理了下一步研究的重点方向.本文可为采用周期性激励进行流动分离控制提供参考.

     

  • [1] 崔尔杰 . 2007. 分离流、涡运动及流动控制——纪念陆士嘉先生逝世20周年. 空气动力学学报, 25:1-8

    (Cui E J . 2007. Flow separation, vortex motion and flow control—Commemorate the 20th anniversary of the death of Professor Lu Shi-jia. Acta Aerodynamica Sinica, 25: 1-8).
    [2] 邓进军, 苑伟政, 罗剑, 马炳和, 姜澄宇 . 2010. MEMS技术在流动分离主动控制中的应用. 西北工业大学学报, 28:381-387

    (Deng J J, Yuan W Z, Luo J, Ma B H, Jiang C Y . 2010. Two MEMS actuators for application-oriented active control of flow separation. Journal of Northwestern Polytechnical University, 28: 381-387).
    [3] 付勇 . 2014. 可压缩性对脉冲射流控制流动分离的影响及其分析. [博士论文]. 南京: 南京航空航天大学

    (Fu Y . 2014. The effects and analysis of compressibility on pulsed jet control flow separation. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [4] 高传强, 张伟伟, 叶正寅 . 2015. 基于谐振舵面的跨声速抖振抑制探究. 航空学报, 36:3208-3217

    (Gao C Q, Zhang W W, Ye Z Y . 2015. Study on transonic buffet suppression with flapping rudder. Acta Aeronautica et Astronautica Sinica, 36: 3208-3217).
    [5] 耿子海, 史志伟, 金启刚 . 2016. 油膜干涉测量翼型壁面摩阻低速风洞试验技术. 空气动力学学报, 34:80-85

    (Geng Z H, Shi Z W, Jin Q G . 2016. Investigation of skin-friction measurements using oil-film interferometry on airfoil wall in low speed wind tunnel. Acta Aerodynamica Sinica, 34: 80-85).
    [6] 韩忠华, 乔志德, 宋文萍 . 2007. 零质量射流推迟翼型失速的数值模拟. 航空学报, 28:1040-1046

    (Han Z H, Qiao Z D, Song W P . 2007. Numerical simulation of active flow control to airfoil stall using local synthetic jet. Acta Aeronautica et Astronautica Sinica, 28: 1040-1046).
    [7] 黄勇, 王万波, 黄宗波, 张鑫, 王勋年, 沈志洪 . 2011. 等离子体对翼型流动分离控制历程的PIV试验研究. 实验流体力学, 25:23-27

    (Huang Y, Wang W B, Huang Z B, Zhang X, Wang X N, Shen Z H . 2011. PIV measurement on airfoil flow separation control course by plasma actuation. Journal of Experiments in Fluid Mechanics, 25: 23-27).
    [8] 黄湛, 王宏伟, 魏连风, 张淼, 程攀 . 2016. 基于荧光油膜的全局表面摩阻测量技术研究. 空气动力学学报, 34:373-378

    (Huang Z, Wang H W, Wei L F, Zhang M, Cheng P . 2016. Research of global skin friction measurement based on fluorescent oil film. Acta Aerodynamica Sinica, 34: 373-378).
    [9] 李应红, 梁华, 马清源, 吴云, 宋慧敏, 武卫 . 2008. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验. 航空学报, 29:1429-1435

    (Li Y H, Liang H, Ma Q Y, Wu Y, Song H M, Wu W . 2008. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation. Acta Aeronautica et Astronautica Sinica, 29: 1429-1435).
    [10] 李应红, 吴云, 张朴, 苏长兵, 宋慧敏 . 2008. 等离子体激励抑制翼型失速分离的实验研究. 空气动力学学报, 26:372-377

    (Li Y H, Wu Y, Zhang P, Su C B, Song H M . 2008. Experimental investigation on airfoil stall separation suppression by plasma actuation. Acta Aerodynamica Sinica, 26: 372-377).
    [11] 李玉杰, 罗振兵, 邓雄, 孙健, 沈铮 . 2016. 合成双射流控制NACA0015翼型大攻角流动分离试验研究. 航空学报, 37:817-825

    (Li Y J, Luo Z B, Deng X, Sun J, Shen Z . 2016. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator. Acta Aeronautica et Astronautica Sinica, 37: 817-825).
    [12] 刘志勇, 张长丰, 代成果 . 2015. 表面摩擦应力油膜干涉测量技术在$Ma=8$的应用. 实验流体力学, 29:74-78

