留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大偏差理论的随机动力学研究

朱金杰 陈朕 孔琛 刘先斌

朱金杰, 陈朕, 孔琛, 刘先斌. 基于大偏差理论的随机动力学研究[J]. 力学进展, 2020, 50(1): 202010. doi: 10.6052/1000-0992-18-021
引用本文: 朱金杰, 陈朕, 孔琛, 刘先斌. 基于大偏差理论的随机动力学研究[J]. 力学进展, 2020, 50(1): 202010. doi: 10.6052/1000-0992-18-021
ZHU Jinjie, CHEN Zhen, KONG Chen, LIU Xianbin. The researches on the stochastic dynamics based on the large deviation theory[J]. Advances in Mechanics, 2020, 50(1): 202010. doi: 10.6052/1000-0992-18-021
Citation: ZHU Jinjie, CHEN Zhen, KONG Chen, LIU Xianbin. The researches on the stochastic dynamics based on the large deviation theory[J]. Advances in Mechanics, 2020, 50(1): 202010. doi: 10.6052/1000-0992-18-021

基于大偏差理论的随机动力学研究

doi: 10.6052/1000-0992-18-021
基金项目: 

国家自然科学基金资助项目 (11772149, 11472126).

详细信息
    作者简介:

    朱金杰, 男, 1989年出生, 南京理工大学机械工程学院讲师.东京工业大学2020年JSPS博士后奖学金获得者,合作教授Hiroya Nakao. 本科毕业于南京航空航天大学工程力学钱伟长班. 研究生期间主要从事非线性随机动力学研究. 参与国家自然基金项目2项. 目前已在Physical Review E, Chaos, Proceedings of the Royal Society London A, Physics Letters A等期刊上发表SCI论文8篇, 其中第一作者6篇. 担任International Journal of Modern Physics B等期刊审稿人. 主要研究兴趣包括:复杂网络、神经元动力学、振动共振、大偏差理论等.|刘先斌, 男, 1965年出生,南京航空航天大学航空宇航学院教授, 博士生导师.主要从事非线性随机动力学:局部和全局随机分岔、噪声诱发混沌系统随机动力学行为、随机颤振、离出问题和随机共振等方面的研究.目前主持国家自然科学基金面上项目2项.已主持完成国家自然科学基金项目3项、教育部博士点基金和国家留学归国基金各1项、国家重点实验室基金项目2项.此外, 作为主要研究人员,参与完成国家自然科学基金重点项目、重大研究计划和面上项目4项. 已发表学术论文80余篇、论著1部. 论文发表在Proceedings of the Royal Society London A, ASME-Journal of Applied Mechanics,Physical Review E, Chaos, Nonlinear Dynamics,《力学学报》《中国科学》等国际、国内学术期刊,其中SCI检索期刊论文70余篇, 论文论著他引500篇次.

    通讯作者:

    朱金杰

    刘先斌

  • 中图分类号: O211.63

The researches on the stochastic dynamics based on the large deviation theory

More Information
    Corresponding author: ZHU Jinjie; LIU Xianbin
  • 摘要: 本文介绍了大偏差理论的基本思想、基本概念以及大偏差理论在离出问题研究中的应用.本文评述了有关离出问题的三个重要指标:平均首次离出时间、离出位置分布和最优离出路径相关研究的思路和方法,而其中对最优离出路径的刻化是结构性的难题. 针对平均首次离出时间,本文介绍了它与拟势的关系,并应用平均首次离出时间的结论分析了随机共振以及自诱导随机共振中的时间匹配机制.对于离出位置分布, 本文介绍了提高蒙特卡罗模拟速度的相关算法,并重点评述了其中的概率演化算法和相关的算例. 最后,对于最优离出路径的研究, 本文讨论了几类计算方法,分析了最优路径满足的辅助哈密尔顿系统轨线由于非线性多值性形成的拉格朗日流形拓扑结构的奇异性及其动力学含义,并进一步给出了有限噪声强度激励条件下的作用量修正方法. 最后,给出了大偏差理论应用发展的一些开放性问题的展望.

