留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多物理场耦合作用分析的近场动力学理论与方法

顾鑫 章青 ErdoganMadenci

顾鑫, 章青, ErdoganMadenci. 多物理场耦合作用分析的近场动力学理论与方法[J]. 力学进展, 2019, 49(1): 201910. doi: 10.6052/1000-0992-18-007
引用本文: 顾鑫, 章青, ErdoganMadenci. 多物理场耦合作用分析的近场动力学理论与方法[J]. 力学进展, 2019, 49(1): 201910. doi: 10.6052/1000-0992-18-007
GU Xin, ZHANG Qing, MADENCI Erdogan. Review of peridynamics for multi-physics coupling modeling[J]. Advances in Mechanics, 2019, 49(1): 201910. doi: 10.6052/1000-0992-18-007
Citation: GU Xin, ZHANG Qing, MADENCI Erdogan. Review of peridynamics for multi-physics coupling modeling[J]. Advances in Mechanics, 2019, 49(1): 201910. doi: 10.6052/1000-0992-18-007

多物理场耦合作用分析的近场动力学理论与方法

doi: 10.6052/1000-0992-18-007
基金项目: 国家自然科学基金项目(11672101,11372099)、国家重点研发计划(2017YFC1502603,2018YFC0406703)、江苏省自然科学基金项目(BK20151493)和2016年国家建设高水平大学公派研究生项目(201606710089)资助.
详细信息
    作者简介:

    null

    作者简介:章青, 男, 博士, 河海大学力学与材料学院教授、博士生导师、工程力学国家重点学科学术带头人. 现任国际计算力学协会理事, 中国力学学会理事及计算力学专委会副主任, 南方计算力学联络委员会主任等多个学会的理事和常务理事. 《计算力学学报》《应用数学与力学》《力学季刊》《河海大学学报》 Journal of Peridynamics and Nonlocal Modeling 等期刊编委, 多个国际学术会议主席和学术委员会委员. 长期从事计算固体力学、工程材料的力学特性与本构理论、工程结构灾变破坏力学、多场耦合等问题的研究. 主持和参加国家重点基础研究发展计划、国家科技攻关、国家重点研发计划、国家自然科学基金和重点工程科研项目80余项, 在国内外学术刊物和会议上发表论文200余篇, 出版专著和教材9部.

  • 中图分类号: O33,O34,O39;

Review of peridynamics for multi-physics coupling modeling

  • 摘要: 广义来说, 近场动力学(peri-dynamics,PD)是假设每个物质点在承受一定范围内的非接触相互作用下,研究整个物理系统演化过程的理论,为涉及非连续和非局部相互作用的问题提供了一个统一的数学框架,具有广泛的适用性.在简要介绍诸多工程对于多物理场模型和数值计算软件的迫切需求后,针对现有商用软件在处理结构非连续演化问题时遇到的瓶颈,引入近场动力学理论和方法. 概述近场动力学固体力学模型,系统阐述近场动力学扩散模型和近场动力学多物理场耦合建模的研究现状和进展,主要涉及电子元器件、电子封装和岩土工程领域的多物理场耦合建模,包括热--力、湿--热--力、热--氧、热--力--氧、力--电、热--电、力--热--电、多孔介质的水--力流固相互作用等非耦合、半耦合与完全耦合模型,强调发展耦合方程数值解法的重要性.最后对扩散问题和多物理场耦合问题的近场动力学理论模型、数值算法和工程应用做进一步展望.

     

  • [1] 白小敏, 唐建群, 巩建鸣. 2017. 不同过电位下一维点蚀的近场动力学数值模拟. 南京工业大学学报(自科版), 6: 91-98

    (Bai X M, Tang J Q, Gong J M.2017. Numerical modeling of 1D corrosion pit propagation under different overpotentials using peridynamic method. Journal of Nanjing Tech University (Natural Science Edition), 6: 91-98).
    [2] 戴旭东, 王义亮, 谢友柏. 2001. 以润滑油膜为动力耦合件的内燃机缸套--活塞系统中动力耦合方程的建立及求解方法. 润滑与密封, 5: 5-8

    (Dai X D, Wang Y L, Xie Y B.2001. Establishment and numerical solution of the dynamic-tribology coupling simultaneous equation in cylinder-piston system. Lubrication Engineering, 5: 5-8).
    [3] 韩非. 2017. 体会近场动力学之动.
    [4] 黄丹, 章青, 乔丕忠, 沈峰. 2010. 近场动力学方法及其应用. 力学进展, 40: 448-459

