留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于医学影像的血流动力学分析

陈宇 李睿 赵雪梅 李东海 徐文娟 刘爱华 Sia Sheau Fung Chong Winston 张宇

陈宇, 李睿, 赵雪梅, 李东海, 徐文娟, 刘爱华, Sia Sheau Fung, Chong Winston, 张宇. 基于医学影像的血流动力学分析[J]. 力学进展, 2016, 46(1): 201607. doi: 10.6052/1000-0992-15-042
引用本文: 陈宇, 李睿, 赵雪梅, 李东海, 徐文娟, 刘爱华, Sia Sheau Fung, Chong Winston, 张宇. 基于医学影像的血流动力学分析[J]. 力学进展, 2016, 46(1): 201607. doi: 10.6052/1000-0992-15-042
Yu CHEN, Rui LI, Xuemei ZHAO, Donghai LI, Wenjuan XU, Aihua LIU, Sheau Fung SIA, Winston CHONG, Yu ZHANG. Medical image based hemodynamic analysis[J]. Advances in Mechanics, 2016, 46(1): 201607. doi: 10.6052/1000-0992-15-042
Citation: Yu CHEN, Rui LI, Xuemei ZHAO, Donghai LI, Wenjuan XU, Aihua LIU, Sheau Fung SIA, Winston CHONG, Yu ZHANG. Medical image based hemodynamic analysis[J]. Advances in Mechanics, 2016, 46(1): 201607. doi: 10.6052/1000-0992-15-042

基于医学影像的血流动力学分析

doi: 10.6052/1000-0992-15-042
基金项目: 清华大学2015年度自主科研经费(20141081265)资助项目.
详细信息
    通讯作者:

    张宇,博士,清华大学医学中心研究员. 1996年于天津大学热能系取得学士学位, 1999年于天津大学热能系取得硕士学位, 2003年于清华大学力学系取得博士学位.取得博士学位后,在中国科学院力学研究所、美国普渡大学、澳大利亚麦考瑞大学、澳大利亚西悉尼大学做访问学者和博士后的研究工作. 2007年被中国科学院力学研究所聘为副研究员, 2014年被清华大学医学中心聘为研究员.自2010年起,研究方向专注于血液动力学,研究的内容包含颈动脉狭窄、血管瘤、支架治疗等.

  • 中图分类号: Q66

Medical image based hemodynamic analysis

More Information
    Corresponding author: Yu ZHANG
  • 摘要: 随着计算机成像技术的发展,计算机断层扫描(CT)和核磁共振(MRI)已经广泛应用于临床,特别是血管类疾病的诊断,比如动脉狭窄、血管瘤、血管畸形等.除了可以提供高分辨率的静态图像,先进的MRI技术还可以通过时间序列直接反映血流动力学的变化.而基于计算机成像和三维重建技术,血流动力学的参数又可以通过计算流体力学的方法进行详细的分析.如何将血流动力学参数和临床诊断相结合是近年来在转化医学领域研究的热点.结合文献调研和作者自己的研究工作对基于医学图像的血流动力学分析进行综述,并探讨未来的研究方向.

     