     

  • [1] 陈朕 . 2018. 基于大偏差理论的几类非线性随机系统动力学行为研究. [博士论文]. 南京: 南京航空航天大学

    (Chen Z . 2018. Dynamical behaviors of several nonlinear stochastic systems based on the large deviation theory. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [2] 孔琛 . 2018. 噪声扰动下非线性动力系统离出行为研究. [博士论文]. 南京: 南京航空航天大学

    (Kong C . 2018. On the exit problems in nonlinear dynamical systems driven by random perturbations. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [3] 孔琛, 刘先斌 . 2014. 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究. 力学学报, 46:447-456

    (Kong C, Liu X B . 2014. Research for attracting region and exit problem of a piecewise linear system under periodic and white noise excitations. Chinese Journal of Theoretical and Applied Mechanics, 46: 447-456).
    [4] 刘先斌, 陈虬, 陈大鹏 . 1996. 非线性随机动力系统的稳定性和分岔研究. 力学进展, 26:437-452

    (Liu X B, Chen Q, Chen D P . 1996. The researches on the stability and bifurcation of nonlinear stochastic dynamical systems. Advances in Mechanics, 26: 437-452).
    [5] 孙建桥, 熊夫睿 . 2017. 非线性动力学系统全局分析之外的胞映射方法新发展. 力学进展, 47:150-177

    (Sun J Q, Xiong F R . 2017. Cell mapping methods-beyond global analysis of nonlinear dynamic systems. Advances in Mechanics, 47: 150-177).
    [6] 徐伟, 孙春艳, 孙建桥, 贺群 . 2013. 胞映射方法的研究和进展. 力学进展, 43:91-100

    (Xu W, Sun C Y, Sun J Q, He Q . 2013. Development and study on cell mapping methods. Advances in Mechanics, 43: 91-100).
    [7] 徐伟, 岳晓乐, 韩群 . 2017. 胞映射方法及其在非线性随机动力学中的应用. 动力学与控制学报, 15:200-208

    (Xu W, Yue X L, Han Q . 2017. Cell mapping method and its applications in nonlinear stochastic dynamical systems. Journal of Dynamics and Control, 15: 200-208).
    [8] 许勇, 裴斌, 徐伟 . 2017. 随机平均原理研究若干进展. 动力学与控制学报, 15:193-199

    (Xu Y, Pei B, Xu W . 2017. Some recent developments of stochastic averaging principle. Journal of Dynamics and Control, 15: 193-199).
    [9] 朱位秋 . 1987. 随机平均法及其应用. 力学进展, 17:342-352

    (Zhu W Q . 1987. Stochastic averaging methods and their applications. Advances in Mechanics, 17: 342-352).
    [10] 朱位秋 . 1992. 随机振动. 北京: 科学出版社

    (Zhu W Q. 1992. Stochastic Vibration. Beijing: Science Press).
    [11] 朱位秋 . 2003. 非线性随机动力学与控制——Hamilton理论体系框架. 北京: 科学出版社

    (Zhu W Q. 2003. Nonlinear Stochastic Dynamics and Control—the Framework of Hamilton Theory. Beijing: Science Press).
    [12] 朱位秋, 蔡国强 . 2017. 随机动力学引论. 北京: 科学出版社

    (Zhu W Q, Cai G Q. 2017. Introduction to Stochastic Dynamics. Beijing: Science Press).
    [13] 朱金杰 . 2018. 神经元同步、共振及离出问题研究. [博士论文]. 南京: 南京航空航天大学

