留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications(线性与非线性流固耦合动力学数值方法的进展及应用)

Jing Tang XING(邢景棠)

Jing Tang XING(邢景棠). Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications(线性与非线性流固耦合动力学数值方法的进展及应用)[J]. 力学进展, 2016, 46(1): 201602. doi: 10.6052/1000-0992-15-038
引用本文: Jing Tang XING(邢景棠). Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications(线性与非线性流固耦合动力学数值方法的进展及应用)[J]. 力学进展, 2016, 46(1): 201602. doi: 10.6052/1000-0992-15-038
Jing Tang XING. Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications[J]. Advances in Mechanics, 2016, 46(1): 201602. doi: 10.6052/1000-0992-15-038
Citation: Jing Tang XING. Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications[J]. Advances in Mechanics, 2016, 46(1): 201602. doi: 10.6052/1000-0992-15-038

Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications(线性与非线性流固耦合动力学数值方法的进展及应用)

doi: 10.6052/1000-0992-15-038

Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications

  • 摘要: 本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用. 讨论了四种数值分析方法: (1) 混合有限元-子结构-子区域数值模型, 以求解有限域线性流固耦合问题, 如流体晃动, 声腔-结构耦合, 流体中的压力波, 化工容器的地震响应,坝水耦合等; (2) 混合有限元-边界元数值模型, 以求解涉及无限域的线性流固耦合问题, 如大型浮体承受飞机降落冲击, 船舰的炮击回应等; (3) 混合有限元-有限差分(体积) 数值模型, 以求解不涉及破浪和两相分离的非线性流固耦合问题; (4) 混合有限元-光滑粒子数值模型, 以求解涉及破浪和两相分离的非线性流固耦合问题. 文中推荐分区迭代求解过程, 以便应用现有的固体及流体求解器, 于毎一时间步长分别求解固体及流体的方程, 通过耦合迭代收敛, 向前推进以达问题求解. 文中选用的工程应用例子包含气-液-壳三相耦合, 液化天然气船水晃动, 人体步行冲击引起的声腔-建筑结构耦合, 大型浮体承受飞机降落冲击的瞬态动力回应, 涉及破浪和两相分离的气-翼耦合及结构于水上降落的冲击. 数值分析结果与可用的实验或计算结果作了比较, 以说明所述方法的精度及工程应用价值. 文中列出了基于流固耦合的波能采积装置模型, 以应用线性系统的共振及非线性系统的周期解原理, 有效地采积波能. 本文列出了231 篇参考文献, 以便读者进一步研讨所感兴趣方法.

     

  • [1] Aluru N R. 1999. A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics, 23: 324-338.
    [2] Anderson J D. 1995. Computational Fluid Dynamics, the Basics with Applications. McGraw-Hill.
    [3] Antoci C, Gallati M, Sibilla S. 2007. Numerical simulation of fluid-structure interaction by SPH. Comput. Struct., 85: 879-890.
    [4] Ataie-Ashtiani B, Shobeyri G, Farhadi L. 2008. Modified incompressible SPH method for simulating free surface problems. Fluid Dynamics Research, 40: 637-661.
    [5] Attawy S W, Heinstein M W, Swegle J W. 1994. Coupling of smoothed particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 150: 199-205.
    [6] Axisa F, Antunes J. 2007. Fluid Structure Interaction. Butterworth-Heinemann.
    [7] Basa M, Quinlan N J, Lastiwka M. 2009. Robustness and accuracy of SPH formulations for viscous flow.International Journal for Numerical Methods in Fluids, 60: 1127-1148.
    [8] Bathe K J. 1996. Finite Element Procedures in Engineering Analysis. Prentice-Hall.
    [9] Bathe K J, Nitikitpaiboon C, Wang X. 1995. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Computers and Structures, 56: 225-237.
    [10] Bazilevs Y, Takizawa K, Tezduyar T E. 2013. Computational Fluid-Structure Interaction: Methods and Applications. Wiley.
    [11] Bedard R, Hagerman G, Previsic M, Siddiqui O, Thresher R, Ram B. 2005. Final summary report of offshore wave power feasibility demonstration project. EPRI Global WP 009-US Rev.
    [12] Belytschko T, Kennedy J M. 1978. Computer models for subassembly simulation. Nuclear Eng Des, 49: 17-38.
    [13] Belytschko T, Flanagan D P, Kennedy J M. 1982. Finite element methods with user-controlled meshes for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 33: 669-688.
    [14] Bishop R E D, Price W G. 1979. Hydroelasticity of Ships. Cambridge University Press, London.
    [15] Bishop R E D, Price W G, Wu Y. 1986. A general linear hydroelasticity theory of floating structures moving in a seaway. Phil. Trans. R. Soc. Lond. A, 316: 375-426.
    [16] Bisplinghoff R L, Ashley H, Halfman R L. 1957. Aeroelasticity. Addison-Wesley Publ. Comp. Inc. Mass.
    [17] Bisplinghoff R L, Ashley H. 1962. Principles of Aeroelasticity. John Wiley & Sons, Inc., New York.
    [18] Bisplinghoff R L. 1958. Aeroelasticity. Appl. Mech. Rev. 11: 99-103.