  • [1] Abolmaali N D, Esmaeili A, Feist P, Ackermann H, Requardt M, Schmidt H, Vogl T J. 2004. Reference values of MRI flow measurements of the pulmonary outflow tract in healthy children, RoFo:Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, 176:837-845.
    [2] Acevedo-Bolton G, Jou L D, Dispensa B P, Lawton M T, Higashida R T, Martin A J, Young W L, Saloner D. 2006. Estimating the hemodynamic impact of interventional treatments of aneurysms:numerical simulation with experimental validation:technical case report. Neurosurgery, 59:E429-430; author reply E429-430.
    [3] Alexandrov A V, Bladin C F, Maggisano R, Norris J W. 1993. Measuring carotid stenosis-time for a reappraisal. Stroke, 24:1292-1296.
    [4] Baharoglu M I, Schirmer C M, Hoit D A, Gao B L, Malek A M. 2010. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms morphometric and computational fluid dynamic analysis. Stroke, 41:1423-1430.
    [5] Borotikar BS, Sipprell W H, Wible E E, Sheehan F T. 2012. 3rd, A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. Journal of Biomechanics, 45:1117-1122.
    [6] Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith W S, Young W L, Saloner D. 2008. Aneurysm growth occurs at region of low wall shear stress patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 39:2997-3002.
    [7] Cebral J R, Castro M A, Appanaboyina S, Putman C M, Millan D, Frangi A F. 2005a. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:Technique and sensitivity. IEEE T Med Imaging, 24:457-467.
    [8] Cebral J R, Lohner R. 2005b. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE T Med Imaging, 24:468-476.
    [9] Cebral J R, Mut F, Raschi M, Scrivano E, Ceratto R, Lylyk P, Putman C M. 2011b. Aneurysm rupture following treatment with flow-diverting stents:computational hemodynamics analysis of treatment. AJNR. American Journal of Neuroradiology, 32:27-33.
    [10] Cebral J R, Mut F, Weir J, Putman C. 2011. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR. American Journal of Neuroradiology, 32:145-151.
    [11] Chalouhi N, Ali M S, Jabbour P M, Tjoumakaris S I, Gonzalez L F, Rosenwasser R H, Koch W J, Dumont A S. 2012. Biology of intracranial aneurysms:role of inflammation. J Cerebr Blood F Met, 32:1659-1676.
    [12] Cheng L K, Sands G B, French R L, Withy S J, Wong S P, Legget M E, Smith W M, Pullan A J. 2005. Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med Biol Eng Comput, 43:325-330.
    [13] Chong W, Zhang Y, Qian Y, Lai L, Parker G, Mitchell K. 2014. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters:Correlation with clinical outcomes. Am J Neuroradiol, 35:136-142.
    [14] Cormack A M. 1963. Representation of a function by its line integrals with some radiological applications. J Appl Phys, 34:2722-2727.
    [15] Dong J, Wong K K, Tu J. 2013. Hemodynamics analysis of patient-specific carotid bifurcation:A CFD model of downstream peripheral vascular impedance. International Journal for Numerical Methods in Biomedical Engineering, 29:476-491.
    [16] Dymond R C, Redpath T W, McKiddie F I. 1996. Application of the principle of optical phase-contrast microscopy to velocity phase-encoded MRI of blood flow in the aorta. Brit J Radiol, 69:410-414.
    [17] Dyverfeldt P, Bissell M, Barker A J, Bolger A F, Carlhall C J, Ebbers T, Francios C J, Frydrychowicz A, Geiger J, Giese D, Hope M D, Kilner P J, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M. 2015. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn R, 17.
    [18] Ferguson G G, Eliasziw M, Barr H W, Clagett G P, Barnes R W, Wallace M C, Taylor D W, Haynes R B, Finan J W, Hachinski V C, Barnett H J. 1999. The North American Symptomatic Carotid Endarterectomy Trial:Surgical results in 1415 patients. Stroke, 30:1751-1758.
    [19] Finol E A, Amon C H. 2002. Flow-induced wall shear stress in abdominal aortic aneurysms:Part I-steady flow hemodynamics. Computer Methods in Biomechanics and Biomedical Engineering, 5:309-318.
    [20] Forget T R, Benitez R, Vezneclaroglu E, Sharan A, Mitchell W, Silva M, Rosenwasser R H. 2001. A review of size and location of ruptured intracranial aneurysms. Neurosurgery, 49:1322-1325.
    [21] Goubergrits L, Schaller J, Kertzscher U, van den Bruck N, Poethkow K, Petz C, Hege H C, Spuler A. 2012. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms, Journal of the Royal Society, Interface/the Royal Society, 9:677-688.
    [22] Gruber P, Menze B, Pfeiffer M, Baltsavias G, Wegener S, Steffen R, Luft A. 2015. Analysis of collateral circulation in proximal cerebral vessel occlusions based on digital subtraction angiography (DSA). Int J Stroke, 10:315-315.
    [23] Higashida R T, Meyers P M, Phatouros C C, Connors J J, Barr J D, Sacks D, Amer T A C. 2004. Reporting standards for carotid artery angioplasty and Stent placement. J Vasc Interv Radiol, 15:421-422.
    [24] Higashida R T, Meyers P M, Phatouros C C, Connors J J, Barr J D, Sacks D, So T A C A, Radiol, S I. 2009. Reporting standards for carotid artery angioplasty and stent placement (Reprinted from J Vasc Interv Radiol vol 15, pg E1-E24, 2004)/J Vasc Interv Radiol, 20:S349-S373.
    [25] Hoi Y M, Meng H, Woodward S H, Bendok B R, Hanel R A, Guterman L R, Hopkins L N. 2004. Effects of arterial geometry on aneurysm growth:three-dimensional computational fluid dynamics study. J Neurosurg, 101:676-681.