    (Zhu J J . 2018. Synchronization, resonance and exit problem for neuronal dynamical systems. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics).
    [14] Adams D A, Sander L M, Ziff R M. 2010. The barrier method: A technique for calculating very long transition times. Journal of Chemical Physics, 133:124103.
    [15] Agazzi A, Dembo A, Eckmann J P. 2017. Large deviations theory for Markov jump models of chemical reaction networks. Annals of Applied Probability, 28:1821-1855.
    [16] Agranov T, Meerson B. 2018. Narrow Escape of Interacting Diffusing Particles. Physical Review Letters, 120:120601.
    [17] Allen R J, Warren P B, Ten Wolde P R. 2005. Sampling rare switching events in biochemical networks. Physical Review Letters, 94:018104.
    [18] Arnold V I. 1984. Catastrophe Theory. Berlin: Heidelberg: Springer-Verlag.
    [19] Bandrivskyy A, Beri S, Luchinsky D G. 2003 a. Noise-induced shift of singularities in the pattern of optimal paths. Physics Letters A, 314:386-391.
    [20] Bandrivskyy A, Beri S, Luchinsky D G, Mannella R, McClintock P V E. 2003 b. Fast Monte Carlo simulations and singularities in the probability distributions of nonequilibrium systems. Physical Review Letters, 90:210201.
    [21] Ben-Jacob E, Bergman D J, Matkowsky B J, Schuss Z. 1982. Lifetime of oscillatory steady-states. Physical Review A, 26:2805-2816.
    [22] Benzi R, Parisi G, Sutera A, Vulpiani A. 1982. Stochastic resonance in climatic change. Tellus, 34:10-16.
    [23] Benzi R, Sutera A, Vulpiani A. 1981. The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 14:L453.
    [24] Beri S, Mannella R, Luchinsky D G, Silchenko A N, McClintock P V E. 2005. Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Physical Review E, 72:036131.
    [25] Beri S, Mannella R, McClintock P V E. 2004. Dynamic importance sampling for the escape problem in nonequilibrium systems: Observation of shifts in optimal paths. Physical Review Letters, 92:020601.
    [26] Bernt ?ksendal. 2010. Stochastic Differential Equations. Berlin, Heidelberg: Springer-Verlag.
    [27] Bobrovsky B Z, Schluss Z. 1982. A singular perturbation method for computation of the mean first passage time in a nonlinear filter. SIAM J. Appl. Math., 42:174-187.
    [28] Bouchet F, Laurie J, Zaboronski O. 2014. Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations. Journal of Statistical Physics, 156:1066-1092.
    [29] Bray A J, McKane A J. 1989. Instanton calculation of the escape rate for activation over a potential barrier driven by colored noise. Physical Review Letters, 62:493-496.
    [30] Bressloff P, Newby J. 2013. Stochastic models of intracellular transport. Reviews of Modern Physics, 85:135-196.
    [31] Cai R, Chen X, Duan J, Kurths J, Li X. 2017. Lévy noise-induced escape in an excitable system. Journal of Statistical Mechanics: Theory and Experiment, 2017: 063503.
    [32] Cameron M K. 2012. Finding the quasipotential for nongradient SDEs. Physica D: Nonlinear Phenomena, 241:1532-1550.
    [33] Chan H B, Dykman M I, Stambaugh C. 2008. Paths of fluctuation induced switching. Physical Review Letters, 100:130602.
    [34] Chatterjee M, Robert M E. 2001. Noise enhances modulation sensitivity in cochlear implant listeners: Stochastic resonance in a prosthetic sensory system? JARO - Journal of the Association for Research in Otolaryngology, 2:159-171.
    [35] Chen L C, Deng M L, Zhu W Q. 2009. First passage failure of quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. Acta Mechanica, 206:133-148.
    [36] Chen Z, Li Y, Liu X. 2016. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator. Chaos, 26:935-992.
    [37] Chen L, Li Z, Zhuang Q, Zhu W. 2013. First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative. Journal of Vibration and Control, 19:2154-2163.
    [38] Chen Z, Liu X. 2016. Patterns and singular features of extreme fluctuational paths of a periodically driven system. Physics Letters A, 380:1953-1958.
    [39] Chen Z, Liu X. 2017 a. Noise induced transitions and topological study of a periodically driven system. Communications in Nonlinear Science and Numerical Simulation, 48:454-461.
    [40] Chen Z, Liu X. 2017 b. Subtle escaping modes and subset of patterns from a nonhyperbolic chaotic attractor. Physical Review E, 95:012208.