    (Liu Z Y, Zhang C F, Dai C G . 2015. Application of oil film interferometry technique at $Ma=8$. Journal of Experiments in Fluid Mechanics, 29: 74-78).
    [13] 罗振兵, 夏智勋 . 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展, 35:221-234

    (Luo Z B, Xia Z X . 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35: 221-234).
    [14] 史云龙 . 2015. 高超声速风洞模型表面摩阻测量技术研究. [博士论文]. 绵阳: 中国空气动力研究与发展中心

    (Shi Y L . 2015. The research of model skin friction measurement technology in hypersonic wind tunnel. [Master Thesis]. Mianyang: China Aerodynamics Research and Development Center).
    [15] 王林, 罗振兵, 夏智勋, 刘冰, 邓雄 . 2012. 高速流场主动流动控制激励器研究进展. 中国科学: 技术科学, 42:1103-1119

    (Wang L, Luo Z B, Xia Z X, Liu B, Deng X . 2012. Review of actuators for high speed active flow control. Sci. China Tech. Sci., 42: 1103-1119).
    [16] 王伟, 王克, 袁明磊 . 2013. 油膜干涉摩阻测量技术研究. 中国空气动力学会测控技术专委会第六届四次学术交流会论文集, 1549

    (Wang W, Wang K, Yuan M L . 2013. Research of skin friction measurement based on oil film interferometry technique. Proceedings of CARS 2013, 1549).
    [17] 王勋年, 王万波, 黄勇, 张鑫, 黄宗波 . 2011. 介质阻挡放电等离子体对翼型流动分离控制的实验研究. 实验流体力学, 25:9-14

    (Wang X N, Wang W B, Huang Y, Zhang X, Huang Z B . 2011. Investigation of flow separation control on an airfoil using DBD plasma actuators. Journal of Experiments in Fluid Mechanics, 25: 9-14).
    [18] 谢永慧, 屈焕成, Mohammad Moshfeghi, 高骥 . 2013. 合成射流对S809翼型不同攻角下流动分离控制的数值研究. 高等学校工程热物理第十九届全国学术会议,中国郑州

    (Xie Y H, Qu H C, Mohammad M, Gao J . 2013. Numerical investigation of S809 airfoil with synthetic jet actuator at different angles of attack// 19th National Academic Conference of Engineering Thermophysics in Colleges and Universities, Zhengzhou, China).
    [19] 张攀峰, 王晋军 . 2008. 合成射流控制NACA0015翼型大攻角流动分离. 北京航空航天大学学报, 34:443-446

    (Zhang P F, Wang J J . 2008. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region. Journal of Beijing University of Aeronautics and Astronautics, 34: 443-446).
    [20] 张攀峰, 王晋军 . 2009. 孔口倾斜角对合成射流控制翼型流动分离的影响. 兵工学报, 30:1658-1662