    [19] Bodnar T, Galdi G P, Necasova S. 2014. Fluid-Structure Interaction and Biomedical Applications. Springer. BOEING webpage www.boeing.com.
    [20] Bonet J, Lok T S L. 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180: 97-115.
    [21] Bonet J, Kulasegaram S, Rodriguez-Paz M X, Profit M. 2004. Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Computer Methods in Applied Mechanics and Engineering, 193: 1245-1256.
    [22] Brebbia C A. 1980. The Boundary Element Method for Engineers. Pentech Press, London.
    [23] Brebbia C A, Rodriguez G R. 2013. Fluid Structure Interaction VII. WIT Press.
    [24] Bui H H, Sako K, Fukagawa R. 2007. Numerical simulation of soil-water interaction using smoothed particle hydrodynamcis (SPH) method. Journal of Terramechanics, 44: 339-346.
    [25] Cao Q, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T. 2006. Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E , 74: 046218.
    [26] Cao Q, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T. 2008a. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int J. Non Mech, 43: 462-473.
    [27] Cao Q, Wiercigroch M, Pavlovskaia E E, Thompson J M T, Grebogi C. 2008b. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Phil Trans R Soc A, 366: 635-652.
    [28] Capuzzo-Dolcetta R, Robert D L. 2000. A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics. Appl. Numer. Math., 34: 363-371.
    [29] Caughey D A. 2001. Implicit multigrid computation of unsteady flows past cylinders of square cross-section. Computers & Fluids, 30: 939-960.
    [30] Chan R K-C. 1975. A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces. Journal of Computational Physics, 17: 311-331.
    [31] Chen J K, Beraun J E, Carney T C. 1999. A corrective smoothed particle method for boundary value problems in heat conduction. International Journal for Numerical Methods in Engineering, 46: 231-252.
    [32] Chen J K, Beraun J E. 2000. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Computer Methods in Applied Mechanics and Engineering, 190: 225-239.
    [33] Chen X. 2013. Fluid-structure Interaction Modelling Cell Deformation Airways. Lambert Academic Pub-lishing.
    [34] Colagrossi A, Antuono M, Touze D L. 2009. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics. Physical Revire E, 79: 056701.
    [35] Colagrossi A, Landrini M. 2003. Numerical simulation of interfacial flows by smoothed particle hydrody-namics. Journal of Computational Physics, 191: 448-475.
    [36] Courant R, Hilbert D. 1962. Methods of Mathematical Physics. Interscience, New York.
    [37] Craig R R, Bampton M C C. 1968. Coupling of substructures for dynamical analysis. AIAA. Jl, 6: 1313-1319.
    [38] Craig R R, Chang C J. 1977. On the use of attachment modes in substructure coupling for dynamical analysis//AIAA/ASME 18th Struc. Dyn. & Matls. Conf., San Diego, Paper 77-405.
    [39] Crespo A J C, Gomez-Gesteira M, Dalrymple R A. 2007. Boundary conditions generated by dynamic paticles in SPH methods. CMC, 5: 173-184.
    [40] Crolet J M, Ohayon R. 1994. Computational Methods for Fluid-Structure Interaction. Taylor & Francis,London.
    [41] Cummins S J, Rudman M. 1999. An SPH projection method. J. Comput. Phys., 152: 584-607.
    [42] Dalrymple R A, Knio O. 2010. SPH Modelling of Water Waves//Hans H, Magnus L eds. ASCE: Conference Proceedings Sweden, 80.
    [43] Dahl J, Hover F, Triantafyllou M, Oakley O. 2010. Dual resonance in vortes-induced vibrations ar subcritical and supercritical reynolds numbers. Journal of Fluid Mechanics, 643: 395-424.
    [44] Department of the Navy. 2003. Environmental Assessment, Proposed Wave Energy Technology Project. M. Corps Base Hawaii, Hawaii.
    [45] Dervieux A. 2003. Fluid-Structure Interaction. Kogan Page Limited, London.
    [46] Dominguez J M, Crespo A J C, Gomez-Gesteria M, Marongiu J C. 2010. Neighbour lists in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 67: 2026-2042.
    [47] Donea J. 1980. Finite element analysis of transient dynamic fluid-structure interaction//Donea J. ed. Ad-vanced Structural Dynamics, Chapter 8, 255-290, Applied Science.
    [48] Donea J. 1983. An arbitrary Lagrangian-Eulerian finite element method//Belytschko T, Hughes T J R eds. Computational Methods for Transient Analysis, Chapter 10, 473-516, Elsevier.
    [49] Donea J, Fasoli-Stella P, Giuliani S. 1977. Lagrangian-Eulerian finite element techniques for transient fluid-structure interaction problems. Paper B1/2//Transactions of 4th SMIRT Conference, San Francisco, 15-19 August 1977.
    [50] Donea J, Giuliani S, Halleux J P. 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33: 689-723.
    [51] Durao D F G, Heitor M V, Pereira J C F. 1988. Measurements of turbulent and periodic flows around a square cross-section cylinder. Experiments in Fluids, 6: 298-304.
    [52] Ellero M, Serrano M, Espanol P. 2007. Incompressible smoothed particle hydrodynamics. J. Comput. Phys., 226: 1731-1752.
    [53] Endo H, Yago K. 1998. Time history response of a large floating structure subjected to dynamic load. J. Soc. Naval Arch. Japan, 186: 369-376.