    [41] Chen L, Zhu W Q. 2010 a. First passage failure of quasi non-integrable generalized Hamiltonian systems. Archive of Applied Mechanics, 80:883-893.
    [42] Chen L C, Zhu W Q. 2010 b. Reliability of quasi integrable generalized Hamiltonian systems. Probabilistic Engineering Mechanics, 25:61-66.
    [43] Chen L, Zhu W. 2010 c. First passage failure of dynamical power systems under random perturbations. Science China Technological Sciences, 53:2495-2500.
    [44] Chen Z, Zhu J, Liu X. 2017. Crossing the quasi-threshold manifold of a noise-driven excitable system. Proceedings of the Royal Society A, 473:20170058.
    [45] Cohen J, Lewis R. 1967. A ray method for the asymptotic solution of the diffusion equation. IMA J Appl Math, 3:266-290.
    [46] Crandall M G, Evans L C, Lions P L. 1984. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 282:487-502.
    [47] Crandall M G, Lions P L. 1983. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 277:1-42.
    [48] Crooks G E, Chandler D. 2001. Efficient transition path sampling for nonequilibrium stochastic dynamics. Physical Review E, 64:026109.
    [49] Dahiya D, Cameron M K. 2018. An ordered line integral method for computing the quasi-potential in the case of variable anisotropic diffusion. Physica D: Nonlinear Phenomena, 382-383:33-45.
    [50] Deng M, Zhu W. 2009. Some applications of stochastic averaging method for quasi Hamiltonian systems in physics. Science in China, Series G: Physics, Mechanics and Astronomy, 52:1213-1222.
    [51] Dykman M I. 2010. Poisson-noise-induced escape from a metastable state. Physical Review E, 81:051124.
    [52] Dykman M I, Luchinsky D G, McClintock P V E, Smelyanskiy V N. 1996. Corrals and critical behavior of the distribution of fluctuational paths. Physical Review Letters, 77:5229-5232.
    [53] Dykman M I, McClintock P V E, Smelyanski V N, Stein N D, Stocks N G. 1992. Optimal paths and the prehistory problem for large fluctuations in noise-driven systems. Physical Review Letters, 68:2718-2721.
    [54] Dykman M I, Millonas M M, Smelyanskiy V N. 1994. Observable and hidden singular features of large fluctuations in nonequilibrium systems. Physics Letters A, 195:53-58.
    [55] Einstein A. 1905. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik, 322:549-560.
    [56] Ermentrout B. 1996. Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8:979-1001.
    [57] Faradjian A K, Elber R. 2004. Computing time scales from reaction coordinates by milestoning. Journal of Chemical Physics, 120:10880-10889.
    [58] Fenichel N. 1979. Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31:53-98.
    [59] Freidlin M I, Wentzell A D. 2012. Random Perturbations of Dynamical Systems. Berlin Heidelberg: Springer.
    [60] Gammaitoni L, H?nggi P, Jung P, Marchesoni F. 1998. Stochastic resonance. Reviews of Modern Physics, 70:223-287.
    [61] Glowacki D R, Paci E, Shalashilin D V. 2009. Boxed molecular dynamics: A simple and general technique for accelerating rare event kinetics and mapping free energy in large molecular systems. Journal of Physical Chemistry B, 113:16603-16611.
    [62] Grafke T, Grauer R, Sch?fer T. 2015. The instanton method and its numerical implementation in fluid mechanics. Journal of Physics A: Mathematical and Theoretical, 48:333001.
    [63] Gu X, Zhu W. 2014. A stochastic averaging method for analyzing vibro-impact systems under Gaussian white noise excitations. Journal of Sound and Vibration, 333:2632-2642.
    [64] Guardia M, Seara T M, Teixeira M A. 2011. Generic bifurcations of low codimension of planar Filippov systems. Journal of Differential Equations, 250:1967-2023.
    [65] Gutkin B S, Jost J, Tuckwell H C. 2009. Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise. Naturwissenschaften, 96:1091-1097.
    [66] Han Q, Xu W, Yue X. 2016. Exit location distribution in the stochastic exit problem by the generalized cell mapping method. Chaos, Solitons and Fractals, 87:302-306.
    [67] Han Q, Xu W, Yue X, Zhang Y. 2015. First-passage time statistics in a bistable system subject to Poisson white noise by the generalized cell mapping method. Communications in Nonlinear Science and Numerical Simulation, 23:220-228.
    [68] Heymann M, Vanden-Eijnden E. 2008. The geometric minimum action method: A least action principle on the space of curves. Communications on Pure and Applied Mathematics, 61:1052-1117.