    (Zhang P F, Wang J J . 2009. Effect of orifice inclined angle on flow control of the stalled airfoil with synthetic jet actuator. Acta Armamentarii, 30: 1658-1662).
    [21] Allan B G, Juang J, Raney D L, Seifert A, Pack L G, Brown D E. 2000. Closed-loop separation control using oscillatory flow excitation. ICASE report No. 2000-32.
    [22] Amitay M, Glezer A. 2002. Controlled transients of flow reattachment over stalled airfoils. Int. J. Heat Fluid Flow, 23:690-699.
    [23] Amitay M, Smith B L, Glezer A. 1998. Aerodynamic flow control using synthetic jet technology. AIAA Paper 98-0208.
    [24] Becker R, King R, Petz R, Nitsche W. 2007. Adaptive closed-loop separation control on a high-lift configuration using extremum seeking. AIAA J, 45:1382-1392.
    [25] Brown G L, Roshko A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. , 64:775-816.
    [26] Buren T V, Whalen E, Amitay M. 2016. Achieving a high-speed and Momentum synthetic jet actuator. J. Aerosp. Eng., 29:04015040.
    [27] Cao S L, Li Y, Zhang J Z, Yoshihiro D. 2019. Lagrangian analysis of mass transport and its influence on the lift enhancement in a flow over the airfoil with a synthetic jet. Aerosp. Sci. Tech., 86:11-20.
    [28] Choi B, Hong Y, Lee B, Kim M, Kim H J, Kim C. 2018. Adaptive flow separation control over an asymmetric airfoil. Int. J. Aeron. Space Sci., 19:305-315.
    [29] Collis S S, Joslin R D, Seifert A, Theofilis V. 2004. Issues in active flow control: Theory, control, simulation, and experiment. Prog. Aerosp. Sci., 40:237-289.
    [30] Dandois J, Garnier E, Sagaut P. 2007. Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech., 574:25-58.
    [31] Darabi A. 1995. The effect of oscillatory blowing on a stalling airfoil. [Master Thesis]. Tel Aviv University.
    [32] Darabi A. 2000. On the mechanism of forced flow reattachment. [PhD Thesis]. Tel Aviv University.
    [33] Deb D, Tao G. 2007. Adaptive compensation control of synthetic jet actuator arrays for airfoil virtual shaping. Journal of Aircraft, 44:616-626.
    [34] Evans S, Coull J, Hodson H, Haneef I. 2010. Minimizing the loss produced by a turbulent separation using vortex generator jets// 5th Flow Control Conference, Chicago, Illinois.
    [35] Gad-el-Hak M. 2001. Flow control: The future. Journal of Aircraft, 38:402-418.
    [36] Gilarranz J L, Traub L W, Rediniotis O K. 2005. A new class of synthetic jet actuators—Part II: Application to flow separation control. J. Fluids Eng., 127:377-387.
    [37] Glezer A, Amitay M. 2002. Synthetic jets. Ann. Rev. Fluid Mech., 34:503-529.
    [38] Goldstein M E, Hultgren L S. 1989. Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech., 27:137-166.
    [39] Greenblatt D, Nishri B, Darabi A, Wygnanski I. 1999. Some factors affecting stall control with particular emphasis on dynamic stall. AIAA Paper 99-3504.
    [40] Greenblatt D, Wygnanski I. 2000. The control of flow separation by periodic excitation. Progress in Aerospace Science, 36:487-545.
    [41] Greenblatt D. 1999. Dynamic stall control by oscillatory excitation. [PhD Thesis]. Tel Aviv University.
    [42] Greenblatt D. 2005. Management of vortices trailing flapped wings via separation control. AIAA Paper 2005-0061.
    [43] Hasdai G. 1999. Delay of airfoil stall by periodic oscillatory excitation: NACA 0012. Final Year Research Report, Tel Aviv University.
    [44] Ho C M, Huang L S. 1982. Subharmonics and vortex merging in mixing layers. J. Fluid Mech., 119:119-142.
    [45] Ho C M, Huerre P. 1984. Perturbed free shear layers. Ann. Rev. Fluid Mech., 16:365-424.
    [46] Hong G. 2006. Effectiveness of micro synthetic jet actuator enhanced by flow instability on controlling laminar separation caused by adverse pressure gradient. Sensors and Actuators A, 132:607-615.
    [47] Hong G. 2012. Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA J., 50:788-796.
    [48] Hsiao F B, Liu C F, Shyu J Y. 1990. Control of wall-separated flow by internal acoustic excitation. AIAA J., 28:1440-1446.
    [49] Kerstens W, Pfeiffer J, Williams D, King R, Colonius T. 2011. Closed-loop control of lift for longitudinal gust suppression at low Reynolds numbers. AIAA J., 49:1721-1728.
    [50] Kim S H, Hong W, Kim C. 2007. Separation control mechanism of airfoil using synthetic jet. J. Mech. Sci. Tech., 21:1367-1375.
    [51] Kim S H, Kim C. 2009. Separation control on NACA23012 using synthetic jet. Aerosp. Sci. Tech., 13:172-182.
    [52] Kim W, Kim C, Jin Jung K J. 2012. Separation control characteristics of synthetic jets depending on exit configuration. AIAA J., 50:559-570.