    [54] Falnes J. 2002. Ocean Waves and Oscillating Systems, Linear Interactions Including Wave-Energy Extrac-tion. Cam. Univ. Press, London.
    [55] Floryan J M, Rasmussen H. 1989. Numerical methods for viscous flows with moving boundaries. Applied Mechanics Reviews, 42: 323-341.
    [56] Franke R, Rodi W. 1991. Calculation of vortex shedding past a square cylinder with various turbulence models//Proceedings of the Eighth Symposium on Turbulent Shear Flows, pp. 20.1.1-20.1.6, Tech. Univ. of Munich.
    [57] Freitas C J, Runnels S R. 1999. Simulation of fluid-structure interaction using patched-overset grids. J. F. & Structures, 13: 191-207.
    [58] Fung Y C. 1955. An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Inc., New York.
    [59] Galdi G P, Rannacher R. 2010. Fundamental Trends in Fluid-Structure Interaction. World Scientific.
    [60] Gingold R A, Monaghan J J. 1977. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181: 375-389.
    [61] Grenier N, Antuono M, Colagrossi A, Touze D L, Alessandrini B. 2009. An hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, 228: 8380-8393.
    [62] Grenier N, Touze D L. 2008. An improved SPH method for multi-phase simulations//Proceedings of the 8nd International Conference on Hydrodynamics, 11.
    [63] Hirsch C. 1988. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization. John Wiley & Sons.
    [64] Hirsch C. 1990. Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons.
    [65] Hirt C W, Amsden A A, Cook J L. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14: 227-253.
    [66] Horton B, Sieber J, Thompson J M T, Wiercigroch M. 2011. Dynamics of the nearly parametric pendulum. Int J. Non Mech, 46: 436-442.
    [67] Hosseini S M, Manzari M T, Hannani S K. 2007. A fully explicit three-step SPH algorithm for simulation of non-newtonian fluid flow. International Journal for Numerical Methods for Heat & Fluid Flow, 17: 715-735.
    [68] Hou S N. 1969. Review of modal synthesis techniques and a new approach. Shock and Vib. Bull., 40: 25-29.
    [69] Howe M S. 1998. Acoustics of Fluid-Structure Interactions. Cambridge University Press.
    [70] Hu X Y, Adams N A. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213: 844-861.
    [71] Hu X Y, Adams N A. 2007. An incompressible multi-phase SPH method. J. Comput. Phys., 227: 264-278.
    [72] Hughes T J R, Liu W K, Zimmermann T K. 1981. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29: 329-349.
    [73] Hunn B A. 1955. A method of calculating normal modes of an aircraft. Quart. Jl. Mech. Appl. Math., 8: 38-58.
    [74] Hurty W C. 1960. Vibration of structural systems by component mode synthesis. Proc. ASCE. J. E. M. Div., 8: 51-69.
    [75] Hurty W C. 1965. Dynamic analysis of structural systems using component modes. AIAA. Jl., 3: 678-685.
    [76] Ibrahim R A. 2005. Liquid Sloshing Dynamics, Theory and Applications. Cambridge University Press, London.
    [77] JAMSTEC. 2006. Wave Energy Research and Development at JAMSTEC, Offshore Floating Wave Energy Device, Mighty Whale.
    [78] Javed A. 2015. Investigation on meshfree particle methods for fluid-structure interaction problems. [PhD
    [79] Thesis], Faculty of Engineering & Environments, University of Southampton, Southampton, UK.
    [80] Javed A, Djidjeli K, Xing J T. 2013a. Adaptive shape parameter (ASP) technique for local radial basis functions (RBFs) and their application for solution of Navier-Strokes equations. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 7: 771-780.
    [81] Javed A, Djidjeli K, Xing J T, Cox S J. 2013b. A hybrid mesh free local RBF-Cartesian FD scheme for incompressible flow around solid bodies. International Journal of Mathematical, Computational, Natural and Physical Engineering, 7: 957-966.
    [82] Javed A, Djidjeli K, Xing J T. 2014a. Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier-Stokes equations. Computer & Fluids, 89: 38-52.
    [83] Javed A, Djidjeli K, Xing J T. 2014b. An ALE based hybrid meshfree local RBF-Cartesian FD scheme for incompressible flow around moving boundaries. AIAA Aviation, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2014-2312.
    [84] Jiang F, Oliveira M S A, Sousa A C M. 2007. Mesoscale SPH modeling of fluid flow in isotropic porous media. Computer Physics Communications, 176: 471-480.
    [85] Jin J. 2007. A mixed mode function-boundary element method for very large floating structure-water Interaction systems excited by airplane landing impacts. [PhD Thesis], School of Engineering Sciences, University of Southampton, Southampton, UK.
    [86] Jin J, Xing J T. 2007. Transient dynamic analysis of a floating beam-water interaction system excited by the impact of a landing beam. Journal of Sound & Vibration, 303: 371-390.
    [87] Jin J, Xing J T. 2009. A convergence study on mixed mode function-boundary element method for aircraft- VLFS-water interaction system subject to aircraft landing impacts//Proceedings of the ASME 28th In-ternational Conference on Offshore Mechanics and Arctic Engineering-OMAE2009, 31 May-5 June, 2009, Honolulu, Hawaii.
