Nonlinear Lamb waves in plate/shell structures
-
摘要: 鉴于常规超声检测技术对分布式材料细微损伤和接触类结构损伤的检测效果不佳, 近年来非线性超声技术逐渐引起广泛关注. 超声波在板壳结构中通常以兰姆波的形式进行传播, 然而由于兰姆波的频散及多模特性, 使得非线性兰姆波的理论和实验研究进展缓慢. 本文从经典非线性理论出发,总结了源于材料固有非线性诱发的非线性兰姆波的理论和实验两个方面的研究进展, 并综述了兰姆波的二次谐波发生效应在材料损伤评价方面的若干应用; 从接触声非线性理论出发, 讨论了目前由于接触类结构损伤诱发的非线性兰姆波的研究现状. 最后展望了非线性兰姆波的未来研究重点及发展趋势.Abstract: In view of the fact that conventional ultrasonic detection technology is not effective for the detection of distributed fne damage and contact-type structural damage in materials, nonlinear ultrasound technology has been attracting more and more attention in recent years. Ultrasonic waves propagate in the form of Lamb wave modes in the structure of plates and shells. However, due to the dispersion and multimode characteristics of Lamb waves, the progress of theoretical and experimental research on nonlinear Lamb waves is slow. Based on the classical nonlinear theory, this paper summarizes the theoretical and experimental research progress of nonlinear Lamb waves induced by the inherent nonlinear-ity of material, and summarizes the application of the second harmonics of Lamb waves in damage evaluation of material. The current status of the research on nonlinear Lamb waves induced by contact-type structural damage is discussed based on contact acoustic nonlin-earity. At the end, this paper envisions the future research topics and trends in nonlinear Lamb waves.
-
图 5 在厚度为h的YZ-LiNbO3压电薄板中伴随基频导波模式传播所发生的二倍频导波模式在薄板表面的振幅随传播距离的关系曲线.(a)离面位移,(b)面内位移(Deng & Xiang 2015)
图 6 基波为S0波(0.5 MHz)时二次谐波幅值和传播距离之间的关系(Chillara & Lissenden 2016)
图 7 在铝板的相速度频散曲线中显示基波和二次谐波之间相速度的关系(Chillara & Lissenden 2016)
图 8 基波为S1波(3.6 MHz)时二次谐波幅值和传播距离之间的关系(Chillara & Lissenden 2016)
图 9 三种应力状态下兰姆波的群速度随板内应力变化的相对改变(Pau & Scalea 2015)
图 10 三种应力状态下二次谐波位移分量的变化曲线(Pau & Scalea 2015)
图 12 基频与二倍频兰姆波的频散曲线(P点: c(ω) =c(2ω))(Deng et al. 2005)
图 13 频率为5.099 MHz时二次谐波幅值与基频兰姆波振幅平方比值与传播距离的关系曲线(Deng et al. 2005)
图 14 铝板(6061-T6型号)中三组模式对的归一化非线性系数cβ2 A2 /A12 ω 2 与传播距离的关系(Liu et al. 2012)
图 15 S1-S2模式对、S2-S4模式对的非线性系数
与传播距离的关系(Matlack et al. 2011) 图 16 一定传播距离处相对非线性系数β' = A2A12与激励电压的关系(Bermes et al. 2008)
图 17 在不同型号铝板中S1-S2模式对的相对非线性系数β' = A2A12与传播距离的关系(Bermes et al. 2008)
图 18 超声兰姆波的归一化应力波因子与循环次数的关系(邓明晰 & 裴俊峰,2008).(a)基波,试件#A,(b)二次谐波试件#A,(c)基波试件#B,(d)二次谐波,试件#B
图 19 频率为2.45 MHz时兰姆波声非线性系数与热退化时间的关系(Xiang et al. 2011)
图 20 比较兰姆波的群速度、衰减系数和相对声非线性系数对热疲劳加载周期数的敏感度(Li et al. 2012)
图 21 兰姆波的非线性与塑性变形的关系(Pruell et al. 2007)
图 22 实验方案示意图(Rauter & Lammering 2015)
图 23 实验结果:(a)群速度与冲击能量的关系(b)相对超声非线性系数与冲击能量的关系(Rauter & Lammering 2015)
图 24 超声波传播通过呼吸裂纹示意图(Shen & Giurgiutiu 2012)
图 25 S1-S2模式对的非线性系数与传播路径到裂纹的距离的关系(Hong et al. 2014)
图 26 (a)铆钉圆孔边疲劳初期裂纹的检测方案示意图(单位mm,疲劳微裂纹被放大示意),(b)检测结果图(Hong et al. 2014)
表 1 三种粘接情形的非线性兰姆波实验结果(邓明晰2015)
-
