留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流体动力学在航空工程中的应用与展望

李益文 张百灵 李应红 肖良华 王宇天 何国强

李益文, 张百灵, 李应红, 肖良华, 王宇天, 何国强. 磁流体动力学在航空工程中的应用与展望[J]. 力学进展, 2017, 47(1): 452-502. doi: 10.6052/1000-0992-16-036
引用本文: 李益文, 张百灵, 李应红, 肖良华, 王宇天, 何国强. 磁流体动力学在航空工程中的应用与展望[J]. 力学进展, 2017, 47(1): 452-502. doi: 10.6052/1000-0992-16-036
LI Yiwen, ZHANG Bailing, LI Yinghong, XIAO Lianghua, WANG Yutian, HE Guoqiang. Applications and prospects of magnetohydrodynamics in aeronautical engineering[J]. Advances in Mechanics, 2017, 47(1): 452-502. doi: 10.6052/1000-0992-16-036
Citation: LI Yiwen, ZHANG Bailing, LI Yinghong, XIAO Lianghua, WANG Yutian, HE Guoqiang. Applications and prospects of magnetohydrodynamics in aeronautical engineering[J]. Advances in Mechanics, 2017, 47(1): 452-502. doi: 10.6052/1000-0992-16-036

磁流体动力学在航空工程中的应用与展望

doi: 10.6052/1000-0992-16-036
详细信息
    作者简介:

    李应红(1963-), 男, 重庆奉节人,空军工程大学航空等离子体动力学国家级重点实验室主任、教授,中科院院士, 博士研究生导师, 主要研究方向: 航空推进技术,国家学科评议组成员、中国工程热物理学会副理事长,获国家科技进步一等奖、国家技术发明二等奖、军队科技进步一等奖等多项奖励,发表论文被SCI/EI检索80/170余篇, 获授权发明专利48项, 出版专著4部,参编国外专著5部.E-mail: yinghongli@126.com

    通讯作者:

    李益文(1983-), 男, 湖南新化人, 博士, 硕士研究生导师,空军工程大学航空等离子体动力学国家级重点实验室讲师、西北工业大学博士后,主要研究方向: 高超声速磁流技术,主持国家自然科学基金、中国博士后科学基金、陕西省自然科学基础研究计划等基金项目5项,发表论文40余篇, 被SCI/EI检索30余篇, 获授权发明专利6项.E-mail: leeyiwen@163.com

  • 中图分类号: V19

Applications and prospects of magnetohydrodynamics in aeronautical engineering

  • 摘要: 介绍了磁流体动力学在航空工程中的主要应用方式, 主要包括: 磁流体冲压组合发动机、磁流体涡轮组合发动机、燃烧室后磁流体发电、表面磁流体发电、磁流体加速风洞、磁流体推力矢量、进气道大尺寸磁流体流动控制、边界层分离流动控制、边界层转捩控制、飞行器头部热流控制等; 探讨了磁流体技术在应用中存在的关键科学与技术问题, 对导电流体的产生、磁流体实验设备与实验技术、多场耦合机理及数值模拟方法等进行了分析; 最后对磁流体技术在航空工程上的应用与发展进行了总结与展望.

     

  • 图  1  AJAX概念示意图(Gurijanov & Harsha 1996)

    图  2  (a)磁流体发电原理示意图,(b)磁流体加速原理示意图

    图  3  磁流体涡轮组合发动机示意图(Blankson & Schneider 2003)

    图  4  磁流体发电在高超声速飞行器上的潜在应用(Vanwie, Nedungadi 2004).(a)AJAX类型,(b)燃烧室后磁流体发电,(c)携带磁流体发电系统,(d)表面磁流体发电

    图  5  磁流体反向能量旁路概念(Miles et al.2005)

    图  6  磁流体加速风洞及其基本原理.(a)传统加热式高超声速风洞(b)基于电磁能量的磁流体加速风洞

    图  7  磁流体矢量控制(Mikhail & Sergey 2005)

    图  8  高超声速进气道面临的挑战及其策略(Vanwie & Nedungadi 2004)

    图  9  进气道激波系调控.(a)大于设计马赫数(b)小于设计马赫数(Vanwie & Nedungadi 2004)

    图  10  边界层分离流动控制

    图  11  不同焓提取率下单位推力与飞行马赫数的关系(李益文2011)

    图  12  (a)出口马赫数与负载系数之间的关系(b)提取电能、动能减少量与负载系数之间的关系(Blankson & Schneider 2003)

    图  13  独立型磁流体发电系统方案(Moeller et al.2008)

    图  14  嵌入式磁流体发电系统方案(Lineberry et al.2006,2007)

    图  15  磁流体发电系统小型化研究.(a)实验装置,(b)发电通道(c)提取的电压(JP Aerospace 2014)

    图  16  再入飞行器表面高温气流磁流体发电(Miles et al.2005)

    图  17  俄罗斯高温科学院表面磁流体发电(Bityurin et al.2005)

    图  18  盘式磁流体功率提取通道.(a)盘式磁流体功率提取通道结构(b)盘式磁流体功率提取通道实物(Murakamia & Okuno 2008)

    图  19  基于平衡电离磁流体加速的高超声速风洞示意图(1-加热器2-混合室,3-种子注入,4-初级喷管,5-磁流体加速器,6-第二级喷管7-试验段)(Alferov 2000)