    [88] Johnson G R. 1994. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nuclear Engineering and Design, 150: 265-274.
    [89] Johnson G R., Stryk R A, Beissel S R. 1996a. SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, 139: 347-373.
    [90] Johnson G R, Stryk R A, Beissel S R. 1996b. Interface effects for SPH impact computations. Structures under shock and impact, IV: 285-294.
    [91] Johnson G R, Beissel S R. 1996c. Normalized smoothing functions for SPH impact computations. Interna-tional Journal for Numerical Methods in Engineering, 39: 2725-2541.
    [92] Jun S, Liu W K, Belytschko T. 1998. Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41: 137-166.
    [93] Khodabakhshi G. 2011. Computational Modelling Fluid-porous Solid Interaction Systems. LAMBERT Academic Publ.
    [94] Khabakhpasheva T I, Korobkin A A. 2003. Approximate models of elastic wedge impact//18th Int. Work. Water Waves & Floating Bodies, Le Croisic, France.
    [95] Khabakhpasheva T I, Korobkin A A. 2013. Elastic wedge impact onto a liquid surface: Wagner's solution and approximate models. Journal of Fluids and Structures, 36: 32-49.
    [96] Kock E, Olson L. 1991. Fluid-solid interaction analysis by the finite element method-a variational approach. Int. Jl. Numer. Methods Eng., 31: 463-491.
    [97] Koobus B, Farhat C, Tran H. 2000. Computation of unsteady viscous flows around moving bodies using the k-" turbulence model on unstructured dynamic grids. Com Meth Appl Mech & Eng, 190: 1441-1466.
    [98] Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. 2008. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys., 227: 8417-8436.
    [99] Lee E S, Violeau D, Issa R. 2010. Application of weakly compressible and truly incompressible SPH to 3-d water collapse in waterworks. Journal of Hydraulic Research, 48: 50-60.
    [100] Lencia S, Pavlovskaiab E, Regac G, Wiercigroch M. 2008. Rotating solutions and stability of parametric pendulum by perturbation method. Journal of Sound & Vibration, 310: 243-259.
    [101] Libersky L D, Petschek A G. 1991. Smoothed particle hydrodynamics with strength of materials//Trease H, Fritts J, Crowley W eds. Proceeding of The Next Free Lagrange Confrence, pp. 248-257, Springer Berlin.
    [102] Litaka G, Borowieca M, Wiercigroch M. 2008. Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions. Dynamical Systems, 23: 259-265.
    [103] Litaka G, Wiercigroch M, Horton B, Xu X. 2010. Transient chaotic behaviour versus periodic motion of a parametric pendulum by recurrence plots. ZAMM. Z. Angew. Math. Mech., 90: 33-41.
    [104] Liu G R. 2003. Mesh free methods: Moving beyond the finite element method. Chemical Rubber Boca Raton, FL.
    [105] Liu G R, Liu M B. 2003a. Smoothed Particle Hydrodynamics. World Scientific Publishing Co. Pte. Ltd.
    [106] Liu M B, Liu G R, Lam K Y. 2003b. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 155: 263-284.
    [107] Liu W K, Ma D C. 1982. Computer implementation aspects for fluid-structure interaction problems. Com-puter Methods in Applied Mechanics and Engineering, 31: 129-148.
    [108] Liu W K, Uras R A. 1988. Variational approach to fluid-structure interaction with sloshing. N. E. Des., 106: 69-85.
    [109] Liu W K, Jun S, Zhang Y F. 1995a. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20: 1081-1106.
    [110] Liu W K, Jun S, Li S, Adee J, Belytschko T. 1995b. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38: 1655-1679.
    [111] Lobovský L, Vimmr J. 2007. Smoothed particle hydrodynamics and finite volume modelling of incompress-ible fluid flow. Mathematics and Computers in Simulation, 76: 124-131.
    [112] Lucy L B. 1977. Numerical approach to testing the fission hypothesis. Astronomical Journal, 82: 1013-1024.
    [113] MacNeal R H. 1977. A hybrid method of component mode synthesis. Comp. Strs, 1: 581-601.
    [114] Magnus W, Oberhettinger F. 1949. Formulas and Theorems for the Special Functions of Mathematical Physics. Chelsea Publishing Co., New York.
    [115] Monaghan J J. 1982. Why particle methods work. SIAM J. on Scientific and Statistical Computing, 3: 422-433.
    [116] Monaghan J J. 1987. SPH meets the Shocks of Noh. Monash University Paper.
    [117] Monaghan J J. 1988. An introduction to SPH. Computer Physics Communications, 48: 89-96.
    [118] Monaghan J J. 1989. On the problem of penetration in particle methods. Journal of Comp. Physics, 82: 1-15.
    [119] Monaghan J J. 1992. Smoothed particle hydrodynamics. Annual Review of Astr. and Astrophysics, 30: 543-574.
    [120] Monaghan J J. 1994. Simulating free surface flows with SPH. J. Comput. Phys., 110: 399-406.
    [121] Monaghan J J. 1996. Gravity currents and solitary waves. Physica D: Nonlinear Phenomena, 98: 523-533.
    [122] Monaghan J J. 2002. SPH compressible turbulence. Monthly Notices of the Royal Astro Society, 335: 843-852.
