留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚碳酸酯类非晶聚合物力学性能及其本构关系

于鹏 姚小虎 张晓晴 韩强

于鹏, 姚小虎, 张晓晴, 韩强. 聚碳酸酯类非晶聚合物力学性能及其本构关系[J]. 力学进展, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016
引用本文: 于鹏, 姚小虎, 张晓晴, 韩强. 聚碳酸酯类非晶聚合物力学性能及其本构关系[J]. 力学进展, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016
YU Peng, YAO Xiaohu, ZHANG Xiaoqing, HAN Qiang. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers[J]. Advances in Mechanics, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016
Citation: YU Peng, YAO Xiaohu, ZHANG Xiaoqing, HAN Qiang. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers[J]. Advances in Mechanics, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016

聚碳酸酯类非晶聚合物力学性能及其本构关系

doi: 10.6052/1000-0992-15-016
基金项目: 国家自然科学基金项目(11372113,11472110),爆炸科学与技术国家重点实验室基金项目(KFJJ14-2M),亚热带建筑科学国家重点实验室自主研究课题(2014ZC18)资助.
详细信息
    作者简介:

    姚小虎,工学博士,教授,博士生导师.获"全国百篇优秀博士论文"提名奖,入选"教育部新世纪优秀人才"支持计划.现任华南理工大学土木与交通学院工程力学系系主任,广东省航空航天先进材料与结构工程技术中心副主任.在Carbon,JAP,EPL,Material and Design,Polymer,Composites Science and Technology,Poly-mer Engineering and Science,Euro.J.Mech.,Computational Materials Science,Journal of Engineering Materials and Technology,《航空学报》、《爆炸与冲击》、《物理学报》、《汽车工程》等国内外著名学术刊物发表学术论文80篇,其中被SCI、EI收录70篇,SCI他引400次,单篇SCI他引最高62次.

    通讯作者:

    姚小虎

  • 中图分类号: O34

Mechanical behaviors and constitutive models of polycarbonate amorphous polymers

More Information
    Corresponding author: YAO Xiaohu
  • 摘要: 聚碳酸酯是一类玻璃态非晶聚合物材料,由于其出色的耐热和抗冲击能力,被广泛地应用于国防军事和工业领域.针对主要应用于聚碳酸酯材料类非晶聚合物,首先回顾了其力学性能实验研究现状,从唯象的角度分析实验结果,揭示这类材料力学性能.其次介绍了这类材料的各种本构模型的发展历程、物理机制、力学特性、适用范围等.最后,概述了各类本构模型在聚碳酸酯类聚合物材料中的应用,从工程应用的角度进一步讨论了本构模型对材料力学行为的表征,同时给出了聚碳酸酯类材料在实验和理论研究中仍然存在的关键科学问题及进一步的研究展望.

     