    [53] King R, Heinz N, Bauer M, Grund T, Nitsche W. 2013. Flight and wind-tunnel tests of closed-loop active flow control. Journal of Aircraft, 50:1605-1614.
    [54] LaTunia P M, Judith H, Chung-Sheng Y, Jerome H. 2008. Active flow control at low Reynolds numbers on a NACA0015 airfoil. AIAA Paper 2008-6407.
    [55] Lee C, Hong G, Ha Q P, Mallinson S G. 2003. A piezoelectrically actuated micro synthetic jet for active flow control. Sensors and Actuators A, 108:168-174.
    [56] Lee C, Kim J, Babcock D, Goodman R. 1997. Application of Neural Networks to turbulence control for drag reduction. Phys. Fluids, 9:1740-1747.
    [57] Luo Z B, Xia Z X, Liu B. 2006. New generation of synthetic jet actuators. AIAA J., 44:2418-2419.
    [58] Ma Y Y, Zhao Q J, Zhao G Q. 2019. New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor. Proc IMechE Part G: J Aerospace Engineering, 0:1-20.
    [59] Moshfeghi M, Hur N. 2017. Numerical study on the effects of a synthetic jet actuator on S809 airfoil aerodynamics at different flow regimes and jet flow angles. J. Mech. Sci. Tech., 31:1233-1240.
    [60] Nishri B. 1995. On the dominant mechanisms governing active control of separation. [PhD Thesis]. Tel Aviv: Tel Aviv University.
    [61] Oster D, Wygnanski I, Fiedler H. 1980. The forced mixing layer between parallel streams. J. Fluid Mech., 123:91-131.
    [62] Poisson-Quinton Ph. 1948. Theoretical and experimental research of boundary layer control// 7th Congress of Applied Mechanics, London.
    [63] Pooya Kabiri. 2012. Active flow control over a NACA0015 airfoil by synthetic jet actuators. [PhD Thesis]. Department of Mechanical and Aeronautical Engineering, Clarkson University.
    [64] Régis Duvigneau, Michel Visonneau. 2006. Simulation and optimization of stall control for an airfoil with a synthetic jet. Aerosp. Sci. Tech., 10:279-287.
    [65] Schubauer G B, Skramstad H K. 1948. Laminar boundary layer oscillations and transition on a flat plate. NACA Rep. 909.
    [66] Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I. 1993. Oscillatory blowing, a tool to delay boundary-layer separation. AIAA J., 31:2052-2060.
    [67] Seifert A, Darabi A, Nishri B, Wygnanski I. 1993. The effects of forced oscillations on the performance of airfoils. AIAA Paper 93-3264.
    [68] Seifert A, Darabi A, Wygnanski I. 1996. On the delay of airfoil stall by periodic excitation. Journal of Aircraft, 33:691-699.
    [69] Seifert A, Eliahu S, Greenblatt D, Wygnanski I. 1998. Use of piezoelectric actuators for airfoil separation control. AIAA J., 36:1535-1537.
    [70] Seifert A, Greenblatt D, Wygnanski I. 2004. Active separation control: An overview of Reynolds and Mach numbers effects. Aerosp. Sci. Tech., 8:569-582.
    [71] Seifert A, Pack L G. 1999 a. Oscillatory control of separation at high Reynolds numbers. AIAA J., 37:1062-1071.
    [72] Seifert A, Pack L G. 1999b. Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers. AIAA Paper 99-0925.
    [73] Shahrabi A F. 2019. The control of flow separation: Study of optimal open loop parameters. Phys. Fluids, 31:035104.
    [74] Smith J H B. 1986. Vortex flows in aerodynamics. Ann. Rev. Fluid Mech., 18:211-242.
    [75] Staats M, Nitsche W, Steinberg S J, King R. 2017. Closed-loop active flow control of a non-steady flow field in a highly-loaded compressor cascade. CEAS Aeronaut J, 8:197-208.
    [76] Taylor K, Amitay M. 2015. Dynamic stall process on a finite span model and its control via synthetic jet actuators. Phys. Fluids, 27:077104.
    [77] Tuck A, Soria J. 2004. Active flow control over a NACA0015 airfoil using a ZNMF jet// 15th Australasian Fluid Mechanics Conference, Sydney, Australia.
    [78] Winant C D, Browand F K. 1974. Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech., 63:237-256
    [79] Wu X H, Wu J Z, Wu M. 1991. Guiding principles for vortex flow controls. AIAA Paper 91-0617.
    [80] Wygnanski I, Petersen R A. 1987. Coherent motion in excited free shear flows. AIAA J., 25:201-213.
    [81] Yen J, Ahmed N A. 2013. Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn., 114:12-17.
    [82] You D, Moin P. 2008. Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struc., 24:1349-1357.
    [83] Zhang P F, Yan B, Dai C F. 2012. Lift enhancement method by synthetic jet circulation control. Sci. China Tech. Sci., 55:2585-2592.
    [84] Zhao G Q, Zhao Q J. 2014. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chin. J. Aeron., 27:1051-1061.
    [85] Zhao G Q, Zhao Q J, Gu Y S, Chen X. 2016. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil. Chin. J. Aeron., 29:346-357.
  • 加载中
计量
  • 文章访问数:  1807
  • HTML全文浏览量:  349
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 刊出日期:  2020-10-08

目录

    /

    返回文章
    返回