    [123] Monaghan J J, Gingold R A. 1983. Shock simulation by the particle method SPH. Journal of Computational Physics, 52: 374-389.
    [124] Monaghan J J, Lattanzio J C. 1985a. A refined particle method for astrophysical problems. Astro & Astrophy, 149: 135-143.
    [125] Monaghan J J, Poinracic J. 1985b. Artificial viscosity for particle methods. Applied Numerical Math., 1: 187-194.
    [126] Monaghan J J, Kocharyan A. 1995c. SPH simulation of multi-phase flow. Com Phys Comms, 87: 225-235.
    [127] Monaghan J J, Kos A. 1999. Solitary waves on a cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125: 145-155.
    [128] Morand H J P, Ohayon R. 1995. Fluid Structure Interaction. John Wiley and Sons, Chichester.
    [129] Morris J P, Fox P J, Zhu Y. 1997. Modeling low reynolds number incompressible flows using SPH. Journal of Computational Physics, 136: 214-226.
    [130] Nandakumar K, Wiercigroch M, Chatterjee A. 2012. Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43: 7-14.
    [131] Newman J N. 1977. Marine Hydrodynamics. MIT press.
    [132] Newman J N. 1978. The theory of ship motions. Advances in Applied Mechanics, 18: 221-283.
    [133] Newman J N. 1994. Wave effects on deformable bodies. J. Appl. Ocean Res., 16: 47-59.
    [134] Nitikitpaiboon C, Bathe K J. 1993. An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Computers and Structures, 47: 871-891.
    [135] Noh W F. 1964. A time-dependent, two-space dimensional, coupled Eulerian-Lagrangian code//Alder et al. eds. Methods in Computational Physics, vol. 3, pp. 117, Academic Press.
    [136] Ocean Power Delivery Ltd. 2006. World's First Wave Farm-Shipping of First Machine to Portugal. Press Release.
    [137] Ocean Power Technologies. 2006. Making Waves in Power. http://www.oceanwavetechnologies.com.
    [138] Oger G, Doring M, Alessandrini B, Ferrant P. 2006. Two-dimensional SPH simmulations of wedge water entries. Journal of Computational Physics, 213: 803-822.
    [139] Panahi K K. ed. 1997. Advances in Analytical, Experimental and Computational Technologies in Fluids, Structures, Transients and Natural Hazards. PVP-Vol. 355, ASME, New York.
    [140] Panciroli R. 2003. Hydroelastic impacts of deformable wedges. Solid Mechanics and its Applications, 192: 1-45.
    [141] Panciroli R, Abrate S, Minak G, Zucchelli A. 2012. Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Composite Structures, 94: 532-539.
    [142] Païdoussis M P. 2013. Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press.
    [143] Païdoussis M P, Price S J, Langre E D. 2011. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University, Cambridge.
    [144] Pavlovskaia E, Horton B, Wiercigroch M, Lenci S, Rega G. 2012. Approximate rotational solutions of pendulum under combined vertical and horizontal excitation. International Journal of Bifurcation and Chaos, 22: 1250100.
    [145] Pozorski J, Wawrenczuk A. 2002. SPH computation of incompressible viscous flows. J. T. Appl Mech, 40: 917.
    [146] Pracht W E. 1975. Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh. Journal of Computational Physics, 17: 132-159.
    [147] Quinlan N J, Basa M, Lastiwka M. 2006. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 66: 2064-2085.
    [148] Rabczuk T, Xiao S P, Sauer M. 2006. Coupling of meshfree methods with finite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering, 22: 1031-1065.
    [149] Rafiee A, Thiagarajan K P. 2008. Fluid-structure interaction imulation using an incompressible SPH method//ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, 485-496.
    [150] Rafiee A, Thiagarajan K P. 2009. An SPH projection method for simulating fluid-hypoelastic structure interaction. Computer Methods in Applied Mechanics and Engineering, 198: 2785-2795.
    [151] Ramaswamy B, Kawahara M. 1987. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flows. Int. Journal for Numerical Methods in Fluids, 7: 1053-1075.
    [152] Randles P W, Libersky L D. 1996. Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 139: 375-408.
    [153] Rellich F. 1943. Uber das asymptotische verhalten der losungen von Δu + λu = 0 in unendlichen gebieten.Jahr. D. Math Verein, 53: 57-65.
    [154] Rhinefrank K. 2005. Wave energy research development and demonstration at Oregon State Univer-sity//Energy Ocean 2005, Washington.
    [155] Ritchie B W, Thomas P A. 2001. Multiphase smoothed-particle hydrodynamics. Mon. Not. R. Astron. Soc, 323: 743-756.
    [156] Schussler M, Schmitt D. 1981. Comments on smoothed particle hydrodynamics. Astro. Astrophys., 97: 373-379.
    [157] Shao S. 2009. Incompressible SPH simulation of water entry of a free-falling object. International Journal for Numerical Methods in Fluids, 59: 91-115.
    [158] Shao S, Edmond Y M L. 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26: 787-800.
    [159] Sommerfeld A. 1912. Die greensche funktionen der schwingungsgleichung. Jahr. D. Math Verein, 21: 309-353.
    [160] Somerfield A. 1949. Partial Differential Equations in Physics. Academic Press, New York.
    [161] Souli M, Benson D J. 2010. Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical
    [162] Simulation. Wiley.