    (Huang D, Zhang Q, Qiao P Z, Shen F.2010. A review on peridynamics (PD) method and its application. Advances in Mechanics, 40: 448-459).
    [5] 刘硕, 方国东, 王兵, 付茂青, 梁军. 2018. 近场动力学与有限元方法耦合求解热传导问题.力学学报, 50: 339-348

    (Liu S, Fang G D, Wang B, Fu M Q, Liang J.2018. Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 50: 339-348).
    [6] 刘英凯, 程站起. 2018. 功能梯度材料热传导问题的近场动力学模型. 力学季刊, 39: 82-89

    (Liu Y K, Cheng Z Q.2018. Transient heat conduction model for functionally graded materials based on peridynamics. Chinese Quarterly of Mechanics, 39: 82-89).
    [7] 乔丕忠, 张勇, 张恒, 张律文. 2017. 近场动力学研究进展. 力学季刊, 38: 1-13

    (Qiao P Z, Zhang Y, Zhang H, Zhang L W.2017. A review on advances in peridynamics. Chinese Quarterly of Mechanics, 38: 1-13).
    [8] 苏伯阳, 李书欣, 刘立胜, 赖欣, 谷卫敏. 2018. 湿热环境下复合材料冲击损伤的近场动力学模拟.科学技术与工程, 18: 201-206

    (Su B Y, Li S X, Liu L S, Lai X, Gu W M.2018. Peridynamic simulation of impact damage of composite material under hygrothermal environment. Scicence Technolody and Engineering, 18: 201-206).
    [9] 孙培德, 杨东全, 陈奕柏. 2007. 多物理场耦合模型及数值模拟导论. 北京: 中国科学技术出版社

    (Sun P D, Yang D Q, Chen Y B.2007. Introduction to Coupling Models for Multiphysics and Numerical Simulations. Beijing: Science and Technology of China Press).
    [10] 王超聪, 刘齐文, 刘立胜, 赖欣. 2017. 热防护材料烧蚀温度场的近场动力学模拟. 科学技术与工程, 17: 172-176

    (Wang C C, Liu Q W, Liu L S, Lai X.2017. Numerical simulation of ablation temperature for thermal protective composites based on peridynamics. Scicence Technolody and Engineering, 17: 172-176).
    [11] 王飞, 马玉娥, 郭妍宁. 2017. 近场动力学中内核参数对非均匀材料热传导数值解的影响研究. 西北工业大学学报, 35: 203-207

    (Wang F, Ma Y E, Guo Y N.2017. Effects of kernel parameters of peridynamic theory on heat conduction numerical solution for non-homogeneous material. Journal of Northwestern Polytechnical University, 35: 203-207).
    [12] 吴凡, 李书卉, 段庆林, 李熙夔, 张洪武. 2017. 基于近场动力学方法的水力压裂过程数值模拟. 计算机辅助工程, 26: 1-6

    (Wu F, Li S H, Duan Q L, Li X K, Zhang H W.2017. Numerical simulation of hydraulic fracturing process based on peridynamics method. Computer Aided Engineering, 26: 1-6).
    [13] 徐涛, 宋力. 2007. 真实破裂过程分析软件与多物理场耦合软件结构力学模块对比研究. 大连大学学报, 28: 66-71

    (Xu T, Song L.2007. Comparison study of realistic failure process analysis code and comsol multiphysics code. Journal of Dalian University, 28: 66-71).
    [14] 章青, 顾鑫, 郁杨天. 2016. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 48: 56-63

    (Zhang Q, Gu X, Yu Y T.2016. Peridynamics simulation for dynamic response of granular materials under impact loading. Chinese Journal of Theoretical and Applied Mechanics, 48: 56-63).
    [15] 章青, 郁杨天, 顾鑫. 2016. 近场动力学与有限元的混合建模方法. 计算力学学报, 33: 441-448

    (Zhang Q, Yu Y T, Gu X.2016. Hybrid modeling methods of peridynamics and finite element method. Chinese Journal of Computational Mechanics, 33: 441-448).
    [16] 张振宇. 2015. 基于Voronoi图方法的近场动力学键理论及热电耦合理论研究. [硕士论文]. 武汉: 武汉理工大学