    图  20  RDHWT/MARIAH风洞(Wilson et al.2004)

    图  21  RDHWT/MARIAH风洞运行过程焓熵图(Wilson et al.2004)

    图  22  超高压气源装置(Ring et al.2002)

    图  23  电子束电离及加速设备(Ring et al.2002)

    图  24  磁流体加速实验系统及加速效果(李益文等2011)

    图  25  不同方向洛伦兹力作用下的激波纹影.(a)加速洛伦兹力作用(b)减速洛伦兹力作用(Bobashev et al.2002)

    图  26  (a)基于电子束电离的磁流体激波系示意图(b)非设计状态控制马赫数分布图(Shneider et al.2003,Macheret et al.2004)

    图  27  不同方向洛伦兹力作用下的压力测试结果(Nishihara et al.2003,2004)

    图  28  不同方向洛伦兹力作用下的压力测试结果(樊昊2015)

    图  29  电弧放电控制激波的实验(Leonov et al.2005)

    图  30  来流速度马赫数3情况下有无激励时的激波纹影与马赫数云图(Falempin et al.2015)

    图  31  弧放电等离子体气动激励的激波控制示意图(Wang et al.2009)

    图  32  有无电弧等离子体放电激波强度对比曲线(Wang et al.2009)

    图  33  磁流体减速激励和加速激励控制激波实验研究.(a)基准图像(b)磁流体减速激励(电压1 600 V),(c)磁流体加速激励(电压1 600 V)(d)加减速对比分析(苏长兵 2010)

    图  34  边界层磁流体激励(Zaidi et al.2006)

    图  35  SWBLI区的纹影图.(a)未加激励(0 mA)(b)施加激励(60 mA,4.5 T)(Kalra et al.2007)

    图  36  电磁式涡流发生器原理示意图(李益文等2016)

    图  37  美国普伦斯顿大学的电离方案(Macheret et al.2001)

    图  38  电子数密度随时间变化(Zhukov et al.2006)

    图  39  美国NASA埃姆斯研究中心的实验系统(Bogdanoff & Mehta 2003)

    图  40  基于激波风洞的磁流体技术实验系统(李益文2011)

    图  41  超声速气流的电导率(李益文2011)

    图  42  燃烧室后磁流体发电实验(Moeller et al.2008)

    图  43  超燃冲压发动机燃烧室后磁流体发电实验(Lineberry et al.2006)

    图  44  实验装置示意与实物图(Nishihara et al.2006,2007)

    图  45  测试段截面示意图(Murray et al.2007)

    图  46  实验装置示意图(Bobashev et al.2006)

    图  47  实验系统及马赫数3气流中的放电图像(樊昊2015)

    图  48  直线型磁流体发电通道类型示意图.(a)连续电极型(b)分段法拉第型(c)霍尔型,(d)对角线型

    图  49  磁流体加速器的种类.(a)连续法拉第型加速器(b)分段法拉第型加速器,(c)霍尔型加速器,(d)斜联型加速器(e)壁面斜联型加速器(Litchford et al.2002)