    [163] Stellingwerf R F, Wingate C. 1994. Impact modelling with SPH. Memorie della societa astro italiana, 65: 1117.
    [164] Sun F. 2013. Investigations of smoothed particle hydrodynamics method for nonlinear fluid-rigid body interaction dynamics. [PhD Thesis]. FEE, University of Southampton, UK.
    [165] Sun F, Tan M, Xing J T. 2011. Investigations of boundary treatments in incompressible smoothed particle hydrodynamics for fluid-structural interactions. Paper number 303-241//The 2nd International Confer-ence of Fluid Mechanics and Heat & Mass Transfer, Corfu, Greece, 14-17 July 2011, Recent Research in Mechanics, 92-97.
    [166] Sun F, Tan M, Xing J T. 2012. Air-water two phase flow simulation using smoothed particle hydrodynam-ics//David Le Touze D L, Grenier N, Barcarolo D A eds. 2nd International Conference on Violent Flows, pp.58-63, Nantes, France.
    [167] Sun F, Tan M, Xing J T. 2013. Application of incompressible smoothed particle hydrodynamics method for 3D fluid solid interaction problem//Liu G, Zabala D eds. Recent Researches in Mechanical Engineering, pp144-149, Milan: WSEAS Press, ISSN: 2227-4596, ISBN: 978-1-61804-153-1.
    [168] Sun Z, Djidjeli K, Xing J T, Cheng F, Javed A. 2014. Some modifications of MPS method for incompressible free surface flow//O~nate E, Oliver J and Huerta A eds. 11th World Congress On Computational Me-chanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI).
    [169] Sun Z, Djidjeli K, Xing J T, Cheng F. 2015a. Coupling MPS and modal superposition method for flexible wedge dropping simulation. ISOPE 2015, 21-26 June, 2015, Hawaii, USA, Paper ID: TPC-1208.
    [170] Sun Z, Djidjeli K, Xing J T, Cheng F. 2015b. Modified MPS method for the 2D fluid structure interaction problem with free surface. Computer & Fluids, 122: 47-65.
    [171] Swegle J W, Hicks D L, Attaway S W. 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys., 116: 123-134.
    [172] Tan M, Xiong Y P, Xing J T, Toyoda M. 2006. A numerical investigation of natural characteristics of a partially filled tank using a substructure method//Proceedings of Hydroelasticity' 2006: Hydroelasticity in Marine Technology, pp.181-190, National Defence Industry Press, Beijing.
    [173] Thorpe T W. 1999. A brief review of wave energy. ETSU Report R-122, presented for UKDTI.
    [174] Trulio J G. 1966. Theory and structure of the AFTON codes, Report ASWL-TR-66-19, Air Force W. Laboratory.
    [175] Unruh, J.F. 1979. A finite-element sub-volume technique for structure-borne interior noise prediction//5th Aero. Acous. Conf. Seattle, WA, AIAA 79-585.
    [176] U.S. Department of the Interior. 2006. Technology White Paper on Wave Energy Potential on the U.S.
    [177] Outer Continental Shelf. Minerals Management Service, Renewable Energy and Alternate Use Program.
    [178] Wang X S. 2008. Fundamentals of Fluid-solid Interactions: Analytical and Computational Approaches. Elsevier.
    [179] Ward P, Desai R, Kebede W, Ecer A. 1988. A variational finite-element formulation for 3-dimensional incompressible flows//Morton K W, Baines M T eds. Num. Meth. Fluid Dyn. III, 46: 403-409, Oxford
    [180] UniversityWave Dragon, Technology. 2005. http: //www/wavedragon.net.
    [181] Wave Plane Production A/S=WPP A/S. 2006. http: //www.waveplane.com.
    [182] Wróblewski P, Marius Z K, Krzysztof B. 2007. SPH-A comparison of neighbor search methods based on constant number of neighbours and constant cut-off radius. Task Quarterly, 11: 273-283.
    [183] Xiao Q, Zhu Q. 2014. A review on flow energy harvesters based on flapping foils. Journal of Fluids & Structures, 46: 174-191.
    [184] Xing J T. 1981. Variational principles for elastodynamics and study upon the theory of mode synthesis methods. [Master Thesis]. Dept. of Engineering Mechanics, Qinghua University, Beijing, China (in Chinese).
    [185] Xing J T. 1984. Some theoretical and computational aspects of finite element method and substructure-subdomain technique for dynamic analysis of the coupled fluid-solid interaction problems-variational prin-ciples elastodynamics and linear theory of micropolar elasticity with their applications to dynamic analysis. [PhD Thesis], Department of Engineering Mechanics, Qinghua University, Beijing, China (in Chinese).
    [186] Xing J T. 1986a. A study on finite element method and substructure-subdomain technique for dynamic analysis of coupled fluid-solid interaction problems. Acta Mechanica Solida Sinica, 4: 329-337.
    [187] Xing J T. 1986b. Mode synthesis method with displacement compatibility for dynamic analysis of fluid-solid interaction problems. Acta Aeronautica et Astronautica Sinica, 7: 148-156.
    [188] Xing J T, 1988. Two variational formulations for dynamics analysis of coupled fluid-solid interaction prob-lems with linearised free surface wave considered. Acta Aero Astro Sin, 9: A568-571.