  • [1] 曹侃, 汪洋, 王宇. 2010. 低温下聚碳酸酯冲击拉伸性能的实验研究. 兵工学报, S1:195-198(Cao K, Wang Y, Wang Y. 2010. Experimental study on impact tensile properties of polycarbonate at low temperature. Binggong Xuebao/Acta Armamentarii, S1:195-198).
    [2] 冯震宙, 王新军, 王富生, 高行山, 岳珠峰. 2007. 朱-王-唐非线性黏弹性本构模型在有限元分析中的实现及其应用. 材料科学与工程学报, 25:269-272(Feng Z Z, Wang X J, Wang F S, Gao H S, Yue Z F. 2007. Implementation and its application in finite element analysis of constitutive model for zwt nonlinear viscoelastic material. Materials Science and Engineering Hangzhou, 25:269-272).
    [3] 付顺强, 汪洋, 王宇. 2009. 聚碳酸酯的高应变率拉伸实验. 实验力学, 24:202-206(Fu S Q, Wang Y, Wang Y. High strain-rate tensile experiment on polycarbonate bar. Journal of Experimental Mechanics, 24:202-206).
    [4] 韩强, 于鹏, 姚小虎, 臧曙光, 李志强. 2013. 聚碳酸脂本构方程及其在鸟撞风挡仿真中的应用. 华南理工大学学报(自然科学版), 41:99-102(Han Q, Yu, P, Yao, X H, Zang, S G, Li, Z Q. 2013. Constitutive equation of polycarbonate and its application to simulation of windshield under bird impact. Journal of South China University of Technology(Natural Science), 41:99-102).
    [5] 胡文军, 符春渝, 王彤伟, 敬华. 2011. 聚碳酸酯拉伸应变局部化实验. 高分子材料科学与工程, 27:112-115(Hu W J, Fu, C Y, Wang, T W, Jing, H. 2011. Experiment of strain localization of polycarbonate.Polymeric Materials Science and Engineering, 27:112-115).
    [6] 胡文军, 唐录成, 张方举, 田常津, 陈裕泽, 刘占方, 陈勇梅. 2006. 聚碳酸酯冲击压缩的实验研究.
    [7] 高分子材料科学与工程, 22:165-168(Hu W J, Tang, L C, Zhang, F J, Tian, C J, Chen, Y Z, et al. 2006. Experimental study of polycarbonate's impact compression. Polymeric Materials Science and Engineering, 22:165-168).
    [8] 胡文军, 张方举, 田常津, 刘占方, 陈勇梅, 孙敏. 2007a. 载荷作用下聚碳酸酯试件温升的实验研究. 高分子材料科学与工程, 23:199-202(Hu W J, Zhang, F J, Tian, C J, Liu, Z F, Chen, Y M, et al. 2007a.Experimental study of the temperature-rise of polycarbonate with loading. Polymeric Materials Science and Engineering, 23:199-202).
    [9] 胡文军, 张方举, 田常津, 刘占芳. 2007b. 聚碳酸酯的动态应力应变响应和屈服行为. 材料研究学报, 21:439-443(Hu W, Zhang, F, Tian, C, Liu, Z. 2007b. Dynamic stress-strain response and yield behavior of polycarbonate. Journal of Materials Research, 21:439-443).
    [10] 唐志平. 1984. 高应变率下环暇树脂的力学性能研究.[硕士论文]. 合肥:中国科技大学.
    [11] 王礼立, 董新龙, 孙紫建. 2006. 高应变率下计及损伤演化的材料动态本构行为. 爆炸与冲击, 26:193-198(Wang L L, Dong, X L, Sun, Z J. 2006. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution. Explosion and Shock Waves, 26:193-198).
    [12] 杨黎明, 朱兆祥, 王礼立. 1986. 短纤维增强对聚碳酸酯非线性黏弹性性能的影响. 爆炸与冲击, 6:1-9(Yang L M, Chu Z X, Wang L L. 1986. Effects of short-glass-fiber reinforcement on nonlinear viscoelastic behavior of polycarbonate. Explosion and Shock Waves, 6:1-9).
    [13] 于鹏. 2014. 航空聚碳酸酯动态力学性能及本构关系研究.[硕士论文]. 广州:华南理工大学(Yu P. 2014. Investigation on the dynamic characteristics and constitutive model of Polycarbonate of aircraft.[Master Thesis]. Guangzhou:South China University of Technology).
    [14] 于鹏, 姚小虎, 韩强, 臧曙光, 李志强. 2013. 有机玻璃PMMA 常温下的动态本构关系. 爆炸与冲击, S1:88-91(Yu P, Yao, X H, Han, Q, Zang, S G, Li, Z Q. 2013. Dynamic constitutive model of PMMA at room temperature. Explosion and Shock Waves, S1:88-91).
    [15] 周风华, 王礼立, 胡时胜. 1992. 有机玻璃在高应变率下的损伤型非线性黏弹性本构关系及破坏准则.
    [16] 爆炸与冲击, 12:333-342(Zhou F H, Wang, L L, Hu, S S. 1992. A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of PMMA at high strain-rates. Explosion and Shock Waves, 12:333-342).
    [17] Al-Rub R K A, Tehrani A H, Darabi M K. 2014. Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. International Journal of Damage Mechanics, 24:198-244.
    [18] Antoine G O, Batra R C. 2014. Low speed impact of laminated polymethylmethacrylate/adhesive/polycarbonate plates. Composite Structures, 116:193-210.
    [19] Antoine G O, Batra R C. 2015a. Optimization of transparent laminates for specific energy dissipation under low velocity impact using genetic algorithm. Composite Structures, 124:29-34.
    [20] Antoine G O, Batra R C. 2015b. Sensitivity analysis of low-velocity impact response of laminated plates.International Journal of Impact Engineering, 78:64-80.
    [21] Arruda E M, Boyce M C. 1993. Evolution of plastic anisotropy in amorphous polymers during finite straining.International Journal of Plasticity, 9:697-720.
    [22] Arruda E M, Boyce M C, Jayachandran R. 1995. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mechanics of Materials, 19:193-212.