  • [1] 鲍文, 唐井峰, 于达仁. 2007. MHD_Arc_Ramjet 联合循环与AJAX 间的性能比较. 宇航学报, 28: 157-161 https://www.researchgate.net/publication/289056951_Comparative_analysis_about_performance_between_MHD-Arc-Ramjet_combined_cycle_and_AJAX
    [2] Bao WTang J F, Yu D R. 2007. Comparative analysis about performance between MHD-Arc-Ramjet combined cycle and AJAX. Journal of Astronautics, 28: 157-161. https://www.researchgate.net/publication/289056951_Comparative_analysis_about_performance_between_MHD-Arc-Ramjet_combined_cycle_and_AJAX
    [3] 樊昊, 张百灵, 李益文, 阳鹏宇, 高岭, 张义宁. 2015.超声速非平衡电离磁流体动力技术实验系统. 航空动力学报, 8:2025-2032 http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508030.htm
    [4] Fan H, Zhang B L, Li Y W, Gao L, Zhang Y N. 2015.Supersonic non-equilibrium ionization magnetohydrodynamic technical experimental system. Journal of Aerospace Power, 8: 2025-2032. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508030.htm
    [5] 樊昊. 2015. 超声速非平衡电离磁流体流动控制原理研究.[硕士论文]. 西安: 空军工程大学
    [6] Fan H. 2015. Principle study of supersonic MHD flow control wit nonequilibrium ionization. [Master Thesis]. Xi'an: Air Force Engineering University.
    [7] 范月华, 蒋崇文, 高振勋, 李椿萱. 2016.磁流体湍流及数值模拟研究综述. 力学与实践, 38: 14-21 http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201601004.htm
    [8] Fan Y H, Jiang C W, Gao Z X, Li C X. 2016. Review of the magneto hydrodynamic turbulence and its numerical simulation. Mechanics in Engineering, 38: 14-21. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201601004.htm
    [9] 高岭, 李益文, 张百灵, 阳鹏宇, 樊昊, 段成铎, 向波罗. 2015.高温磁流体动力技术实验系统设计与调试. 推进技术, 35: 774-779 http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201505018.htm
    [10] Gao L, Li Y W, Zhang B L, Yang P Y, Fan H, Duan C D, Xiang B L.2012. High temperature MHD technology system design and commissioning experiments. Journal of Propulsion Technology, 35: 774-779. https://www.researchgate.net/publication/283228727_High_temperature_MHD_technology_system_design_and_commissioning_experiments
    [11] 姜宗林, 李进平, 赵伟, 刘云峰, 俞鸿儒. 2012.长试验时间爆轰驱动激波风洞技术研究.力学学报, 44: 824-831 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205004.htm
    [12] Jiang Z L, Li J P, Zhao W, Liu Y F, Yu H R. 2012. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels. Chinese Journal of Theoretical and Applied Mechanics, 44: 824-831. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB201205004.htm
    [13] 解少飞, 杨武兵, 沈清. 2015.高超声速边界层转捩机理及其应用的若干进展回顾. 航空学报, 36:714-723 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503002.htm
    [14] Xie S F, Yang W B, Shen Q. 2015. Review of progresses in hypersonic boundary layer transition mechanism and its applications. Acta Aeronautica Et Astronautica Sinica, 36: 714-723. https://www.researchgate.net/publication/282303647_Review_of_progresses_in_hypersonic_boundary_layer_transition_mechanism_and_its_applications
    [15] 居滋象, 吕友昌, 荆伯弘. 1998. 开环磁流体发电. 北京:北京工业大学出版社
    [16] Ju Z X, Lv Y C, Jing B H. 1998. Open Cycle MHD Power. Beijing: Beijing Industrial University Press.
    [17] 李桦, 田正雨. 2010.高超声速流动磁流体力学控制的数值模拟研究. 长沙: 国防科技大学出版社
    [18] Li H, Tian Z Y. 2010. Numerical Investigation for Hypersonic Flow Control by Magnetohydrodynamics Methods. Changsha: National University of Defense Technology Press.
    [19] 李建, 赵凌志, 刘保林, 彭燕, 沙次文, 许玉玉, 李然. 2010.一种阀式磁流体波浪能直接发电系统的研究. 机床与液压, 38:38-49 http://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201016017.htm
    [20] Li J, Zhao L Z, Liu B L, Peng Y, Sha C Y, Xu Y Y, Li R.2010. Research on valve-type liquid metal magnetohydrodynamic ocean wave energy conversion system. Machine Tool & Hydraulics, 38: 38-49. https://www.researchgate.net/publication/269378894_Research_on_New_Type_Magnetohydrodynamic_Ocean_Wave_Energy_Conversion_System
    [21] 李益文, 李应红, 张百灵, 陈峰, 朱涛. 2012.超声速气流磁流体加速初步实验研究. 力学学报, 44: 238-244 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201202008.htm
    [22] Li Y W, Li Y H, Zhang B L, Chen F, Zhu T. 2012. Preliminary experimental investigation on supersonic flow magnetohydrodynamic MHD) acceleration. Chinese Journal of Theoretical and Applied Mechanics, 44: 238-244. https://www.researchgate.net/publication/290016069_Preliminary_experimental_investigation_on_supersonic_flow_MagnetohydrodynamicMHD_acceleration
    [23] 李益文, 李应红, 张百灵, 金迪, 陈峰, 朱涛. 2011.基于激波风洞的超声速磁流体动力技术实验系统. 航空学报, 32:1015-1024 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106008.htm
    [24] Li Y W, Li Y H, Zhang B L, Jin D, Chen F, Zhu T. 2011.Supersonic magnetohydrodynamic technical experimental system based on shock tunnel. Acta Aeronautica et Astronautica Sinica, 32: 1015-1024. https://www.researchgate.net/publication/286988361_Supersonic_magnetohydrodynamic_technical_experimental_system_based_on_shock_tunnel