    [69] Higham D J. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43:525-546.
    [70] Holcman D, Schuss Z. 2004. Escape through a small opening: Receptor trafficking in a synaptic membrane. Journal of Statistical Physics, 117:975-1014.
    [71] Horsthemke W, Lefever R. 1984. Noise-induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Berlin: Springer Verlag.
    [72] Huang Y, Liu X. 2012. Stochastic stability of viscoelastic system under non-Gaussian colored noise excitation. Science China: Physics, Mechanics and Astronomy, 55:483-492.
    [73] Huang D, Yang J, Zhang J, Liu H. 2018. An improved adaptive stochastic resonance method for improving the efficiency of bearing faults diagnosis. Journal of Mechanical Engineering Science, 232:2352-2368.
    [74] Ji P, Lu W, Kurths J. 2018. Stochastic basin stability in complex networks. EPL, 122:1-6.
    [75] Khovanov I A, Khovanova N A, McClintock P V E. 2003. Noise-induced failures of chaos stabilization: Large fluctuations and their control. Physical Review E, 67:051102.
    [76] Klosek-Dygas M M, Matkowsky B J, Schuss Z. 2006. Stochastic stability of nonlinear oscillators. SIAM Journal on Applied Mathematics, 48:1115-1127.
    [77] Knessl C, Matkowsky B, Schuss Z, Tier C. 1985. An asymptotic theory of large deviations for Markov jump processes. SIAM Journal on Applied Mathematics, 45:1006-1028.
    [78] Kong C, Gao X, Liu X. 2016. On the global analysis of a piecewise linear system that is excited by a Gaussian white noise. Journal of Computational and Nonlinear Dynamics, 11:051029.
    [79] Kong C, Liu X. 2017. Noise-induced chaos in a piecewise linear system. International Journal of Bifurcation and Chaos, 27:1750137.
    [80] Kougioumtzoglou I A, Spanos P D. 2013. Response and first-passage statistics of nonlinear oscillators via a numerical path integral approach. Journal of Engineering Mechanics, 139:1207-1217.
    [81] Kramers H A. 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284-304.
    [82] Kraut S, Feudel U. 2003 a. Enhancement of noise-induced escape through the existence of a chaotic saddle. Physical Review E, 67:015204.
    [83] Kraut S, Feudel U. 2003 b. Noise-induced escape through a chaotic saddle: lowering of the activation energy. Physica D: Nonlinear Phenomena, 181:222-234.
    [84] Kubo R. 1966. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29:255-284.
    [85] Kuznetsov Y A, Rinaldi S, Gragnani A. 2003. One-parameter bifurcations in planar Filippov systems. International Journal of Bifurcation and Chaos, 13:2157-2188.
    [86] Lee DeVille R E, Vanden-Eijnden E, Muratov C B. 2005. Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Physical Review E, 72:31105.
    [87] Li W, Chen L, Trisovic N, Cvekovic A, Zhao J. 2015. First passage of stochastic fractional derivative systems with power-form restoring force. International Journal of Non-Linear Mechanics, 71:83-88.
    [88] Lin Y K, Cai G Q. 1995. Probabilistic Structural Dynamics: Advanced Theory and Applications. Boston: McGraw-Hill.
    [89] Longtin A. 1997. Autonomous stochastic resonance in bursting neurons. Physical Review E, 55:868-876.
    [90] Lu S, He Q, Zhang H, Kong F. 2017. Rotating machine fault diagnosis through enhanced stochastic resonance by full-wave signal construction. Mechanical Systems and Signal Processing, 85:82-97.
    [91] Luchinsky D G, Beri S, Mannella R, McClintock P V E, Khovanov I A. 2002. Optimal fluctuations and the control of chaos. International Journal of Bifurcation and Chaos, 12:583-604.
    [92] Luchinsky D G, Maier R S, Mannella R, McClintock P V E, Stein D L. 1997. Experiments on critical phenomena in a noisy exit problem. Physical Review Letters, 79:3109-3112.
    [93] Luchinsky D G, Maier R S, Mannella R, McClintock P V E, Stein D L. 1999. Observation of saddle-point avoidance in noise-induced escape. Physical Review Letters, 82:1806.
    [94] Luchinsky D G, McClintock P V E. 1997. Irreversibility of classical fluctuations studied in analogue electrical circuits. Nature, 389:463-466.
    [95] Luchinsky D G, McClintock P V E, Dykman M I. 1998. Analogue studies of nonlinear systems. Reports on Progress in Physics, 61:889-997.
    [96] Lücken L, Yanchuk S, Popovych O V, Tass P A. 2013. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Frontiers in Computational Neuroscience, 7:63.
