留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同伦分析方法进展综述

廖世俊 刘曾

廖世俊, 刘曾. 同伦分析方法进展综述[J]. 力学进展, 2019, 49(1): 201902. doi: 10.6052/1000-0992-18-005
引用本文: 廖世俊, 刘曾. 同伦分析方法进展综述[J]. 力学进展, 2019, 49(1): 201902. doi: 10.6052/1000-0992-18-005
LIAO Shijun, LIU Zeng. A brief review of the homotopy analysis method[J]. Advances in Mechanics, 2019, 49(1): 201902. doi: 10.6052/1000-0992-18-005
Citation: LIAO Shijun, LIU Zeng. A brief review of the homotopy analysis method[J]. Advances in Mechanics, 2019, 49(1): 201902. doi: 10.6052/1000-0992-18-005

同伦分析方法进展综述

doi: 10.6052/1000-0992-18-005
基金项目: 中国力学界许多学者对同伦分析方法的完善和应用做出了贡献,大大丰富了同伦分析方法的应用领域. 遗憾的是,本文由于篇幅限制不能一一介绍, 特在此表示衷心的感谢.该研究工作长期以来受到国家自然科学基金项目(50125923, 10572095,10872129, 11272209, 11432009, 51609090) 的资助
详细信息
    作者简介:

    通讯作者: † E-mail: sjliao@sjtu.edu.cn
    作者简介: 廖世俊, 上海交通大学“春申”讲席教授, 博士生导师,现任职于上海交通大学船舶海洋与建筑工程学院,上海交通大学物理和天文学院,海洋工程国家重点实验室副主任(2001年—), 教育部长江奖励计划特聘教授(2001年), 国家杰出青年基金获得者(2001年).曾获“上海市第七届自然科学牡丹奖”(2009),“上海市自然科学一等奖”(2009 年, 唯一完成人),“国家自然科学二等奖”(2016年, 唯一完成人), “上海市科技精英”(2017年).廖世俊教授原创性地提出求解强非线性问题的“同伦分析方法” (Homotopyanalysis method, HAM), 撰写2本相关英文专著, 编辑一本英文专著,是“同伦分析方法”的创始人.廖世俊教授提出求解混沌动力系统的高精度数值方法(clean numericalsimulation, CNS),为非线性混沌动力系统提供了一个高精度的、全新的研究工具并与他人合作, 应用CNS和超级计算机,成功获得著名的三体问题两千多个全新的周期解. 迄今共发表150 余篇 SCI论文. 其博士论文、专著和杂志论文共被 SCI检索他引七千余次(H-index为49), 其中18 篇为ESI 高被引用论文,一篇论文入选“2009年中国百篇最具影响国际学术论文”,一篇论文入选“2010年中国百篇最具影响国际学术论文”.连续三年(2014—2016)入选全球高被引用科学家名单(highly-cited researchers).

    刘曾, 华中科技大学船舶与海洋工程学院讲师, 硕士生导师.2008—2015年,上海交通大学船舶海洋与建筑工程学院攻读硕士和博士学位,师从廖世俊教授, 其间于2014年访学MIT海洋工程系一年.2015年获上海交通大学工学博士学位.研究方向为非线性海浪动力学、船舶与海洋工程水动力学、同伦分析方法及其在非线性微分方程中的应用.共发表10余篇SCI论文, 其中以第一作者在Journal of Fluid Mechanics发表3篇论文, 在Physics of Fluids上发表1篇论文

    通讯作者:

    廖世俊

  • 中图分类号: O34;

A brief review of the homotopy analysis method

More Information
    Author Bio:

    corresponding Author: † E-mail: sjliao@sjtu.edu.cn

    Corresponding author: LIAO Shijun
  • 摘要: 本文简述同伦分析方法基本思想、最新理论进展及其在流体力学、固体力学、一般力学、量子力学、应用数学、金融等科学和工程领域的应用.同伦分析方法不依赖物理小参数, 适用范围更广,而且提供了一种简单的途径确保级数解收敛, 适用于强非线性问题.同伦分析方法已被成功应用于求解一些具有挑战性的力学问题,并获得一些全新的、 从未见报道的解. 这些成功的应用,证明了同伦分析方法的普遍有效性和原创性.