    [189] Xing J T. 1992a/1995a. Theoretical Manual of Fluid-Structure Interaction Analysis Program-FSIAP. Chi-nese version, BUAA (1992); English version (1995), SES, University of Southampton.
    [190] Xing J T. 1992b/1995b. User Manual Fluid-Structure Interaction Analysis Program-FSIAP. Chinese version, BUAA (1992), English version (1995), SES, University of Southampton.
    [191] Xing J T. 2007. Natural vibration of two-dimensional slender structure-water interaction systems subject to Sommerfeld radiation condition. Journal of Sound and Vibration, 308: 67-79.
    [192] Xing J T. 2008. An investigation into natural vibrations of fluid-structure interaction systems subject to Sommerfeld radiation condition. Acta Mech Sin, 24: 69-82.
    [193] Xing J T. 2015. Energy Flow Theory of Nonlinear Dynamical Systems with Applications. Springer, Berlin.
    [194] Xing J T, Jin J. 2004. A mixed mode function-boundary element method for the transient impact analysis of an aircraft landing on a floating structure//Harald K, Eike L eds. Proc. 9th Int. Symposium on
    [195] Practical Design of Ships and Other Floating Structures, Luebeck-Travemuende, Germany, 819-826.
    [196] Xing J T, Jin, J. 2005a. A dynamic analysis of an integrated aircraft-floating structure-water interaction sys-tem excited by the impact of an aircraft landing. International Journal of Offshore & Polar Engineering, 15: 1-7.
    [197] Xing J T, Jin J. 2005b. A dynamic analysis of an integrated aircraft-floating structure-water interaction system excited by the impact of an aircraft landing//Proc. 15th Int. Offshore Polar Eng. Conf., Seoul, 1: 182-189.
    [198] Xing J T, Price W G. 1991. A mixed finite element method for the dynamic analysis of coupled fluid-solid interaction problems. Proc R Soc Lond A, 433: 235-255.
    [199] Xing J T, PriceWG, Du Q H. 1996 Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems. Phil Trans R Soc Lond A, 354: 259-295.
    [200] Xing J T, Price W G. 1997. Variational principles of nonlinear fluid-solid interaction systems. Phil. Trans. R. Soc. Lond. A, 335: 1063-1095.
    [201] Xing J T, Price W G. 1998. A variational solution method applied to a nonlinear water-structure interaction system//Wen B C ed. Proceedings of the International Conference on Vibration Engineering, vol.1, 219-224, August 6-8, 1998, Dalian, China, Northeastern University Press.
    [202] Xing J T, Price W G. 2000. The theory of non-linear elastic ship-water interaction dynamics. Journal of Sound & Vibration, 230: 877-914.
    [203] Xing J T, Price W G, Chen Y G. 2002. A numerical simulation of nonlinear fluid-rigid structure interaction problems//Proceedings of the ASME International Mechanical Engineering Congress & Exposition, Vol-ume 3 (7.CD-ROM), Session AMD-12A, Paper IMECE2002-32534, November 17-22, 2002, New Orleans,USA.
    [204] Xing J T, Price W G, Chen Y G. 2003. A mixed finite element -finite difference method for nonlinear fluid-structure interaction dynamics, Part I: rigid structure-fluid interaction. Proc. Royal Soc A, 459: 2399-2430.
    [205] Xing J T, Price W G, Chen Y G. 2005. A numerical method for simulating nonlinear fluid-rigid structure interaction problems. Acta Mechanica Solida Sinica, 18: 95-109.
    [206] Xing J T, Zheng Z C. 1983. A study upon mode synthesis methods based on variational principles for elastodynamics. Acta Mechanica Solida Sinica, 2: 250-257.
    [207] Xing J T, Zhou S, Cui E J. 1997a. A general survey of the fluid-solid interaction mechanics. Advances in Mechanics, 27: 19-38 (in Chinese).
    [208] Xing J T, Xiong Y P, Tan M. 2009. Developments of a mixed finite element substructure-subdomain method for fluid-structure interaction dynamics with applications in maritime engineering. Proc IMechE Part M: J Engineering for the Maritime Environment, 223: 399-418.
    [209] Xing J T, Price W G, Wang A. 1997b. Transient analysis of the ship-water interaction system excited by a pressure water wave. Marine Structures, 10: 305-321.
    [210] Xing J T, Xiong Y P, Tan M. 2007a. The natural vibration characteristics of a water-shell tank interaction system//Advancements in Marine Structures. Proceedings of Marstruct 2007, 1st International Confer-ence on Marine Structures, pp.305-312, Glasgow, UK, 12-14 March 2007, Taylor and Francis, London.
    [211] Xing J T, Xiong Y P, Tan M. 2007b.The dynamic analysis of a building structure-acoustic volume interaction system excited by human footfall impacts//Proceedings of Fourteenth International Congress on Sound and Vibration, Cairns, Australia, 9-12 July 2007, Paper number 147, IIAV, Cairns.
    [212] Xing J T, Xiong Y P. 2008a. Numerical simulations of a building-acoustic volume interaction system excited by multiple human footfall impacts//Proceedings of 2008 ASME Pressure Vessels and Piping Division Conference, Chicago, Illinois, July 27-31, 2008, PVP2008-61813, pp.1-10, ASME, New York.