    (Zhang Z Y.2015. Study of the voronoi based peridynamic bond theory and thermoelectric coupling theory. [Master Thesis]. Wuhan: Wuhan University of Technology).
    [17] Agwai A.2011. A peridynamic approach for coupled fields. [PhD Thesis]. Tucson: The University of Arizona.
    [18] Agwai A, Guven I, Madenci E.2011. A new thermomechanical fracture analysis approach for 3D integration technology//IEEE 61st Electronic Components and Technology Conference (ECTC), 740-745.
    [19] Assefa M, Lai X, Liu L S.2017. Bond based peridynamic formulation for thermoelectric materials. Materials Science Forum, 883: 51-59.
    [20] Assefa M, Lai X, Liu L S, Liao Y.2017. Peridynamic formulation for coupled thermoelectric phenomena. Advances in Materials Science and Engineering, 2017: 1-10.
    [21] Bobaru F, Duangpanya M.2010. The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 53: 4047-4059.
    [22] Bobaru F, Duangpanya M.2012. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. Journal of Computational Physics, 231: 2764-2785.
    [23] Bobaru F, Foster J T, Geubelle P H, Silling S A.2016. Handbook of Peridynamic Modeling. Raton: CRC press.
    [24] Chen Z G, Bobaru F.2015. Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion. Computer Physics Communications, 197: 51-60.
    [25] Chen Z G, Bobaru F.2015. Peridynamic modeling of pitting corrosion damage. Journal of the Mechanics and Physics of Solids, 78: 352-381.
    [26] Chen Z G, Zhang G F, Bobaru F.2016. The influence of passive film damage on pitting corrosion. Journal of The Electrochemical Society, 163: 19-24.
    [27] Chen H L, Hu Y L, Spencer B W.2016. A MOOSE-based implicit peridynamic thermomechanical model// ASME 2016 International Mechanical Engineering Congress and Exposition, 2016: V009T12A072.
    [28] Chen H L, Hu Y L, Spencer B W.2017. Peridynamics using irregular domain discretization with moose-based implementation//ASME 2017 International Mechanical Engineering Congress and Exposition, 2017: V009T12A067-V009T12A067.
    [29] De Meo D, Oterkus E.2017. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Engineering, 135: 76-83.
    [30] De Meo D, Diyaroglu C, Zhu N, Oterkus E, Siddiq M A.2016. Modelling of stress-corrosion cracking by using peridynamics. International Journal of Hydrogen Energy, 41: 6593-6609.
    [31] Delgoshaie A H, Meyer D W, Jenny P, Tchelepi H A.2015. Non-local formulation for multiscale flow in porous media. Journal of Hydrology, 531: 649-654.
    [32] Diyaroglu C, Oterkus S, Oterkus E, Madenci E.2017. Peridynamic modeling of diffusion by using finite-element analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7: 1823-1831.
    [33] Diyaroglu C, Oterkus S, Oterkus E, Madenci E, Han S, Hwang Y.2017. Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectronics Reliability, 70: 103-111.
    [34] Du Q, Gunzburger M, Lehoucq R B, Zhou K.2012. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 54: 667-696.
    [35] Du Q, Gunzburger M, Lehoucq R B, Zhou K.2013. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences, 23: 493-540.
    [36] D'Antuono P, Morandini M.2017. Thermal shock response via weakly coupled peridynamic thermo-mechanics. International Journal of Solids and Structures, 129: 74-89.
    [37] Edmiston J K.2015. Development of a geoperidynamic model for hydraulic fracture//In 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
    [38] Farhat C, Park K C, Dubois-Pelerin Y.1991. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Computer Methods in Applied Mechanics and Engineering, 85: 349-365.
    [39] Gerstle W H, Silling S A, Read D, Tewary V, Lehoucq R B.2008. Peridynamic simulation of electromigration. CMC-Computers Materials & Continua, 8: 75-92.
    [40] Gu X, Zhang Q, Huang D, Yu Y T.2016. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics, 160: 124-137.
    [41] Gu X, Zhang Q, Xia X Z.2017. Voronoi-based peridynamics and cracking analysis with adaptive refinement. International Journal for Numerical Methods in Engineering, 112: 2087--2109.
    [42] Gu X, Madenci E, Zhang Q.2018. Revisit of non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 190: 31-52.
    [43] Giannakeas I N, Papathanasiou T K, Bahai H.2018. Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM. Journal of the European Ceramic Society, 38: 3037-3048.