     

  • [1] 廖世俊. 1992. 求解非线性问题的同伦分析方法. [博士论文]. 上海: 上海交通大学

    (Liao S J.1992. The proposed homotopy analysis technique for the solutions of nonlinear problems. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University).
    [2] 刘曾. 2015. 稳态共振波及非线性波流相互作用研究. [博士论文]. 上海: 上海交通大学

    (Liu Z.2015. On the study of steady-state resonant waves and wave-current interaction. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University).
    [3] 王记增. 2001. 正交小波统一理论与方法及其在压电智能结构等力学研究中的应用. [博士论文]. 兰州: 兰州大学.
    [4] 徐妲莉. 2014. 同伦分析方法在稳态共振波浪研究中的应用. [博士论文]. 上海: 上海交通大学

    (Xu D L.2014. Application of homotopy analysis method in steady-state resonant waves. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University).
    [5] 杨兆臣. 2017. 求解非线性边值问题的小波同伦分析方法及其应用. [硕士论文]. 上海: 上海交通大学

    (Yang Z C.2017. The wavelet homotopy analysis method for nonlinear boundary value problems and its applicationis. [Master Thesis]. Shanghai: Shanghai JiaoTong University).
    [6] 张丽,王光谦, 傅旭东, 孙其诚. 2009a. 低浓度颗粒流Boltzmann方程的同伦分析方法解. 科学通报, 54: 1518-1523

    (Zhang L, Wang G Q, Fu X D, Sun Q C.2009a. A new solution to Boltzmann equation of dilute granular flow with homotopy analysis method. Chinese Science Bull, 54: 1518-1523).
    [7] 张丽, 王光谦, 傅旭东, 孙其诚. 2009b. 低浓度固液两相流Boltzmann方程的同伦分析方法解. 应用基础与工程科学学报, 17: 811-818

    (Zhang L, Wang G Q, Fu X D, Sun Q C.2009b. A new solution to Boltzmann equation of dilute solid-liquid two-phase flows with homotopy analysis method. Journal of Basic Science and Engineering, 17: 811-818).
    [8] 钟晓旭. 2018. 应用同伦分析方法求解若干力学和金融学问题. [硕士论文]. 上海: 上海交通大学