    [213] Xing J T, Xiong Y P. 2008b. Mixed finite element method and applications to dynamic analysis of fluid-structure interaction systems subject to earthquake, explosion and impact loads//Proceedings of ISMA 2008 International Conference on Noise and Vibration Engineering, Leuven, Belgium, September 15-17, 2008, Paper ID-562, pp.1-15, Katholieke Universiteit, Leuven.
    [214] Xing J T, Xiong Y P, Tan M, An H. 2009a. A numerical investigation of a wave energy harness device-water interaction system subject to the wave maker excitation in a towing tank//Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, (OMAE2009), New York, USA, ASME, 1-10.
    [215] Xing J T, Xiong Y P, Wiercigroch M, Cao Q. 2011. Mathematical modelling of an integrated converter for wave energy harvesting//ENOC 2011, 24-29 July 2011, Rome, Italy.
    [216] Xiong Y P, Xing J T, Tan, M. 2006a. Transient dynamic responses of an internal liquid-LNG tank-sea water interaction system excited by waves and earthquake loads//Proceedings of the 14th International Congress on Sound and Vibration, Cairns, Australia, 9-12, July 2006, Paper number 566, pp.1-8 (IIAV, Cairns).
    [217] Xiong Y P, Xing J T, Price W G. 2006b. The interactive dynamic behaviour of an air-liquid-elastic spherical tank system//Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference, Vancouver, BC, Canada, July 23-27, 2006, PVP2006-ICPVT11-93922, pp.1-8, ASME, New York.
    [218] Xiong Y P, Xing J T. 2007. Natural dynamic characteristics of an integrated liquid-LNG tank-water inter-action system//Advancements in Marine Structures//Proceedings of Marstruct 2007, 1st International Conference on Marine Structures, Glasgow, UK, 12-14 March 2007, pp.313-321, Taylor and Francis, Lon-don.
    [219] Xiong Y P, Xing J T. 2008a. Dynamic analysis and design of LNG tanks considering fluid structure in-teractions//Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, June 15-20, 2008, OMAE2008-57937, pp. 1-8 ASME, New York.
    [220] Xiong Y P, Xing J T. 2008b. Transient dynamic responses of an integrated air-liquid-elastic tank interaction system subject to earthquake excitations//2008 ASME Pressure Vessels and Piping Division Conference- PVP2008, Chicago, Illinois, July 27-31, 2008, PVP2008-61815, pp.1-10, ASME, New York.
    [221] Xu X, Pavlovskaia1 E, Wiercigroch M, Romeo F, Lenci S. 2007. Dynamic Interactions between Parametric Pendulum and Electro-Dynamical Shaker. ZAMM Z. Angew Math Mech, 87: 172-186.
    [222] Xu X, Wiercigroch M, Cartel M P. 2005. Rotating orbits of a parametrically-excited pendulum. Chaos, S. and Fractals, 23: 1537-1548.
    [223] Yang J, Xiong Y P, Xing J T. 2011. Investigations on a nonlinear energy harvesting system consisting of a flapping foil and an electro-magnetic generator using power flow analysis. Paper number DETC2011-48445//Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Com-puters and Information in Engineering Conference IDETC/CIE 2011, August 29-31, 2011, Washington, DC, USA.
    [224] Young J, Lai J, Platzer M F. 2014a. A review of progress and challenges in flapping foil power generation. Progress in Aerospace Sciences, 67: 2-28.
    [225] Young J, Lai J, Platzer M F. 2014b. Addendum to a review of progress and challenges in flapping foil power generation. Progress in Aerospace Sciences, 67: 1.
    [226] Zhang G M, Batra R C. 2004. Modified smoothed particle hydrodynamics method and its application to transient problems. Computational Mechanics, 34: 137-146.
    [227] Zhang X, Lu M, Wang J. 1997. Research progress in arbitrary Lagrangian-Eulerian method (In Chinese). Chinese Journal of Computational Mechanics, 17: 91-102.
    [228] Zhao R, Faltinsen O, Aarsnes J. 1997. Water entry of arbitrary two-dimensional sections with and without flow separation.//21st Symposium on Naval Hydrodynamics. Trondheim, Norway, National Academy Press, Washington, DC, USA, 408-423.
    [229] Zhuo C, Wang D, Shen S, Xing J T. 2013. Nonlinear low-frequency gravity waves in a water-filled cylindrical vessel subjected to high-frequency excitations. Proc. R. Soc. Lond. A, 469: 20120536.
    [230] Zhou D, Tu J. 2012. Two degrees of freedom flow-induced vibrations on a cylinder//7th Int. Colloq. Bluff Body Aerodyn. Appl. BBAA7, International Association for Wind Engineering, AIAA.
    [231] Zienkiewicz O C, Bettess P. 1978. Fluid-structure dynamic interaction and wave forces, an introduction to numerical treatment. International Journal for Numerical Methods in Engineering, 13: 1-16.
    [232] Zienkiewicz O C, Taylor R L. 1989. The Finite Element Method. 4th ed., Vol.1. McGraw-Hill.
    [233] Zienkiewicz O C, Taylor R L. 1991. The Finite Element Method. 4th ed., Vol.2. McGraw-Hill.
  • 加载中
计量
  • 文章访问数:  1657
  • HTML全文浏览量:  59
  • PDF下载量:  2918
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2015-11-17
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回