    [44] Han S W, Diyaroglu C, Oterkus S, Madenci E, Oterkus E, Hwang Y, Seol H.2016. Peridynamic direct concentration approach by using ANSYS//IEEE 66th Electronic Components and Technology Conference (ECTC), 2016: 544-549.
    [45] Hu Y L, Chen H L, Spencer B W, Madenci E.2018 Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Engineering Fracture Mechanics, 197: 92-113.
    [46] Ishimoto J, Sato T, Combescure A.2017. Computational approach for hydrogen leakage with crack propagation of pressure vessel wall using coupled particle and Euler method. International Journal of Hydrogen Energy, 42: 10656-10682.
    [47] Jabakhanji R.2013. Peridynamic modeling of coupled mechanical deformations and transient flow in unsaturated soils. [PhD Thesis]. West Lafayette: Purdue University.
    [48] Jabakhanji R, Mohtar R H.2015. A peridynamic model of flow in porous media. Advances in Water Resources, 78: 22-35.
    [49] Jafarzadeh S, Chen Z G, Bobaru F.2017. Peridynamic modeling of repassivation in pitting corrosion of stainless steel. Corrosion,74:393-414.
    [50] Jafari A, Bahaaddini R, Jahanbakhsh H.2018. Numerical analysis of peridynamic and classical models in transient heat transfer, employing Galerkin approach. Heat Transfer---Asian Research, 47: 531-555.
    [51] Jenny P, Meyer D W.2017. Non-local generalization of Darcy's law based on empirically extracted conductivity kernels. Computational Geosciences, 21: 1281-1288.
    [52] Jeon B S, Stewart R J, Ahmed I Z.2015. Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts//Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 471: 20150231.
    [53] Katiyar A, Foster J T, Ouchi H, Sharma M M.2014. A peridynamic formulation of pressure driven convective fluid transport in porous media. Journal of Computational Physics, 261: 209-229.
    [54] Kilic B, Madenci E.2009. Prediction of crack paths in a quenched glass plate by using peridynamic theory. International Journal of Fracture, 156: 165-177.
    [55] Kilic B, Madenci E.2010. Peridynamic Theory for Thermomechanical Analysis. IEEE Transactions on Advanced Packaging, 33: 97-105.
    [56] Le Q V, Chan W K, Schwartz J.2014. A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. International Journal for Numerical Methods in Engineering, 98: 547-561.
    [57] Liao Y, Liu L S, Liu Q W, Lai X, Assefa M, Liu J G.2017. Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks. Journal of Thermal Stresses, 40: 1484-1501.
    [58] Madenci E, Oterkus E.2014. Peridynamic Theory and Its Applications. New York: Springer.
    [59] Madenci E, Oterkus S.2017a. Ordinary state-based peridynamics for thermoviscoelastic deformation. Engineering Fracture Mechanics, 175: 31-45.
    [60] Madenci E, Oterkus S.2017b. Peridynamic modeling of thermo-oxidative damage evolution in a composite lamina//In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017-0197.
    [61] Mella R, Wenman M R.2015. Modelling explicit fracture of nuclear fuel pellets using peridynamics. Journal of Nuclear Materials, 467: 58-67.
    [62] Multiphysics CO.2012. Comsol Multiphysics User's Guide, Version 4.3a.
    [63] Nadimi S, Miscovic I, McLennan J.2016. A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. Journal of Petroleum Science and Engineering, 145: 444-452.
    [64] Oterkus S.2015. Peridynamics for the solution of multiphysics problems. [PhD Thesis]. Tucson: The University of Arizona.
    [65] Oterkus S, Fox J, Madenci E.2013. Simulation of electro-migration through peridynamics//IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013: 1488-1493.
    [66] Oterkus S, Madenci E.2013. Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory//In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013-1477.
    [67] Oterkus S, Madenci E.2014. Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics//In 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2014-0694.
    [68] Oterkus S, Madenci E.2017. Peridynamic modeling of fuel pellet cracking. Engineering Fracture Mechanics, 176: 23-37.
    [69] Oterkus S, Madenci E, Agwai A.2014a. Peridynamic thermal diffusion. Journal of Computational Physics, 265: 71-96.
    [70] Oterkus S, Madenci E, Agwai A.2014b. Fully coupled peridynamic thermomechanics. Journal of the Mechanics and Physics of Solids, 64: 1-23.