    (Zhong X U.2018. Homotopy analysis method for several problems in mechanics and finance. [Master Thesis]. Shanghai: Shanghai Jiao Tong University).
    [9] Adomian G.1976. Nonlinear stochastic differential equations. Journal of Mathematical Analysis and Applications, 55: 441-452.
    [10] Adomian G.1994. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers.
    [11] Alobaidi G, Mallier R.2001. On the optimal exercise boundary for an American put option. Journal of Applied Mathematics, 1: 39-45.
    [12] Alomari A K.2012. Modifications of Homotopy Analysis Method for Differential Equations: Modification of Homotopy Analysis Method, Ordinary, Fractional, Delay and Algebraic Differential Equations. LAP LAMBERT Academic Publishing.
    [13] Akyildiz F T, Vajravelu , K.2008. Magnetohydrodynamic flow of a viscoelastic fluid. Physics Letters A, 372: 3380-3384.
    [14] Armstrong M A.1983. Basic Topology(Undergraduate Texts in Mathematics). Springer.
    [15] Barles G, Burdeau J, Romano M, Samsoen N.1995. Critical stock price near expiration. Mathematical Finance, 5: 77-95.
    [16] Bataineh A S, Noorani M S M, Hashim I.2007. Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Physics Letters A, 371: 72-82.
    [17] Bataineh A S, Noorani M S M, Hashim I.2009. Homotopy analysis method for singular IVPs of Emden-Fowler type. Communications in Nonlinear Science and Numerical Simulation, 14: 1121-1131.
    [18] Baxter M, Dewasurendra M, Vajravelu K.2017. A method of directly defining the inverse mapping for solutions of coupled systems of nonlinear differential equations. Numerical Algorithm.
    [19] Benney D J.1962. Non-linear gravity wave interactions. Journal of Fluid Mechanics, 14: 577-584.
    [20] Bretherton F P.1964. Resonant interactions between waves. The case of discrete oscillations. Journal of Fluid Mechanics, 20: 457-479.
    [21] Bunch D S, Johnson H.2000. The American put option and its critical stock price. Journal of Finance, 5: 2333-2356.
    [22] Chen S L, Kuang J C.1981. The perturbation parameter in the problem of large deflection of clamped circular plates. Applied Mathematics and Mechanics(English Edition), 2: 137-154.
    [23] Cheng J, Zhu S P, Liao S J.2010. An explicit series approximation to the optimal exercise boundary of American put options. Communications in Nonlinear Science and Numerical Simulation, 15: 1148-1158.
    [24] Chien W Z.1947. Large deflection of a circular clamped plate under uniform pressure. Chinese Journal of Physics, 7: 102-113.
    [25] Cimpean D, Merkin J H, Ingham D B.2006. On a free convection problem over a vertical flat surface in a porous medium. Transport Porous, 64: 393-411.
    [26] Craig W, Nicholls D P.2002 Traveling gravity water waves in two and three dimensions. European Journal of Mechanics B-Fluids, 21: 615-641.
    [27] Evans J D, Kuske R, Keller J B.2002. American options on asserts with dividends near expiry. Mathematical Finance, 12: 219-237.
    [28] Fu Y, Zhao W D, Tao Z.2017. Efficient spectral sparse grid approximations for solving multi-dimensional forward backward SDEs. Discrete & Continuous Dynamical Systems-B. 22: 3439-3458.
    [29] Gauss C F.1830. Principia Generalia Theoriae Figurae Fluidorum in Statu Aequilibrii.
    [30] Ghoreishi M, Ismail A I B M, Alomari A K, Bataineh A S.2012. The comparison between Homotopy Analysis Method and Optimal Homotopy Asymptotic Method for nonlinear age-structured population models. Communications in Nonlinear Science and Numerical Simulation, 17: 1163-1177.
    [31] Hedges T S.1995. Regions of validity of analytical wave theories. Ice Proceedings Water Maritime & Energy, 112: 111-114.
    [32] Hunter J K, Vandenbroeck J M.1983. Accurate computations for steep solitary waves. Journal of Fluid Mechanics, 136: 63-71.
    [33] Itik M, Banks S P.2010. Chaos in a three-dimensional cancer model. International Journal of Bifurcation and Chaos, 20: 71-79.
    [34] Karmishin A V, Zhukov A T, Kolosov V G.1990. Methods of dynamics calculation and testing for thin-walled structures(in Russian)//Mashinostroyenie, Moscow.
    [35] Laplace P S M D.1805. Traité de mécanique céleste. Supplément au dixieme livre du Traité de Mécanique Céleste, 1-79.
    [36] Liang S X, Jeffrey D J.2010. Approximate solutions to a parameterized sixth order boundary value problem. Computers and Mathematics with Applications, 59: 247-253.
    [37] Liao S J.1997. A kind of approximate solution technique which does not depend upon small parameters(II)-An application in fluid mechanics. International Journal of Non-Linear Mechanics, 32: 815-822.
    [38] Liao S J.1999. An explicit, totally analytic approximation of Blasius viscous flow problems. International Journal of Non-Linear Mechanics, 34: 759-778.
    [39] Liao S J.2003a. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Boca Raton: Chapman & Hall/CRC Press.
    [40] Liao S J.2003b. A new analytic algorithm of Lane-Emden type equations. Applied Mathematics and Computation, 142: 1-16.
    [41] Liao S J, Pop I.2004. Explicit analytic solution for similarity boundary layer equations. International Journal of Heat and Mass Transfer, 47: 75-85.