    [23] Balieu R, Lauro F, Bennani B, Delille R, Matsumoto T, Mottola E. 2013. A fully coupled elastoviscoplas-tic damage model at finite strains for mineral filled semi-crystalline polymer. International Journal of Plasticity, 51:241-270.
    [24] Bauwens-Crowet C, Bauwens J C, Homès G. 1972. The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. Journal of Materials Science, 7:176-183.
    [25] Belayachi N, Benseddiq N, Nait-Abdelaziz M. 2008. Behaviour of the heterogeneous glassy polymers:Com-putational modelling and experimental approach. Composite Science and Technology, 68:367-375.
    [26] Bilyk S R. 2014. Dynamic Experiments and Constitutive Model Performance for Polycarbonate. DTIC Document.
    [27] Bouaksa F, Ovalle Rodas C, Zaïri F, Stoclet G, Naït-Abdelaziz M, Gloaguen J M, Tamine T, Lefebvre J M. 2014. Molecular chain orientation in polycarbonate during equal channel angular extrusion:Experiments and simulations. Computational Materials Science, 85:244-252.
    [28] Boyce M C, Arruda E M. 1990. An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polymer Engineering & Science, 30:1288-1298.
    [29] Boyce M C, Arruda E M, Jayachandran R. 1994. The large strain compression, tension, and simple shear of polycarbonate. Polymer Engineering & Science, 34:716-725.
    [30] Boyce M C, Parks D M, Argon A S. 1988. Large inelastic deformation of glassy polymers. part I:Rate dependent constitutive model.Mechanics of Materials, 7:15-33.
    [31] Cady C M, Blumenthal W R, Gray G T, Idar D J. 2003. Determining the constitutive response of polymeric materials as a function of temperature and strain rate. Journal de Physique IV, 110:27-32.
    [32] Cao K, Ma X, Zhang B, Wang Y, Wang Y. 2010. Tensile behavior of polycarbonate over a wide range of strain rates. Materials Science and Engineering:A, 527:4056-4061.
    [33] Cao K, Wang Y, Wang Y. 2014. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates. International Journal of Solids and Structures, 51:2539-2548.
    [34] Chen W, Lu F, Zhou B. 2000. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials.Experimental Mechanics, 40:1-6.
    [35] Chen W, Zhang B, Forrestal M J. 1999. A split Hopkinson bar technique for low-impedance materials.Experimental Mechanics, 39:81-85.
    [36] Dar U, Zhang W, Xu Y, Wang J. 2014. Thermal and strain rate sensitive compressive behavior of polycar-bonate polymer-experimental and constitutive analysis. Journal of Polymer Research, 21:1-10.
    [37] Davies R M. 1948. A critical study of the hopkinson pressure bar. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:375-457.
    [38] De Focatiis D S A, Embery J, Buckley C P. 2010. Large deformations in oriented polymer glasses:Exper-imental study and a new glass-melt constitutive model. Journal of Polymer Science Part B:Polymer Physics, 48:1449-1463.
    [39] Dorogoy A, Rittel D. 2015. Effect of confinement on thick polycarbonate plates impacted by long and AP projectiles. International Journal of Impact Engineering, 76:38-48.
    [40] Dreistadt C, Bonnet A-S, Chevrier P, Lipinski P. 2009. Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Materials & Design, 30:3126-3140.
    [41] Duan Y, Saigal A, Greif R. 2001. A uniform phenomenological constitutive model. Polymer Engineering And Science, 41:1322-1328.
    [42] Engels T A P, Govaert L E, Meijer H E H. 2009. The influence of molecular orientation on the yield and post-yield response of injection-molded polycarbonate. Macromolecular Materials and Engineering, 294:821-828.
    [43] Fu S, Wang Y, Wang Y. 2009. Tension testing of polycarbonate at high strain rates. Polymer Testing, 28:724-729.
    [44] Ghorbel E. 2008. A viscoplastic constitutive model for polymeric materials.International Journal of Plas-ticity, 24:2032-2058.
    [45] Ghorbel E, Hadriche I, Casalino G, Masmoudi N. 2014. Characterization of thermo-mechanical and fracture behaviors of thermoplastic polymers. Materials, 7:375-398.
    [46] Govaert L E, Tervoort T A. 2004. Strain hardening of polycarbonate in the glassy stateinfluence of temper-ature and molecular weight. Journal of Polymer Science:Part B:Polymer Physics, 42:2041-2049.
    [47] Govaert L E, Timmermans P H M, Brekelmans W A M. 2000. The influence of intrinsic strain softening on strain localization in polycarbonate modeling and experimental validation. Journal of Engineering Materials and Technology, 122:177-185.