    [71] Oterkus S, Madenci E, Oterkus E, Hwang Y, Bae J, Han S.2014c. Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics//IEEE 64th Electronic Components and Technology Conference (ECTC), 2014: 973-982.
    [72] Oterkus S, Madenci E, Oterkus E.2017. Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Engineering Geology, 225: 19-28.
    [73] Ouchi H, Katiyar A, York J, Foster J T, Sharma M M.2015a. A fully coupled porous flow and geomechanics model for fluid driven cracks: A peridynamics approach. Computational Mechanics, 55: 561-576.
    [74] Ouchi H, Katiyar A, Foster J T, Sharma M M.2015b. A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs//In SPE Hydraulic Fracturing Technology Conference 2015. Society of Petroleum Engineers.
    [75] Ouchi H.2016. Development of peridynamics-based hydraulic fracturing model for fracture growth in heterogeneous reservoirs. [PhD Thesis]. Austin: University of Texas.
    [76] Ouchi H, Agrawal S, Foster J T, Sharma MM.2017a. Effect of small scale heterogeneity on the growth of hydraulic fractures//In SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers.
    [77] Ouchi H, Foster J T, Sharma M M.2017b. Effect of reservoir heterogeneity on the vertical migration of hydraulic fractures. Journal of Petroleum Science and Engineering, 151: 384-408.
    [78] Prakash N, Seidel G D.2016. Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites. Computational Materials Science, 113: 154-170.
    [79] Prakash N, Seidel G D.2017. Computational electromechanical peridynamics modeling of strain and damage sensing in nanocomposite bonded explosive materials (ncbx). Engineering Fracture Mechanics, 177: 180-202.
    [80] Read D T, Tewary V K, Gerstle W H.2011. Modeling electromigration using the peridynamics approach. In Electromigration in Thin Films and Electronic Devices, 45-69.
    [81] Roy P, Roy D.2016. A peridynamic approach to flexoelectricity. arXiv preprint arXiv: 1603.03894.
    [82] Silling S A.2000. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48: 175-209.
    [83] Silling S A, Askari E.2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83: 1526-1535.
    [84] Silling S A, Epton M, Weckner O, Xu J F, Askari E.2007. Peridynamic States and Constitutive Modeling. Journal of Elasticity, 88: 151-184.
    [85] Silling S A, Lehoucq R B.2010. Peridynamic theory of solid mechanics. Advances in Applied Mechanics, 44: 73-168.
    [86] Turner D Z.2013. A non-local model for fluid-structure interaction with applications in hydraulic fracturing. International Journal for Computational Methods in Engineering Science and Mechanics, 14: 391-400.
    [87] Wang H L, Oterkus E, Oterkus S.2018. Predicting fracture evolution during lithiation process using peridynamics. Engineering Fracture Mechanics, 192: 176-191.
    [88] Wang L J, Xu J F, Wang J X.2016. The Green's functions for peridynamic non-local diffusion//Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 472: 20160185.
    [89] Wang L J, Xu J F, Wang J X.2018. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. International Journal of Heat and Mass Transfer, 118: 1284-1292.
    [90] Wang Y T, Zhou X P, Kou M M.2018. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. International Journal of Fracture, 211: 13--42.
    [91] Wildman R A, Gazonas G A.2015. A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. Journal of Mechanics of Materials and Structures, 10: 613-630.
    [92] Wildman R A, Gazonas G A.2017. A multiphysics finite element and peridynamics model of dielectric breakdown. US Army Research Laboratory Aberdeen Proving Ground United States.
    [93] Xu F F, Gunzburger M, Burkardt J.2016. A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Computer Methods in Applied Mechanics and Engineering, 307: 117-143.
    [94] Xu Z P, Zhang G F, Chen Z G, Bobaru F.2018. Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. International Journal of Fracture, 209: 203--222.
    [95] Zhang H, Qiao P Z.2018. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading. Engineering Fracture Mechanics, 189: 81--97.
  • 加载中
计量
  • 文章访问数:  4108
  • HTML全文浏览量:  487
  • PDF下载量:  1240
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 刊出日期:  2019-02-08

目录

    /

    返回文章
    返回