    [25] 李益文, 张百灵, 李应红, 樊昊, 高岭, 段成铎, 王宇天. 2015.磁流体技术在冲压发动机中的应用研究//第五届全国冲压发动机会议, 厦门
    [26] Li Y W, Zhang B L, Li Y H, Fan H, Gao L, Duan C D, Wang Y T. 2015. Application investigation of MHD technology on cramjet engine// The fifth national cranjet engine conference)
    [27] 李益文, 张百灵, 肖良华, 王宇天. 2016.进气道磁流体流动控制及其研究进展南京会议//第九届全国流体力学学术会议南京
    [28] Li Y W, Zhang B L, Xiao L H, Wang Y T. 2016. Inlet MHD flow control and its research progress//CSTAM 2016, Nanjing.
    [29] 李益文. 2011. 高超声速飞行磁流体动力技术原理研究.[博士论文]. 西安: 空军工程大学
    [30] Li Y W. 2011. Theory investigation of MHD technology for hypersonic flight. [PhD Thesis]. Xi'an: Air Force Engineering University.
    [31] 卢新培, 严萍, 任春生, 邵涛. 2011.大气压脉冲放电等离子体的研究现状与展望. 中国科学: 物理学 力学天文学, 41: 801-815 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201107002.htm
    [32] Lu X P, Yan P, Ren C S, Shao T. 2011.Review on atmospheric pressure pulsed DC discharge. Scientia Sinica Physica, Mechanica & Astronomica, 41: 801-815. https://www.researchgate.net/publication/252889620_Review_on_atmospheric_pressure_pulsed_DC_discharge
    [33] 罗纪生. 2015. 高超声速边界层的转捩及预测. 航空学报, 36: 357-372 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
    [34] Luo J S. 2015. Transition and prediction for hypersonic boundary layers. Acta Aeronautica et Astronautica Sinica, 36: 357-372. https://www.researchgate.net/publication/282982891_Transition_and_prediction_for_hypersonic_boundary_layers
    [35] 吕浩宇, 李椿萱, 曹德一. 2008.乘波构型飞行器磁流体进气道一体化概念设计. 北京航空航天大学学报, 34: 1130-1134 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200810003.htm
    [36] LüH Y. Li C X, Cao D Y. 2008. Conceptual study on integrated design of airframe/mhd bypass scramjet for a waverider-based hypersonic vehicle. Journal of Beijing University of Aeronautics and Astronautics, 34: 1130-1134. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB200803003.htm
    [37] 南和礼 著. 2007. 超导磁体设计基础. 北京: 国防工业出版社
    [38] Nan H L. 2007. Basis of Superconducting Magnet Design. Beijing: National defence Industry press.
    [39] 苏纬仪, 陈立红, 张新宇. 2010.MHD控制激波诱导湍流边界层分离的机理分析. 推进技术, 31: 18-23 http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201001004.htm
    [40] Su W Y, Chen L H, Zhang X Y. 2010. Investigation of magnetohydrodynamic control on turbulent boundary layer separation induced by shock wave. Journal of Propulsion Technology, 31: 18-23. https://www.researchgate.net/publication/290656268_Investigation_of_magnetohydrodynamic_control_on_turbulent_boundary_layer_separation_induced_by_shock_wave
    [41] 苏纬仪, 张新宇, 张垄元. 2011.洛仑兹力控制高超声速进气道边界层分离的数值模拟. 推进技术, 32: 36-41 http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201101009.htm
    [42] Su W Y, Zhang X Y, Zhang L Y. 2011. Numerical investigation of Lorentz force control on hypersonic inlet boundary layer separation. Journal of Propulsion Technology, 32: 36-41. https://www.researchgate.net/publication/290560239_Numerical_investigation_of_Lorentz_force_control_on_hypersonic_inlet_boundary_layer_separation
    [43] 苏长兵. 2010. 高超声速磁流体流动控制技术原理研究.[博士论文]. 西安: 空军工程大学
    [44] Su C B. 2010. Technical principle research of hypersonic MHD flow control. [PhD Thesis]. Xi'an: Air Force Engineering University.
    [45] 田正雨, 张康平, 潘沙, 李桦. 2008.磁流体动力学斜激波控制数值模拟分析. 力学季刊, 29: 72-77 http://www.cnki.com.cn/Article/CJFDTOTAL-SHLX200801012.htm
    [46] Tian Z Y, Zhang K P, Pan S, Li H. 2008. Numerical investigation and analysis for MHD oblique shock control. Chinese Quarterly of Mechanics, 29: 72-77. doi: 10.2514/6.2011-3427
    [47] 田正雨. 2008. 高超声速流动的磁流体力学控制数值模拟研究.[博士论文]. 长沙: 国防科学技术大学
    [48] Tian Z Y. 2008. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods. [PhD Thesis]. Changsha: National University of Defense Technology.
    [49] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 2009.等离子体气动激励控制激波的机理研究. 物理学报, 58: 5513-5519 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200908058.htm
    [50] Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y. 2009. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 58:5513-5519. http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB200908058.htm
    [51] 吴根, 姜宗林, 罗凡. 2014.空天飞行器先进风洞实验技术及我国发展建议. 中国基础科学, 12-16 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201401002.htm
    [52] Wu G, Jiang Z L, Luo F. 2014. Advanced wind tunnel testing techniques of aerospace vehicle and suggestions for its future development in China. China Basic Science, 12-16.
    [53] 吴其芬, 李桦. 2007. 磁流体力学. 长沙: 国防科技大学出版社
    [54] Wu Q F, Li H. 2007. Magneto-fluid mechanics. Changsha: National University of Defense Technology Press.
    [55] 阳鹏宇. 2014. 超声速非平衡等离子体产生及磁流体功率提取研究.[硕士论文]. 西安: 空军工程大学