    [42] Liao S J.2009. A general approach to get series solution of non-similarity boundary-layer flows. Communications in Nonlinear Science and Numerical Simulation, 14: 2144-2159.
    [43] Liao, S J.2010a. On the relationship between the homotopy analysis method and Euler transform. Communications in Nonlinear Science and Numerical Simulation, 15: 1421-1431.
    [44] Liao, S J.2010b. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15: 2003-2016.
    [45] Liao S J.2011. On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves. Communication in Nonlinear Science and Numerical Simulation, 16: 1274-1303.
    [46] Liao S J.2012. Homotopy Analysis Method in Nonlinear Differential Equations. Springer.
    [47] Liao S J, Xu D L, Stiassnie Michael.2016. On the steady-state nearly resonant waves. Journal of Fluid Mechanics, 794: 175-199.
    [48] Liao S J, Zhao Y L.2016. On the method of directly defining inverse mapping for nonlinear differential equations. Numerical Algorithm, 72: 989-1020.
    [49] Liao S J.2018. A new non-perturbative approach in quantum mechanics for time-independent Schr?dinger equations. arXiv:, 1806.05103.
    [50] Liu Y B, Chen Y S.2011. KBM method based on the homotopy analysis. Science China Physics Mechanics & Astronomy, 54: 1137-1140.
    [51] Liu Z, Liao S J.2014. Steady-state resonance of multiple wave interactions in deep water. Journal of Fluid Mechanics, 742: 664-700.
    [52] Liu Z, Xu D L, Li J, Peng T, Alsaedi A, Liao SJ.2015. On the existence of steady-state resonant waves in experiment. Journal of Fluid Mechanics, 763: 1-23.
    [53] Liu Z, Xu D L, Liao S J.2018. Finite amplitude steady-state wave groups with multiple near resonances in deep water. Journal of Fluid Mechanics, 835: 624-653.
    [54] Liu Z, Xu D L, Liao S J.2017. Mass, momentum and energy flux conservation between linear and nonlinear steady-state wave groups. Physics of Fluids, 29: 127104.
    [55] Lyapunov A M.1992. General Problem on Stability of Motion(English translation). Taylor & Francis, London.
    [56] Karoui N E, Peng S G, Quenez M C.1997. Backward stochastic differential equations in finance. Mathematical Finance. 7: 1-71.
    [57] Khalid U.2011. Steady Flow in a Williamson Fluid: Basic Concepts of Fluid Mechanics Solution to a Non-linear Ordinary Differential Equation by Homotopy Analysis Method. LAP LAMBERT Academic Publishing.
    [58] Keller H B, Reiss E L.1958. Iterative solutions for the non-linear bending of circular plates. Communications on Pure and Applied Mathematics, 11: 273-292.
    [59] Knessl C.2001. A note on a moving boundary problem arising in the American put option. Studies in Applied Mathematics, 107: 157-183.
    [60] Kuske R A, Keller J B.1998. Optional exercise boundary for an American put option. Applied Mathematical Finance, 5: 107-116.
    [61] Madsen P A, Fuhrman D R.2012. Third-order theory for multi-directional irregular waves. Journal of Fluid Mechanics, 698: 304-334.
    [62] Marinca V, Herisanu N.2008. Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. International Communications in Heat and Mass Transfer, 35: 710-715.
    [63] Massoudi M.2001. Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge. International Journal of Non-Linear Mechanics, 36: 961-976.
    [64] Mastroberardino A.2011. Homotopy analysis method applied to electrohydrodynamic flow. Communation in Nonlinear Science and Numerical Simulation, 16: 2730-2736.
    [65] Meiron D I, Saffman P G, Yuen H C.1982. Calculation of steady three-dimensional deep-water waves. Journal of Fluid Mechanics, 124: 109-121.
    [66] Nassar C J, Revelli J F, Bowman R J.2011. Application of the homotopy analysis method to the Poisson-Boltzmann equation for semiconductor devices. Communation in Nonlinear Science and Numerical Simulation, 16: 2501-2512.
    [67] Nicholls D P, Reitich F.2006. Stable, high-order computation of traveling water waves in three dimensions. European Journal of Mechanics B-Fluids, 25: 406-424.
    [68] Niu Z, Wang C.2010. A one-step optimal homotopy analysis method for nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15: 2026-2036.
    [69] Niu Z, Liu Z, Cui J F.2016. A Steady-state Trio for Bretherton Equation. Zeitschrift für Naturforschung A, 71: 1099-1104.
    [70] Peng S G.1991. A nonlinear Feynman-Kac formula and applications//Proceedings of the Symposium on System Sciences and Control Theory. Control Theory, Stochastic Analysis and Applications, 173-184.
    [71] Phillips O M.1960. On the dynamics of unsteady gravity waves of finite amplitude. Journal of Fluid Mechanics, 9: 193-217.
    [72] Poincaré H.1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars.
    [73] Sajid M.2009. Some Flow Problems in Differential Type Fluids: Series solutions using homotopy analysis method. VDM Verlag.
    [74] Sardanyés J, Rodrigues C, Januário C, Martins N, Gil-G'omez G, Duarte J.2015. Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach. Applied Mathematics and Computation, 252: 484-495.
    [75] Sen S.1983. Topology and Geometry for Physicists. Academic Press.
    [76] Sparrow E M, Quack H, Boerner C J.1970. Local non-similarity boundary-layer solutions. AIAA Journal, 8: 1936-1942.
    [77] Sparrow E M, Yu H S.1971. Local non-similarity thermal boundary-layer solutions. Journal of Heat Transfer, 93: 328-334.