    [26] Jamali A A, Deuel C, Perreira A, Salgad C J, Hunter J C, Strong E B. 2007. Linear and angular measurements of computer-generated models:Are they accurate, valid, and reliable? Comput Aided Surg, 12:278-285.
    [27] Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M. 2012. Distinctive flow pattern of wall shear stress and oscillatory shear index:Similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg, 117:774-780.
    [28] Kim T Y, Jung J I, Kim Y J, Kim H W, Lee H G. 2015. CT and MRI evaluation of cardiac complications in patients with hematologic diseases:A pictorial review. Int J Cardiovas Imag, 31:159-167.
    [29] Lotz J, Meier C, Leppert A, Galanski M. 2002. Cardiovascular flow measurement with phase-contrast MR imaging:Basic facts and implementation. Radiographics, 22:651-671.
    [30] Markl M, Chan F P, Alley M T, Wedding K L, Draney M T, Elkins C J, Parker D W, Wicker R, Taylor C A, Herfkens R J, Pelc N J. 2003. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging, 17:499-506.
    [31] Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 2012. 4D flow MRI. J Magn Reson Imaging, 36:1015-1036.
    [32] McNulty J P, Lonergan R, Brennan P C, Evanoff M G, O'Laoide R, Ryan J T, Tubridy N. 2015. Diagnostic efficacy of conventional MRI pulse sequences in the detection of lesions causing internuclear ophthalmoplegia in multiple sclerosis patients. Clin Neuroradiol, 25:233-239.
    [33] Meng H, Wang Z J, Hoi Y, Gao L, Metaxa E, Swartz D D, Kolega J. 2007. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke, 38:1924-1931.
    [34] Menke J, Kowalski J. 2016. Diagnostic accuracy and utility of coronary CT angiography with consideration of unevaluable results:A systematic review and multivariate Bayesian random-effects meta-analysis with intention to diagnose. Eur Radiol, 26:451-458.
    [35] Natarajan S K, Xiang J P, Tremmel M, Ma D, Mocco J, Hopkins L N, Siddiqui A H, Levy E I, Meng H. 2011. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42:E139-E139.
    [36] Patankar SV. 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, US.
    [37] Patel M B, Berkenblit R, Amis E S, Hoenig D M. 2007. Defining a new modality to diagnose medullary sponge kidney (MSK):Multi-detector CT (MDCT) scan studies on patients with MSK. J Endourol, 21:A12-A12.
    [38] Roldan-Valadez E, Martinez-Anda J J, Corona-Cedillo R. 2014. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians. Clinical Anatomy, 27:31-45.
    [39] Rothwell P M, Gibson RJ, Slattery J, Sellar R J, Warlow C P. 1994. Equivalence of measurements of carotid stenosis-a comparison of 3 methods on 1001 angiograms. Stroke, 25:2435-2439.
    [40] Schuetz G M, Schlattmann P, Dewey M. 2012. Use of 3×2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests:meta-analytical evaluation of coronary CT angiography studies. Brit Med J, 345.
    [41] Shimogonya Y, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T. 2009. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). Journal of Biomechanics, 42:550-554.
    [42] Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T. 2004. Magnitude and role of wall shear stress on cerebral aneurysm- Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke, 35:2500-2505.
    [43] Slattery J. 1996. Endarterectomy for moderate symptomatic carotid stenosis:Interim results from the MRC European Carotid Surgery Trial. Lancet, 347:1591-1593.
    [44] Sugiyama S, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, Omodaka S, Shimizu H, Takahashi A, Tominaga T. 2012. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurgery, 78:462-468.
    [45] Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala S S. 2013. Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J Magn Reson Imaging, 37:1419-1426.
    [46] Tremmel M, Dhar S, Levy E I, Mocco J, Meng H. 2009. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture:results from a virtual experimental study. Neurosurgery, 64:622-630; discussion 630-621.
    [47] Tu J Y, Wong K K L, Cheung S C P, Beare R, Phan T. 2011. Analysis of patient-specific carotid bifurcation models using computational fluid dynamics. J Med Imag Health In, 1:116-125.
    [48] van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A. 2012. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. International Journal of Computer Assisted Radiology and Surgery, 7:217-224.
    [49] Xiang J, Natarajan S K, Tremmel M, Ma D, Mocco J, Hopkins L N, Siddiqui A H, Levy E I, Meng H. 2011. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42:144-152.
    [50] Zhang J M, Zhong L, Su B Y, Wan M, Yap J S, Tham J P L, Chua L P, Ghista D N, Tan R S. 2014. Perspective on CFD studies of coronary artery disease lesions and hemodynamics:A review. Int J Numer Meth Bio, 30:659-680.
    [51] Zhang Q, Gao B, Gu K Y, Chang Y, Xu J C. 2014. The study on hemodynamic effect of varied support models of BJUT-Ⅱ VAD on coronary artery:A primary CFD study. Asaio J, 60:643-651.
    [52] Zhang Y, Chong W, Qian Y. 2013. Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment. Med Eng Phys, 35:608-615.
    [53] Zhang Y, Takao H, Murayama Y, Qian Y. 2013. Propose a wall shear stress divergence to estimate the risks of intracranial aneurysm rupture. Sci World J.
  • 加载中
计量
  • 文章访问数:  2219
  • HTML全文浏览量:  182
  • PDF下载量:  2112
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-20
  • 修回日期:  2016-03-14
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回