    [56] Yang P Y. 2014. supersonic nonequilibrium plasma produce and MHD power generation. [Master Thesis]. Xi'an: Air Force Engineering University.
    [57] 于达仁, 唐井峰, 鲍文. 2007.用于高超声速推进的MHD-Arc-Ramjet联合循环. 航空学报, 28:769-775 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200704002.htm
    [58] Yu D R, Tang J F, Bao W. 2007. MHD-arc-ramjet combined cycle for hypersonic propulsion. Acta Aeronautica et Astronautica Sinica, 28: 769-775. https://www.researchgate.net/publication/282675534_MHD-arc-ramjet_combined_cycle_for_hypersonic_propulsion
    [59] 章程, 邵涛, 严萍. 2014. 大气压下纳秒脉冲弥散放电. 科学通报, 59: 1919-1926 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201420003.htm
    [60] Zhang C, Shao T, Yan P. 2014.Nanosecond-pulse diffuse discharges at atmospheric pressure. Chinese Science Bulletin, 59: 1919-1926. doi: 10.1360/N972014-00003
    [61] 郑小梅, 吕浩宇, 徐大军, 蔡国飙. 2010.MHD加速器模式磁控进气道的优化设计. 航空学报, 31: 223-230 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201002004.htm
    [62] Zheng X M, Lü H Y, Xu D J, Cai G B. 2010. Optimization of accelerator mode mhd controlled inlet. Acta Aeronautica et Astronautica Sinica, 31: 223-230. http://www.wenkuxiazai.com/doc/c12e6bfa941ea76e58fa04dc.html
    [63] Aleksandrov, N L, Kirpichnikov A A, Kindusheva S V, Kosarev I N, Starikovskii A Yu. 2007. Non-equilibrium plasma life time measurements and flow control. AIAA Paper 2007-997.
    [64] Alferov V I. 2000. Current status and potentialities of wind tunnels with MHD acceleration. High Temperature, 38: 300-313. doi: 10.1007/BF02755960
    [65] Anderson R W, Brown G L, Miles R B. 2000. Performance models and predications for the RDHWT/MARIAH Hypersonic wind tunnel. AIAA Paper 2000-2274.
    [66] Bityurin V A, Bocharov A N, Baranov D S, Bychkov S SKrasilnikov A V, Knotko V A, Lineberry J T. 2006. Study of MHD flow control and on-board electrical power generation. AIAA Paper 2006-1008.
    [67] Bityurin V A, Bocharov A N, Krasilnikov A V, Mikhailov A V.2003. Experimental study of MHD electrical power generation. AIAA Paper 2003-0377.
    [68] Bityurin V A, Lineberry J T, Litchford R J, Cole J W. 2000. Thermodynamic analysis of the ajax propulsion concept (invited.AIAA Paper 2000-0445.
    [69] Bityurin V A, Zeigarnik V A, Kuranov A L. 1996. On a perspective of MHD technology in aerospace applications. AIAA Paper 96-2355.
    [70] Bityurin V A. 2000. A feasibility study and experimental evaluation on MHD acceleration for application to advanced propulsion and hypervelocity ground testing. AIAA Paper 2000-2301.
    [71] Blankson I M, Schneider S. 2003. Hypersonic engine using MHD energy bypass with a conventional turbojet. AIAA Paper 2003-6922.
    [72] Bobashev S V, Erofeev A V, Lapushkina T A, Zhukov B GPoniaev S A, Vasil'eva R V, Van Wie D M. 2006. Air plasma produced by gas discharge in supersonic MHD channel. AIAA Paper 2006-1373.
    [73] Bobashev S V, Golovachov Y P, Van Wie D M. 2002.Deceleration of supersonic plasma flow by an applied magnetic field. AIAA Paper 2002-2247.
    [74] Bobashev S V, Mende N P, Sakharov V A, Van Wie D M. 2003. MHD control of the separation phenomenon in a supersonic xenon plasma flow. AIAA Paper 2003-168.
    [75] Bogdanoff D W, Mehta U B. 2003. Experimental demonstration of magnetohydrodynamic (MHD) acceleration. AIAA Paper 2003-4285.
    [76] Bush W B. 1958. Magnetohydrodynamic-hypersonic flow pass a blunt body. Journal of Aero/Space Science, 25: 685-690, 728. doi: 10.2514/8.7845
    [77] Chapman J N, Ruoff R S, Dikin D A, Litchford R J, Schmidt H J. 2003. Flightweight magnets for space application using carbon nanotubes. AIAA Paper 2003-0330.
    [78] Chase R L, Boyd D R, Czysz D P, et al. 1998. An AJAX technology advanced SSTO design concept. AIAA Paper 98-5527.
    [79] Chase R L, Mehta U B, Bogdanoff D W, Park C, Lawrence S LAftosmis M J, Macheret S, Shneider M. 1999. Comments on MHD energy bypass engine powered spaceliner. AIAA Paper 99-4975.
    [80] Demetriades S T, Ziemer R W. 1962. Energy transfer to plasmas by continuous Lorentz forces//Proceedings of the Fourth Biennial Gas Dynamics Symposium. Cambel A B, Anderson T P, Slawsky M. M. (eds.), Northwestern University Press, Evanston, Illinois, 185-205.
    [81] Deng Z T, Qian X Q, Litchford R, Foote J. 2011. Date analysis of electromagnetic shockwave control experiment for high mach number ionized flow application. AIAA Paper 2011-3465.
    [82] Falempin F, Firsov A A, Yarantsev D A, Goldfeld M ATimofeev K, Leonov S B. 2015. Plasma control of shock wave configuration in off design mode of M=2 inlet. Exp Fluids, 56: 54, DOI10.1007/s00348-015-1928-4. doi: 10.2514/6.2013-3115