    [78] Sun J L, Cui J F, He Z H, Liu Z.2017. On steady-state multiple resonances for a modified Bretherton equation. Zeitschrift für Naturforschung A, 72: 487-491.
    [79] Thouless D J.1958. Application of perturbation methods to the theory of nuclear matter. Physical Review, 112: 906-922.
    [80] Tobisch E.2016. New Approaches to Nonlinear Waves. Springer.
    [81] Williams J M.1981. Limiting gravity waves in water of finite depth. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 302: 139-188.
    [82] Vahdati S.2012. Computational Methods for Integral Equations: Linear Legendre Multi-Wavelets and Homotopy Analysis Methods. LAP LAMBERT Academic Publishing.
    [83] Vajravelu K, Van Gorder R A.2012. Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer. Springer.
    [84] Van Gorder R A, Vajravelu K.2008. Analytic and numerical solutions to the Lane-Emden equation. Physics Letters A, 372: 6060-6065.
    [85] Van Gorder R A.2012a. Analytical method for the construction of solutions to the F?ppl-von Kármán equations governing deflections of a thin flat plate. International Journal of Non-Linear Mechanics, 47: 1-6.
    [86] Van Gorder R A.2012b. Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function $H(x, t)$ in the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 17: 1233-1240.
    [87] Van Gorder R A.2012c. Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numerical Algorithms, 61: 613-629.
    [88] Van Gorder R A.2015. Relation between Lane-Emden solutions and radial solutions to the elliptic heavenly equation on a disk. New Astronomy, 37: 42-47.
    [89] Vincent J J.1931. The bending of a thin circular plate. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12: 185-196.
    [90] Wanous K J, Sparrow E M.1965. Heat transfer for flow longitudinal to a cylinder with surface mass transfer. Journal of Heat Transfer, 87: 317-319.
    [91] Xu D L, Lin Z L, Liao S J, Stiassnie M.2012. On the steady-state fully resonant progressive waves in water of finite depth. Journal of Fluid Mechanics, 710: 379-418.
    [92] Xu D L, Lin Z L, Liao S J.2015. Equilibrium states of class-I Bragg resonant wave system. European Journal of Mechanics B/Fluids, 50: 38-51.
    [93] Yabushita K, Yamashita M, Tsuboi K.2007. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. Journal of Physics A: Mathematical and Theoretical, 40: 8403-8416.
    [94] Yang Z C, Liao S L.2017a. A HAM-based wavelet approach for nonlinear ordinary differential equations. Communication in Nonlinear Science and Numerical Simulation, 48: 439-453.
    [95] Yang Z C, Liao S L.2017b. A HAM-based wavelet approach for nonlinear partial differential equations: Two dimensional Bratu problem as an application. Communication in Nonlinear Science and Numerical Simulation, 53: 249-262.
    [96] Yang Z J, Liao S L.2017c. On the generalized Wavelet-Galerkin method. Journal of Computational and Applied Mathematics, .2017.09.042
    [97] Yeh K Y, Liu R H, Li S L, Qing Q Y.1965. Nonlinear stabilities of thin circular shallow shells under actions of axisymmetrical uniformly distributed line loads. Journal of Lanzhou University(Natural Science). 18: 10-33.
    [98] Young T.1805. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95: 65-87.
    [99] Zhang J E, Li T C.2006. Pricing and hedging American options analytically: A perturbation method. Working paper, University of Hong Kong.
    [100] Zhao Y L, Liao S J.2013. HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems. Liao S ed. Advances in the Homotopy Analysis Method, World Scientific Press Chapter 9: 361-416.
    [101] Zheng X J, Zhou Y H.1988. On the convergence of the nonlinear equations of circular plate with interpolation iterative method. Chinese Science A, 10: 1050-1058.
    [102] Zheng X J.1990. Large Deflection Theory of Circular Thin Plate and its Application. Jilin Science Technology Press.
    [103] Zhong X X, Liao S L.2017a. Analytic solutions of Von Kármán plate under arbitrary uniform pressure-equations in differential form. Studies in Applied Mathematics, 138: 371-400.
    [104] Zhong X X, Liao S L.2017b. On the homotopy analysis method for backward/forward-backward stochastic differential equations. Numerical Algorithms, 76: 487-519.
    [105] Zhong X X, Liao S L.2018a. Analytic approximations of Von Kármán plate under arbitrary uniform pressure-equations in integral form. Science China Physics, Mechanics & Astronomy, 61: 014611.
    [106] Zhong X U, Liao S L.2018c. HAM approach for post-buckling problems of a large deformed elastic beam . Submitted to Computers & Mathematics with Application.
    [107] Zhong X X, Liao S L.2018b. On the limiting Stokes wave of extreme height in arbitrary water depth. Journal of Fluid Mechanics, 843: 653-679.
    [108] Zhu S P.2006. An exact and explicit solution for the valuation of American put options. Quantitative Finance, 6: 229-242.
    [109] Zou L, Wang Z, Zong Z.2014. Analytical Techniques and Solitary Water Waves. LAP LAMBERT Academic Publishing.
  • 加载中
计量
  • 文章访问数:  4725
  • HTML全文浏览量:  953
  • PDF下载量:  1418
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 刊出日期:  2019-02-08

目录

    /

    返回文章
    返回