    [97] Ludwig D. 1975. Persistence of dynamical systems under random perturbations. SIAM Review, 17:605-640.
    [98] Maier R S, Stein D L. 1993 a. Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. Physical Review Letters, 71:1783-1786.
    [99] Maier R S, Stein D L. 1993 b. Escape problem for irreversible systems. Physical Review E, 48:931-938.
    [100] Maier R S, Stein D L. 1996. A scaling theory of bifurcations in the symmetric weak-noise escape problem. Journal of Statistical Physics, 83:291-357.
    [101] Maier R S, Stein D L. 1997. Limiting exit location distributions in the stochastic exit problem. SIAM Journal on Applied Mathematics, 57:752-790.
    [102] Marshall J S. 2016. Analytical solutions for an escape problem in a disc with an arbitrary distribution of exit holes along its boundary. Journal of Statistical Physics, 165:920-952.
    [103] Matkowsky B J, Schuss Z. 1977. The exit problem for randomly perturbed dynamical systems. SIAM Journal on Applied Mathematics, 33:365-382.
    [104] Matkowsky B, Schuss Z. 1982. Diffusion across characteristic boundaries. SIAM Journal on Applied Mathematics, 42:822-834.
    [105] Matkowsky B J, Schuss Z, Ben-Jacob E. 1982. A singular perturbation approach to Kramers' duffusion problem. SIAM Journal on Applied Mathematics, 42:835-849.
    [106] Matkowsky B J, Schuss Z, Tier C. 1984. Uniform expansion of the transition rate in Kramers' problem. Journal of Statistical Physics, 35:443-456.
    [107] Menck P J, Heitzig J, Kurths J, Schellnhuber H J. 2014. How dead ends undermine power grid stability. Nature Communications, 5:3969.
    [108] Menck P J, Heitzig J, Marwan N, Kurths J. 2013. How basin stability complements the linear-stability paradigm. Nature Physics, 9:89-92.
    [109] Muratov C B, Vanden-Eijnden E, E W. 2005. Self-induced stochastic resonance in excitable systems. Physica D: Nonlinear Phenomena, 210:227-240.
    [110] Naeh T, Klosek M M, Matkowsky B J, Schuss Z. 1990. A direct approach to the exit problem. SIAM Journal on Applied Mathematics, 50:595-627.
    [111] Newby J M, Bressloff P C, Keener J P. 2013. Breakdown of fast-slow analysis in an excitable system with channel noise. Physical Review Letters, 111:128101.
    [112] Nolting B C, Abbott K C. 2016. Balls, cups, and quasi-potentials: Quantifying stability in stochastic systems. Ecology, 97:850-864.
    [113] Pei B, Xu Y, Yin G. 2017. Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations. Nonlinear Analysis, Theory, Methods and Applications, 160:159-176.
    [114] Pikovsky A S, Kurths J. 1997. Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78:775-778.
    [115] Qiao Z, Lei Y, Lin J, Jia F. 2017. An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis. Mechanical Systems and Signal Processing, 84:731-746.
    [116] Reimann P, Schmid G J, H鋘ggi P. 1999. Universal equivalence of mean first-passage time and Kramers rate. Physical Review E, 60:R1-R4.
    [117] Rodrigo G, Stocks N G. 2018. Suprathreshold stochastic resonance behind cancer. Trends in Biochemical Sciences, 43:483-485.
    [118] Roy R V. 1993. Noise perturbations of nonlinear dynamical systems. Computational Stochastic Mechanics, 79:125-148.
    [119] Roy R V. 1994 a. Asymptotic analysis of first-passage problems. International Journal of Non-Linear Mechanics, 32:173-186.
    [120] Roy R V. 1994 b. Noise perturbations of a non-linear system with multiple steady states. International Journal of Non-Linear Mechanics, 29:755-773.
    [121] Roy R V. 1995. Noise-induced transitions in weakly nonlinear oscillators near resonance. Journal of Applied Mechanics, 62:496-504.
    [122] Schuecker J, Diesmann M, Helias M. 2015. Modulated escape from a metastable state driven by colored noise. Physical Review E, 92:052119.
    [123] Schultz P, Menck P J, Heitzig J, Kurths J. 2017. Potentials and limits to basin stability estimation. New Journal of Physics, 19:023005.
    [124] Schuss Z, Matkowsky B. 1979. The exit problem: A new approach to diffusion across potential barriers. SIAM Journal on Applied Mathematics, 36:604-623.
    [125] Schuss Z, Singer A, Holcman D. 2007. The narrow escape problem for diffusion in cellular microdomains. Proceedings of the National Academy of Sciences, 104:16098-16103.