    [83] Fujino T, Sugita H, Mizuno M, Funaki I, Ishikawa M. 2006.Influences of electrical conductivity of wall on magnetohydrodynamic control of aerodynamic heating. Journal of Spacecraft and Rockets, 43: 63-70. doi: 10.2514/1.13770
    [84] Gordeev V P, Krasilnikov A V, Lagutin V I, Otmennikov V N. 1996. Experimental study of the possibility of reducing supersonic drag by employing plasma technology. Fluid Dynamics, 31: 313-317. doi: 10.1007/BF02029693
    [85] Gotoh D, Takahashi T, Fujino T, Ishikawa M, Lineberry J T. 2007. Computational analysis of HVEPS scramjet MHD power generation. AIAA Paper 2007-4015.
    [86] Gurijanov E P, Harsha P T. 1996. AJAX: new directions in hypersonic technology. AIAA Paper 96-4609.
    [87] Harada N. 2001. MHD acceleration studies at Nagaoka University of Technology. AIAA Paper 2001-2744. Jp aerospace. 2014. Year 2010 review in picture [OL].http://www.jpaerospace.com.
    [88] Kalra C S, Shneider M N, Miles R B. 2009. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators. Physics of Fluids (1994-present), 21: 443-451. https://www.researchgate.net/profile/MN_Shneider/publication/252229407_Numerical_study_of_boundary_layer_separation_control_using_magnetogasdynamic_plasma_actuators/links/564fe96808ae1ef9296ed656.pdf?origin=publication_list
    [89] Kalra C S, Zaidi S H, Alderman B J, Miles R B. 2007. Non-thermal control of shock-wave induced boundary layer separation using magneto-hydrodynamics. AIAA Paper 2007-4138.
    [90] Kalra C, Zaidi S H, Alderman B J, Miles R B, Murty Y V. 2007. Magnetically driven surface discharges for shock-wave induced boundary-layer separation control. AIAA Paper 2007-222.
    [91] Kaminaga S, Okuno Y, Yamasaki H. 2003. Quasi-one dimensional analysis on MHD energy bypass scramjet engine performance. AIAA Paper 2003-4286.
    [92] Kimmel R L. 2003. Aspects of hypersonic boundary-layer transition control. AIAA Paper 2003-772.
    [93] Kovalev L K, Larionoff A E, Poltavets V N, Kovalev K L. 1992. Theoretical and experimental studies of faraday multipole MHD generators//The 11th International Conference On MHD Electrical power Generation, China.
    [94] Murakamia T, Okuno Y. 2008. Experiments and numerical simulations on high-density magnetohydrodynamic electrical power generation. Journal of Applied Physics, 104: 063307. doi: 10.1063/1.2978190
    [95] Kuranov A L, Sheikin E G. 2002. MHD control on hypersonic aircraft under "Ajax" concept. Possibilities of MHD Generator. AIAA Paper 2002-0490.
    [96] Kuranov A L, Sheikin E G. 2003a. MHD control by external and internal flows in scramjet under "AJAX" concept. AIAA Paper 2003-0173.
    [97] Kuranov A L, Sheikin E G. 2003b. Magnetohydrodynamic Control on hypersonic Aircraft under "AJAX" concept. Journal of Spacecraft and Rockets, V40:174-182. https://www.researchgate.net/publication/245438057_Magnetohydrodynamic_Control_on_Hypersonic_Aircraft_Under_Ajax_Concept
    [98] Lee C H, Lu H Y. 2007. Quasi-One-Dimensional Parametric Study for MHD generator in MHD bypass scramjet system. AIAA Paper 2007-644.
    [99] Leonov S B, Firsov A A, Yarantsev D A, Falempin F, Miller A. 2012. Flow control in a supersonic inlet model by electrical discharge. Progress in Flight Physics, 3: 557-568.
    [100] Leonov S B, Yarantsev D A, Dmitry A, Gromov V G, Kuriachy A P. 2005. Mechanisms of flow control by near-surface electrical discharge. AIAA Paper 2005-0780.
    [101] Leonov S B, Yarantsev D A. 2008. Near-surface electrical discharge in supersonic airflow: properties and flow control.Journal of Propulsion and Power, 24: 1168-1181. doi: 10.2514/1.24585
    [102] Lineberry J T, Begg L L, Castro J H, Litchford R J. 2006. Scramjet driven MHD power demonstration-HVEPS program. AIAA Paper 2006-3080.
    [103] Lineberry J T, Begg L L, Castro J H, Litchford R J, Donohue J M. 2006. Scramjet driven MHD power demonstration-HVEPS project overview. AIAA Paper 2006-8010.
    [104] Lineberry J T, Begg L L, Castro J H, Litchford R J, Donohue J M. 2007. HVEPS scramjet-driven MHD power demonstration test results. AIAA Paper 2007-3880.
    [105] Lipinski R L, Nelson G L, Pena G E, Reed K W. 1999. Electron beam-induced conductivity experiments in a static cell for application to MHD accelerators. AIAA Paper 1999-3719.
    [106] Litchford R J, Cole J W, Bityurin V A, Lineberry J T. 2001. Thermodynamic analysis of magnetohydrodynamic-bypass hypersonic airbreathing engines. Journal of Propulsion and Power, 17: 477-480. doi: 10.2514/2.5769
    [107] Litchford R J, Cole J W, Lineberry J T, Chapman J NSchmidt H J, Lineberry C W. 2002. Magnetohydrodynamic augmented propulsion experiment: i. performance analysis and design. AIAA Paper 2002-2184.