    [48] Haward R N, Thackray G. 1968. The use of a mathematical model to describe isothemal stress-strain curves in glassy thermoplastics. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 302:453-472.
    [49] Hazell P J, Roberson C J, Moutinho M. 2008. The design of mosaic armour:The influence of tile size on ballistic performance. Materials & Design, 29:1497-1503.
    [50] Hossain M M, Minkwitz R, Charoensirisomboon P, Sue H-J. 2014. Quantitative modeling of scratch-induced deformation in amorphous polymers. Polymer, 55:6152-6166.
    [51] Jeridi M, Chouchene H, Keryvin V, Saï K. 2014. Multi-mechanism modeling of amorphous polymers.Mechanics Research Communications, 56:136-142.
    [52] Kattekola B, Desai C K, Parameswaran V, Basu S. 2014. Critical evaluation of a constitutive model for glassy polycarbonate. Experimental Mechanics, 54:357-368.
    [53] Kendall M J, Siviour C R, 2014. Experimentally simulating high-rate behaviour:Rate and temperature effects in polycarbonate and PMMA. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 372:2013-2020.
    [54] Klompen E T J, Engels T A P, Govaert L E, Meijer H E H. 2005. Modeling of the postyield response of glassy polymers influence of thermomechanical history. Macromolecules, 38:6997-7008.
    [55] Kolsky H. 1949. An investigation of the mechanical properties of materials at very high rates of loading.Proceedings of the Physical Society. Section B, 62:676.
    [56] Krempl E, Khan F. 2003. Rate(time)-dependent deformation behavior:An overview of some properties of metals and solid polymers. International Journal of Plasticity, 19:1069-1095.
    [57] Kumar V, VanderWel M, Weller J, Seeler K A. 1994. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, 116:439-445.
    [58] Leonov A I. 1976. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheologica Acta, 15:86-98.
    [59] Lu F C, Kang G Z, Jiang H, Zhang J W, Liu Y J. 2014. Experimental studies on the uniaxial ratchetting of polycarbonate polymer at different temperatures. Polymer Testing, 39:92-100.
    [60] Lu J, Ravi-Chandar K. 1999. Inelastic deformation and localization in polycarbonate under tension. Inter-national Journal of Solids and Structures, 36:391-425.
    [61] Mahieux C A, Reifsnider K L. 2001. Property modeling across transition temperatures in polymers:a robust stiffness{temperature model. Polymer, 42:3281-3291.
    [62] Moy P, Weerasooriya T, Hsieh A. 2003. Strain rate response polycarbonate under uniaxial compression. In:Proceedings of the SEM Conference on Experimental Mechanics.
    [63] Mulliken A D, Boyce M C. 2004. Low to high strain rate deformation of amorphous polymers. In:Proceed-ings of the 2004 SEM X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, 197.
    [64] Mulliken A D, Boyce M C. 2006. Mechanics of the rate-dependent elastic{plastic deformation of glassy polymers from low to high strain rates. International Journal of Solids and Structures, 43:1331-1356.
    [65] Parsons E, Boyce M C, Parks D M. 2004. An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate. Polymer, 45:2665-2684.
    [66] Ree T, Eyring H. 1955. Theory for non-Newtonian flow I. Solid plastic system. Journal of Applied Physics, 26:793-800.
    [67] Richeton J, Ahzi S, Daridon L. 2007a. Thermodynamic investigation of yield-stress models for amorphous polymers. Philosophical Magazine, 87:3629-3643.
    [68] Richeton J, Ahzi S, Daridon L, Rémond Y. 2003. Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers. Journal de Physique Archives, 110:39-44.
    [69] Richeton J, Ahzi S, Daridon L, Rémond Y. 2005a. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer, 46:6035-6043.
    [70] Richeton J, Ahzi S, Vecchio K S, Jiang F C, Adharapurapu R R. 2006. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:Characterization and modeling of the compressive yield stress. International Journal of Solids and Structures, 43:2318-2335.
    [71] Richeton J, Ahzi S, Vecchio K S, Jiang F C, Makradi A. 2007b. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates.International Journal of Solids and Structures, 44:7938-7954.
    [72] Richeton J, Schlatter G, Vecchio K S, Rémond Y, Ahzi S. 2005b. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer, 46:8194-8201.