[1] 邓明晰, Price D C, Scott D A. 2005. 兰姆波非线性效应的实验观察. 声学学报, 30: 37-46 http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htmDeng M X, Price D C, Scott D A. 2005. Experimental observations of nonlinear effects of Lamb waves. Acta Acustica, 30: 37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200501007.htm [2] 邓明晰, 裴俊峰. 2008. 无损评价固体板材疲劳损伤的非线性超声兰姆波方法. 声学学报, 33: 360-369 (Deng M X, Pei J F. 2008. Nondestructive evaluation of fatigue damage in solid plates using nonlinear ultrasonic Lamb wave method. Acta Acustica, 33: 360-369). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200804013.htm [3] 邓明晰, 项延训, 裴俊峰, 刘良兵. 2012. 基于群速度失配的超声兰姆波二次谐波的时域测量方法. 声学学报, 37: 621-628 (Deng M X, Xiang Y X, Pei J F, Liu L B. 2012. Time-domain measurement technique of second harmonic of ultrasonic Lamb waves using mismatch of group velocities. Acta Acustica, 37: 621-628). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201206010.htm [4] 邓明晰. 1996. 兰姆波的非线性研究. 声学学报, 21: 429-436 (Deng M X. 1996. Research on nonlinearity of Lamb waves. Acta Acustica, 21: 429-436). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA6S1.006.htm [5] 邓明晰. 1997. 兰姆波的非线性研究(II). 声学学报, 22: 182-187 (Deng M X. 1997. Research on nonlinearity of Lamb waves (II). Acta Acustica, 22: 182-187). [6] 邓明晰. 2005. 分层结构中兰姆波二次谐波发生的模式展开分析. 声学学报, 30: 132-142 (Deng M X. 2005. Modal expansion analyses of second-harmonic generation of the Lamb waves in layered structures. Acta Acustica, 30: 132-142). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200502007.htm [7] 邓明晰. 2005. 一种定征复合板材粘接层性质的非线性超声兰姆波方法. 声学学报, 30: 542-551 (Deng M X. 2005. Characterization of adhesive joints of composite solid layers using a nonlinear Lamb wave approach. Acta Acustica, 30: 542-551). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200506010.htm [8] 邓明晰. 2006. 兰姆波非线性效应的实验观察(II). 声学学报, 31: 1-7 (Deng M X. 2006. Experimental observations of nonlinear effects of Lamb waves (II). Acta Acustica, 31: 1-7). http://www.cnki.com.cn/Article/CJFDTOTAL-XIBA200601001.htm [9] 税国双, 汪越胜, 曲建民. 2005. 材料力学性能退化的超声无损检测与评价. 力学进展, 35: 52-65. (Shui G S, Wang Y S, Qu J M. 2005. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound. Advances in Mechanics, 35: 52-65). http://lxjz.cstam.org.cn/CN/abstract/abstract132738.shtml [10] Aleshin V, Van Den Abeele KEA. 2007. Micro contact-based theory for acoustics in micro damage materials. J. Mech. Phys. Solids, 55: 366-390. doi: 10.1016/j.jmps.2006.07.002 [11] Auld B A. 1973. Acoustic Fields and Waves in Solids. New York: John Wiley. [12] Baltazar A, Rokhlin S I, Pecorari C. 2002. On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces. J. Mech. Phys. Solids, 50: 1397-1416. doi: 10.1016/S0022-5096(01)00119-3 [13] Belyaeva I Y, Zaitsev V Y, Ostrovsky L A. 1993. Nonlinear acousto-elastic properties of granular media. Acoust. Phys., 39: 11-15. [14] Bermes C, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal PR., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006 [15] Cantrell J H, Yost W T. 2001. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue, 23: 487-490. doi: 10.1016/S0142-1123(01)00162-1 [16] Cantrell J H. 2003. Fundamentals and Application of Nonlinear Ultrasonic Nondestructive Evaluation. Florida: CRC Press LLC. [17] Chillara V K, Lissenden C J. 2014. Nonlinear guided waves in plates: a numerical perspective. Ultrasonics, 54: 1553-1558. doi: 10.1016/j.ultras.2014.04.009 [18] Chillara V K, Lissenden C J. 2016. Review of nonlinear ultrasonic guided wave nondestructive evaluaton: theory, numerics, and experiments. Opt. Eng., 55: 011002. [19] Demer L J, Fentnor L H. 1969. Lamb wave techniques in nondestructive testing. International Journal of Nondestructive Testing, 1: 251-283. [20] Deng M X, Pei J F. 2007. Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett., 90: Art. No. 121902. [21] Deng M X, Xiang Y X, Liu L B. 2011. Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys., 109: 113525. doi: 10.1063/1.3592672 [22] Deng M X, Xiang Y X. 2015. Analysis of second-harmonic generation by primary ultrasonic guided wave propagation in a piezoelectric plate. Ultrasonics, 61: 121-125. doi: 10.1016/j.ultras.2015.04.005 [23] Deng M X,Wng P, Lv X F. 2005. Experimental observation of cumulative secondharmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D -Appl. Phys., 38: 344-353 doi: 10.1088/0022-3727/38/2/020 [24] Deng M X. 1999. Cumulative second-harmonic generation of Lamb mode propagation in a solid plate. J. Appl. Phys., 85: 3051-3058. doi: 10.1063/1.369642 [25] Deng M X. 2003. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys., 94: 4153-4159. [26] Deng M X, Yang J. 2007. Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach. J. Sound Vib., 308: 201-211. doi: 10.1016/j.jsv.2007.07.029 [27] Diamanti K, Soutis C, Hodgkinson J M. 2007. Piezoelectric transducer arrangement for the inspection of large composite structures. Composites Part A, 38: 1121-1130. doi: 10.1016/j.compositesa.2006.06.011 [28] Donskoy D. 2006. Assessment of initial material damage and remaining life prediction with nonlinear acoustics. J. Acoust. Soc. Am., 119: 3293. [29] Friswell M I, Penny J E T. 2002. Crack modeling for structural health monitoring. Struct. Health. Monit., 1: 139-148. doi: 10.1177/1475921702001002002 [30] Giurgiutiu V. 2003. Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring// Smart Structures and Materials 2003: Smart structures and Integrated systems, 111-122. [31] Giurgiutiu V. 2005. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell. Mater. Syst. Struct.,16: 291-305. doi: 10.1177/1045389X05050106 [32] Gusev V E, Lauriks W, Thoen J. 1998. New evolution equations for the nonlinear surface acoustic waves on an elastic solid of general anisotropy. J. Acoust. Soc. Am., 103: 3203-3215. doi: 10.1121/1.423036 [33] Guyer R A, Johnson P A. 1999. Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today, 52: 30-36. [34] Hong M, Su Z, Lu Ye, Cheng L. 2014. Temporal information of linear and nonlinear Lamb waves for fatigue damage localization: analysis and synthesis//7th European workshop on Structural Health Monitoring, July 8-11, 2014, La Cite, Nantes, France. [35] Hong M, Su Z, Wang Q, Cheng L, Qing X. 2014. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Ultrasonics, 54: 770-778. doi: 10.1016/j.ultras.2013.09.023 [36] Kumon R E, Hamilton M F. 2002. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals. J. Acoust. Soc. Am., 115: 2060-2069. [37] Lamb H. 1917. On the waves in an elastic plate. Proceedings of the Royal Society A, 293-312. [38] Li W, Cho Y, Achenbach J D. 2012. Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct., 21: 085019. doi: 10.1088/0964-1726/21/8/085019 [39] Lima W J de, Hamilton M F. 2003. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib., 265: 819-839. doi: 10.1016/S0022-460X(02)01260-9 [40] Liu Y L, Hu N, Xu H, Yuan W F, Yan C, Li Y, Goda R, Alamusi, Qiu J H, Ning H M, Wu L K. 2014. Damage evaluation based on a wave energy flow map using multiple PZT sensors. Sensors, 14: 1902-1917. doi: 10.3390/s140201902 [41] Liu Y, Kim J Y, Jacobs L J, Qu J M, Li Z. 2012. Experimental investigation of symmetry properties of second harmonic Lamb waves. J. Appl. Phys., 111: 053511. doi: 10.1063/1.3691225 [42] Lu X, Lu M, Zhou L M, Su Z, Cheng L, Ye L, Meng G. 2011. Evaluation of welding damage in welded tubular steel structures using guided waves and a probability-based imaging approach. Smart Mater. Struct., 20: 015018. doi: 10.1088/0964-1726/20/1/015018 [43] Luo W, Rose J L. 2007. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. J. Acoust. Soc. Am., 121: 1945-1955. doi: 10.1121/1.2711145 [44] Matlack K H, Kim J Y, Jacobs L J, Qu J M. 2011. Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys., 109: 014905. doi: 10.1063/1.3527959 [45] Miao H, Huan Q, Li F. 2016. Excitation and reception of pure shear horizontal waves by using face-shear d24 mode piezoelectric wafers. Smart Mater. Struct., 25: 11LT01. doi: 10.1088/0964-1726/25/11/11LT01 [46] Muller M F, Kim J Y, Qu J, Jacobs L J. 2010. Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am., 174: 2141-2152. [47] Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46. [48] Ostrocsky L A, Johnson P A. 2001. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento, 24: 1-46. [49] Pau A, Scalea F L di. 2015. Nonlinear guided wave propagation in prestressed plates. J. Acoust. Soc. Am., 137: 1529-1540. doi: 10.1121/1.4908237 [50] Pecorari C. 2003. Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am., 113: 3065-3072. doi: 10.1121/1.1570437 [51] Pruell C, Kim J-Y, Qu J, Jacobs L J. 2007. Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett., 91: 231911. doi: 10.1063/1.2811954 [52] Purekar A S, Pines D J. 2010. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation. J. Intel. Mat. Syst. Str., 21: 955-1010. doi: 10.1177/1045389X10374163 [53] Qian Z W. 1995. Second order harmonics of surface-waves in isotropic solids. J. Sound Vib., 187: 369-379. doi: 10.1006/jsvi.1995.0530 [54] Qiu L, Yuan S F, Zhang X Y, Wang Y. 2011. A time reversal focusing based impact imaging method and its evaluation on complex composite structures. Smart Mater. Struct., 20: 105014. doi: 10.1088/0964-1726/20/10/105014 [55] Qiu, L., Liu, M.L., Qing, X.L., Yuan, S.F. 2013. A quantitative multidamage monitoring method for large-scale complex composite. Struct. Health. Monit., 12: 183-196. doi: 10.1177/1475921713479643 [56] Rauter N, Lammering R. 2015. Impact damage detection in composite structures considering Nonlinear Lamb wave propagation. Mech. Adv. Mater. Struc., 22: 44-51. doi: 10.1080/15376494.2014.907950 [57] Shen Y, Giurgiutiu V. 2012. Simulation of interaction between Lamb waves and cracks for structural health monitoring with piezoelectric wafer active sensors//ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stone Moutain, Georgia, USA. [58] Shui G S, Kim J Y, Qu J M, Jacobs L J. 2008. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst Signal Pr., 22: 638-646. doi: 10.1016/j.ymssp.2007.09.006 [59] Sicard R, Goyette J, Zellouf D E. 2002. A SAFT algorithm for lamb wave imaging of isotropic plate-like structures. Ultrasonics, 39: 487-494. doi: 10.1016/S0041-624X(01)00087-7 [60] Solodov I Y, Krohn N, Busse G. 2002. CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics, 40: 621-625. doi: 10.1016/S0041-624X(02)00186-5 [61] Solodov I Y. 1998. Ultrasonic of nonlinear contacts: propagation, reflection and NDE application. Ultrasonics, 36: 383-390. doi: 10.1016/S0041-624X(97)00041-3 [62] Sonti V R, Kim S J, Jones J D. 1995. Equivalent forces and wavenumber spectra of shaped piezoelectric actuators. J. Sound Vib., 187: 111-131. doi: 10.1006/jsvi.1995.0505 [63] Srivastava A, Scalea F L di. 2009. On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib., 323: 932-943. doi: 10.1016/j.jsv.2009.01.027 [64] Su Z, Ye L. 2005. Lamb wave propagation-based damage identification for quasi-isotropic cf/ep composite laminates using aritificial neural algorithm: part i-methodology and database development. J. Intel. Mat. Syst. Str., 16: 97-111. doi: 10.1177/1045389X05047599 [65] Su Z, Ye L. 2009. Identification of damage using Lamb waves: from fundamentals to applications. Springer, 2009. [66] Van Den Abeele K, De Visscher J. 2000. Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cement Concrete Res., 30: 1453-1464. doi: 10.1016/S0008-8846(00)00329-X [67] Van Den Abeele KEA., Sutin A, Carmeliet J, Johnson P A. 2001. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E Int., 34: 239-248. [68] Viktorov I A. 1965. Ultrasonic Lamb wave (Review). Ultrasonics, 11: 1. [69] Vishnuvardhan J, Krishnamurthy C V, Balasubramaniam K, 2007. Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-transmitter-multiple-receiver SHM array. Smart Mater. Struct., 16: 1639-1650. [70] Wan X, Zhang Q, Xu G, Tse P W. 2014. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Sensors, 14: 8528-8546. doi: 10.3390/s140508528 [71] Wang D, Ye L, Su Z, Lu Y, Li F, Meng G. 2010. Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health. Monit., 9: 133-144. doi: 10.1177/1475921709352145 [72] Worden K, Tomlinson G R. 2001. Nonlinearity in structural dynamics: Detection, Identification and Modelling. Bristol: IOP Publishing Ltd. [73] Worlton D C. 1961. Experimental confirmation of Lamb waves at Megacycle Frequencies. J. Appl. Phys., 32: 967-971. doi: 10.1063/1.1736196 [74] Wright W, Hutchins D, Jansen D, Schindel D. 1997. Air-coupled lamb wave tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44: 53-59. doi: 10.1109/58.585190 [75] Xiang Y, Deng M, Xuan F-Z, Liu C-J. 2011. Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT & E Int., 44: 768-774. [76] Zabolotskaya E A. 1992. Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am., 91: 2569-2575. doi: 10.1121/1.402993 [77] Zhu W J, Deng M X, Xiang Y X, Xuan F Z, Liu C J. 2016. Second harmonic generation of Lamb wave in numerical perspective. Chin. Phys. Lett., 33: 104301. doi: 10.1088/0256-307X/33/10/104301