    [108] Macheret S O, Shneider M N, Miles R B. 2001. Energy-efficient generation of non-equilibrium plasmas and their applications to hypersonic MHD systems. AIAA Paper 2001-2880.
    [109] Macheret S O, Shneider M N, Miles R B. 2002. MHD power extraction from cold hypersonic air flow with external ionizers. Journal of Propulsion and Power, 18: 424-431. doi: 10.2514/2.5951
    [110] Macheret S O, Shneider M N, Miles R B. 2003. Scramjet inlet control by off-body energy addition: a virtual cowl. AIAA Paper 2003-0032.
    [111] Macheret S O, Shneider M N, Miles R B. 2004. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA Journal, 42: 1378-1387. doi: 10.2514/1.3971
    [112] Macheret S O, Shneider M N, Murray R C, Zaidi S H, Vasilyak L M, Miles R B. 2004. RDHWTMARIAH II MHD modeling and experiments review. AIAA Paper 2004-2485.
    [113] Mikhail N S, Sergey O M. 2005. Hypersonic aerodynamic control and thrust vectoring by nonequilibrium cold-air MHD devices. AIAA Paper 2005-979.
    [114] Miles R B, Macheret S O, Shneider M N, Steeves C, Murray R C, Smith T, Zaidi S H. 2005. Plasma-enhanced hypersonic performance enabled by MHD power extraction. AIAA Paper 2005-0561.
    [115] Miles R, Brown G, Lempert W, Narelson D, Yetter R, Guest JWilliams G, Bogonoff S. 1994. Radiatively driven hypersonic wind tunnel. AIAA Paper 1994-2472.
    [116] Moeller T, Robert R, Lineberry J T, Begg L L, Litchford R J. 2008. HVEPS combustion driven MHD power demonstration tests. AIAA Paper 2008-4097.
    [117] Murakami T, Okuno Y. 2008. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II.experimental. Journal of Physics D : Applied Physics, 41: 125212. doi: 10.1088/0022-3727/41/12/125212
    [118] Murray R C, Zaidi S H, Carraro M R, Vasilyak L M; Macheret S O, Shneider M N, Miles R B. 2006. Magnetohydrodynamic power generation using externally ionized, cold, supersonic air as working fluid. AIAA Journal, 44: 119-127. doi: 10.2514/1.11611
    [119] Neuringer J L, Mcillroy W. 1958. Incompressible two-dimensional stagnation-point flow of an electrically conducting viscous fluid in the presence of a magnetic field. Journal of Aeronautical Sciences, 25: 194-198. https://www.researchgate.net/profile/Janamejay_Singh/publication/253649026_Numerical_Solution_of_Two-Dimensional_MHD_Forward_Stagnation-Point_Flow_in_the_Presence_of_Hall_Current/links/0c96051f9f41435818000000.pdf?origin=publication_detail
    [120] Nishihara M, Bruzzese J, Adamovich I V. 2007. Experimental and computational studies of low-temperature M=4 Flow deceleration by lorentz force. AIAA Paper 2007-4595.
    [121] Nishihara M, Jiang N B, Rich J W, Lempert W R, Adamovich I V. 2005. Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing. AIAA Paper 2005-5178.
    [122] Nishihara M, Rich J W, Lempert W R, Adamovich I V. 2006a. Low-temperature M=3 flow deceleration by Lorentz force. Physics of Fluids, 18: 1-11.
    [123] Nishihara M, Rich J W, Lempert W R, Adamovich I V. 2006b. MHD flow control and power generation in low-temperature supersonic flows. AIAA Paper 2006-3076.
    [124] Nishihara M, Rich J W, Lempert W R, Adamovich I V. 2006c. Low-temperature M=3 flow deceleration by Lorentz force. AIAA Paper 2006-1004.
    [125] Pai D, Lacoste D, Laux C. 2010. Transitions between coronaglow and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J Appl Phys, 107: 093303. doi: 10.1063/1.3309758
    [126] Ramon L C, Unmeel B M, David W B, Scott L L, Michael J AMacheret S, Shneider M. 1999. Comments on MHD energy bypass engine powered spaceliner. AIAA Paper 99-4975.
    [127] Resler E L, Sears W R. 1958. The prospects for magneto-aerodynamics. Journal of the Aeronautical Sciences, 25: 235-245. https://www.researchgate.net/publication/285421077_The_Prospects_for_Magneto-Aerodynamics
    [128] Rhodes R, Moeller T, Dennis K. 2012. Electrical conductivity measurements via a low-voltage conductivity channel. IEEE trans. on plasma sci, 40: 972-979. doi: 10.1109/TPS.2012.2185813
    [129] Ring L E, Brown G L, Girgis I G, Schneider L X, Lofftus D A. 2002. RDHWT/MARIAH II Program: Facility Performance and System Integration Issues. AIAA Paper 2002-3126.
    [130] Ring L E. 1964. General considerations of MHD acceleration for aerodynamic testing. Arc heaters and MHD accelerators for aerodynamic purposes, AGARDograph 84: Supplemental VolumeProceedings of AGARD Specialists Meeting, North Atlantic Treaty Organization, Advisory Group for Aeronautical Research and Development. Sept, 1964.