    [73] Rietsch F, Bouette B. 1990. The compression yield behaviour of polycarbonate over a wide range of strain rates and temperatures. European Polymer Journal, 26:1071-1075.
    [74] Safari K H, Zamani J, Ferreira F J, Guedes R M. 2012. Constitutive modeling of polycarbonate during high strain rate deformation. Polymer Engineering & Science, 53:752-761.
    [75] Sai K, Aubourg V, Cailletaud G, Strudel J-L. 2004. Physical basis for model with various inelastic mecha-nisms for nickel base superalloy. Materials Science and Technology, 20:747-755.
    [76] Sarva S, Boyce M. 2007. Mechanics of polycarbonate during high-rate tension. Journal of Mechanics of Materials and Structures, 2:1853-1880.
    [77] Schapery R. 1975. A theory of crack initiation and growth in viscoelastic media. International Journal of Fracture, 11:141-159.
    [78] Seidel G D, Allen D H, Helms K L E, Groves S E. 2005. A model for predicting the evolution of damage in viscoelastic particle-reinforced composites. Mechanics of Materials, 37:163-178.
    [79] Song B, Chen W. 2004. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials.Experimental Mechanics, 44:300-312.
    [80] Srivastava V, Chester S A, Ames N M, Anand L. 2010. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. International Journal of Plasticity, 26:1138-1182.
    [81] Swallowe G M, Lee S F. 2003. A study of the mechanical properties of PMMA and PS at strain rates of 10-4 to 103 over the temperature range 293-363 K. Journal de Physique IV, 110:33-38.
    [82] Tehrani A H, Al-Rub R K A. 2011. Mesomechanical modeling of polymer/clay nanocomposites using a viscoelastic-viscoplastic-viscodamage constitutive model. Journal of Engineering Materials and Technol-ogy, 133:1-8.
    [83] Van Breemen L C A, Klompen E T J, Govaert L E, Meijer H E H. 2011. Extending the EGP constitutive model for polymer glasses to multiple relaxation times. Journal of the Mechanics and Physics of Solids, 59:2191-2207.
    [84] Varghese A G, Batra R C. 2009. Constitutive equations for thermomechanical deformations of glassy poly-mers. International Journal of Solids and Structures, 46:4079-4094.
    [85] Voyiadjis G Z, Shojaei A, Li G. 2012. A generalized coupled viscoplastic-viscodamage-viscohealing theory for glassy polymers. International Journal of Plasticity, 28:21-45.
    [86] Walley S, Field J. 1994. Strain rate sensitivity of polymers in compression from low to high rates. DYMAT Journal, 1:211{227.
    [87] Wang F S, Yue Z F. 2010. Numerical simulation of damage and failure in aircraft windshield structure against bird strike. Materials & Design, 31:687-695.
    [88] Wang J, Xu Y, Zhang W. 2014. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model. Composite Structures, 108:21-30.
    [89] Wang X, Feng Z, Wang F, Yue Z. 2007. Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation. Chinese Journal of Aeronautics, 20:511-517.
    [90] Wu J J, Buckley C P. 2004. A unified model of yield and the role of chain length. Journal of Polymer Science Part B:Polymer Physics, 42:2027-2040.
    [91] Wu P D, Van Der Giessen E. 1993. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 41:427-456.
    [92] Xu Y J, Zhang Q W, Zhang W H, Zhang P. 2015. Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. The International Journal of Advanced Manufacturing Technology, 76:2199-2208.
    [93] Yu P, Yao X, Han Q, Zang S, Gu Y. 2014. A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures. Polymer, 55:6577-6593.
    [94] Zaïri F, Naït-Abdelaziz M, Gloaguen J M, Lefebvre J M. 2008. Modelling of the elasto-viscoplastic damage behaviour of glassy polymers. International Journal of Plasticity, 24:945-965.
    [95] Zaïri F, Naït-Abdelaziz M, Gloaguen J M, Lefebvre J M. 2011. A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. International Journal of Plasticity, 27:25-51.
    [96] Zhang Y, Xia Z, Ellyin F. 2004. Evolution and influence of residual stresses/strains of fiber reinforced laminates. Composites Science and Technology, 64:1613-1621.
    [97] Zhu S, Tong M, Wang Y, 2009. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. In:Proc. of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics.
  • 加载中
计量
  • 文章访问数:  2585
  • HTML全文浏览量:  234
  • PDF下载量:  1821
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-08-21
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回