    [126] Schuss Z, Spivak A. 1998. Where is the exit point? Chemical Physics, 235:227-242.
    [127] Sethian J A, Vladimirsky A. 2001. Ordered upwind methods for static Hamilton-Jacobi equations. Proceedings of the National Academy of Sciences, 98:11069-11074.
    [128] Sethian J A, Vladimirsky A. 2003. Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM Journal on Numerical Analysis, 41:325-363.
    [129] Sidney Redner. 2001. A Guide to First-Passage Processes. Cambridge: Cambridge University Press.
    [130] Smelyanskiy V N, Dykman M I. 1997. Optimal control of large fluctuations. Physical Review E, 55:2516-2521.
    [131] Smelyanskiy V N, Dykman M I, Maier R S. 1997. Topological features of large fluctuations to the interior of a limit cycle. Physical Review E, 55:2369-2391.
    [132] Spivak A, Schuss Z. 2002 a. Analytical and numerical study of Kramers' exit problem I. Applied Mathematics E-Notes, 2:132-140.
    [133] Spivak A, Schuss Z. 2002 b. The exit distribution on the stochastic separatrix in Kramers' exit problem. SIAM Journal on Applied Mathematics, 62:1698-1711.
    [134] Spivak A, Schuss Z. 2003. Analytical and numerical study of Kramers' exit problem II. Applied Mathematics E-Notes, 3:147-155.
    [135] Stocks N G, Allingham D, Morse R P. 2002. The application of suprathreshold stochastic resonance to cochlear implant coding. Fluctuation and Noise Letters, 02:L169-L181.
    [136] Sun J Q, Hsu C S. 1988. First-passage time probability of non-linear stochastic systems by generalized cell mapping method. Journal of Sound and Vibration, 124:233-248.
    [137] Tél T, Lai Y C. 2010. Quasipotential approach to critical scaling in noise-induced chaos. Physical Review E, 81:56208.
    [138] Tél T, Lai Y C, Gruiz M. 2008. Noise-induced chaos: A consequence of long deterministic transients. International Journal of Bifurcation and Chaos, 18:509-520.
    [139] Touchette H. 2009. The large deviation approach to statistical mechanics. Physics Reports, 478:1-69.
    [140] Tuckwell H C, Jost J. 2012. Analysis of inverse stochastic resonance and the long-term firing of Hodgkin-Huxley neurons with Gaussian white noise. Physica A: Statistical Mechanics and Its Applications, 391:5311-5325.
    [141] Wang J. 2015. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Advances in Physics, 64:1-137.
    [142] Wang W, Yan Z, Liu X. 2017. The escape problem and stochastic resonance in a bistable system driven by fractional Gaussian noise. Physics Letters A, 381:2324-2336.
    [143] Weber J. 1956. Fluctuation dissipation theorem. Physical Review, 101:1620-1626.
    [144] Wechselberger M, Mitry J, Rinzel J. 2013. Canard theory and excitability. Lecture Notes in Mathematics, 2102: 89-132.
    [145] Wentzell A D, Freidlin M I. 1970. On small random perturbations of dynamical systems. Russian Mathematical Surveys, 25:1-55.
    [146] Whitney H. 1955. On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Annals of Mathematics, 62:374-410.
    [147] Wuehr M, Boerner J C, Pradhan C , et al. 2017. Stochastic resonance in the human vestibular system - Noise-induced facilitation of vestibulospinal reflexes. Brain Stimulation, 11:261-263.
    [148] Xu M. 2018. First-passage failure of linear oscillator with non-classical inelastic impact. Applied Mathematical Modelling, 54:284-297.
    [149] Xu Y, Guo R, Liu D, Zhang H, Duan J. 2013. Stochastic averaging principle for dynamical systems with fractional brownian motion. Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 19:1197-1212.
    [150] Yang S, Potter S F, Cameron M K. 2019. Computing the quasipotential for nongradient SDEs in 3D. Journal of Computational Physics, 379:325-350.
    [151] Young H P. 2015. The evolution of social norms. Annual Review of Economics, 7:359-387.
    [152] Zhu J, Chen Z, Liu X. 2018. Probability evolution method for exit location distribution. Physics Letters A, 382:771-775.
    [153] Zhu W Q, Huang Z L, Deng M L. 2002. Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems. International Journal of Non-Linear Mechanics, 37:1057-1071.
    [154] Zhu W Q, Wu Y J. 2003. First-passage time of Duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dynamics, 32:291-305.
  • 加载中
计量
  • 文章访问数:  3106
  • HTML全文浏览量:  675
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 刊出日期:  2020-10-08

目录

    /

    返回文章
    返回