    [131] Romig M F. 1964. The influence of electric and magnetic fields on heat transfer to electrically conducting fluid. Advances in Heat Transfer, 1: 267-354. doi: 10.1016/S0065-2717(08)70100-X
    [132] Sheikin E G, Kuranov A L. 2004. Scramjet with MHD bypass under "AJAX" concept. AIAA Paper 2004-1192.
    [133] Shneider M N, Macheret S O, Miles R B. 2003. Comparative analysis of MHD and plasma methods of scramjet inlet control. AIAA Paper 2003-170.
    [134] Shneider M N, Macheret S O. 2006. Modeling of plasma virtual shape control of ram/scramjet inlet and isolator. Journal of Propulsion and Power, 22: 447-454. doi: 10.2514/1.16959
    [135] Simmons G A, Nelson G L, Ossello C A. 1998. Electon attachment in seeded air for hypervelocity MHD accelerator propulsion wind tunnel applications. AIAA Paper 1998-3133.
    [136] Su C B, Li Y H, Cheng B Q, Wang J, Cao J, Li Y W. 2010. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow. Chinese Journal of Aeronautics, 22: 22-32. https://www.researchgate.net/publication/222340403_MHD_Flow_Control_of_Oblique_Shock_Waves_Around_Ramps_in_Low-temperature_Supersonic_Flows
    [137] Sun Q, Cheng B Q, Li Y H, Kong W S, Li J, Zhu Y F, Jin D. 2013. Computational and experimental analysis of Mach 2 air flow over a blunt body with plasma aerodynamic actuation. Science in China - Series E : Technological Sciences, 56: 795-802. doi: 10.1007/s11431-013-5177-6
    [138] Takeshita S, Buttapeng C, Harada N. 2008. The effects of swirl vane for disk MHD accelerator. AIAA Paper 2008-1100.
    [139] Tang J F, Bao W, Yu D R. 2006. The influence of energy-bypass on the performance of AJAX. AIAA Paper 2006-1376.
    [140] Tomoyuki M, Yoshihiro O. 2008. Experiments and numerical simulations on high-density magnetohydrodynamic electrical power generation.Journal of Applied Physics, 104, 063307. doi: 10.1063/1.2978190
    [141] Udagawa K, Gorbatov S, Pliavaka F, Nishihara M, Adamovich I V. 2008. Experimental Study of a fast ionization wave discharge at high pulse repetition rates. AIAA Paper 2008-1104.
    [142] Vanwie D M, Nedungadi A. 2004. Plasma Aerodynamic Flow Control for Hypersonic Inlets. AIAA Paper 2004-4129.
    [143] Wang J, Li Y H, Xing F. 2009a. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow. Journal of Applied Physics, 106: 073307. doi: 10.1063/1.3236658
    [144] Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y. 2009b. Experimental investigation on shock wave control by plasma aerodynamic actuation. AIAA Paper 2009-3618.
    [145] Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y. 2009c. Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow. Journal of Physics D : Applied Physics, 42: 165503. doi: 10.1088/0022-3727/42/16/165503
    [146] Wang J, Li Y H, Cheng B Q, Su C B, Song H M, Wu Y. 2009d. Mechanism investigation on shock wave control by plasma aerodynamic actuation. AIAA Paper 2009-4286.
    [147] Wilson C R, Laster M L, Jordan J L, Limbaugh C. 2004. Plans and status of the RDHWT/MARIAH II facility research program. AIAA Paper 2004-2479.
    [148] Wood G P, Carter A F. 1960. Considerations in the design of a steady DC plasma accelerator. Proceedings of the Third Biennial Gas Dynamics Symposium, Cambel A. B. Fenn J. B. (eds.)Northwestern University Press, Evanston, Illinois, 1960: 201-212.
    [149] Wood G P, Carter A F, Sabol A P. 1964. Research on Linear Crossed-Field Steady-Flow D.C. Plasma accelerators at langley research center, nasa. arc heaters and MHD accelerators for aerodynamic purposes, AGARDograph 84: Part I, Proceedings of AGARD Specialists Meeting, North Atlantic Treaty Organization, Advisory Group for Aeronautical Research and Development, Sept, 1-45.
    [150] Yang P Y, Zhang B L, Li Y W, Wang Y T, Duan C D. 2016. Investigation of MHD power generation with supersonic non-equilibrium RF discharge. Chinese Journal of Aeronautics, 29: 863-873.
    [151] Zaidi S H, Smith T, Macheret S, Miles R B. 2006. Snowplow surface discharge in magnetic field for high speed boundary layer control. AIAA Paper 2006-1006.
    [152] Zhukov V P, Kindisheva S V, Kirpichnikov A A, Kosarev I NStarikovskaia S M, Starikovskii A Yu, Kelley, J D. 2006. Plasma production for MHD power generation by nanosecond discharge. AIAA Paper 2006-1370.
    [153] Ziemer R W, Bush W B. 1958. Magnetic field effects on bow shock stand-off distance. Phys. Rev. Lett, 1: 58-59. doi: 10.1103/PhysRevLett.1.58
    [154] Ziemer W. 1959. Experimental investigation in magneto-aerodynamics. American Rocket Society Journal, 29: 642-647.
  • 加载中
图(49)
计量
  • 文章访问数:  3953
  • HTML全文浏览量:  785
  • PDF下载量:  1239
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 网络出版日期:  2017-01-24
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回