留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁敏智能软材料及磁流变机理

许阳光 龚兴龙 万强 刘太祥 宣守虎

许阳光, 龚兴龙, 万强, 刘太祥, 宣守虎. 磁敏智能软材料及磁流变机理[J]. 力学进展, 2015, 45(1): 201508. doi: 10.6052/1000-0992-15-010
引用本文: 许阳光, 龚兴龙, 万强, 刘太祥, 宣守虎. 磁敏智能软材料及磁流变机理[J]. 力学进展, 2015, 45(1): 201508. doi: 10.6052/1000-0992-15-010
Yangguang XU, Xinglong GONG, Qiang WAN, Taixiang LIU, Shouhu XUAN. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics, 2015, 45(1): 201508. doi: 10.6052/1000-0992-15-010
Citation: Yangguang XU, Xinglong GONG, Qiang WAN, Taixiang LIU, Shouhu XUAN. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics, 2015, 45(1): 201508. doi: 10.6052/1000-0992-15-010

磁敏智能软材料及磁流变机理

doi: 10.6052/1000-0992-15-010
基金项目: 国家自然科学基金项目(11502255, 11502256, 11372295) 和中国工程物理研究院重点学科项目“计算固体力学”资助.
详细信息
    通讯作者:

    龚兴龙, 博士, 中国科学技术大学近代力学系教授、博士生导师, 中国科学院"引进海外杰出人才"(百人计划) 入选者, 国家杰出青年科学基金获得者, 国务院政府特殊津贴获得者. 现任中国科学技术大学"智能材料和振动控制实验室" 负责人、中国力学学会理事、中国力学学会实验力学专业委员会主任、流变学专业委员会委员、安徽省振动工程学会副理事长、先进功能复合材料技术国防科技重点实验室客座教授、火灾科学国家重点实验室兼职教授、《固体力学学报》编委会委员、《振动与冲击》编委会委员.1993 年获日本文部省奖学金赴日本埼玉大学联合培养, 1996 年博士毕业后就职于日本电波工业股份公司, 长期从事实验力学和人工材料及其精密器件的研发. 2003 年2 月回国后, 立足于基础研究, 发展高科技, 服务于国防安全和国家重大需求, 在磁流变材料的研究应用等方面取得了一系列成果, "高稳定高耗散减振材料制备关键技术与装置开发及工程应用" 于2014 年度获得国家技术发明奖二等奖(2/6). 目前主要研究方向为新型智能材料的研制、机理、力学行为的研究. 回国以来, 已发表SCI 收录论文一百五十多篇, 被SCI 引用二千多次. 已在国内被受理了27 项发明专利, 其中20 项已获授权.

  • 中图分类号: O37

Magneto-sensitive smart soft material and magnetorheological mechanism

More Information
    Corresponding author: Xinglong GONG
  • 摘要: 磁敏智能软材料是一类将微米或纳米尺度的磁性颗粒分散在不同基体中制备而成的多功能复合材料.由于其流变性能在外磁场的调控下可以实现连续、快速、可逆的改变,因此在建筑、振动控制和汽车工业等领域得到了广泛地应用.本文首先介绍了磁敏智能软材料发展历史及分类,分析了不同种类的磁敏智能软材料的特点和存在的科学问题;然后从实验和理论两个方面讨论了磁流变机理的研究现状;最后从实际应用的角度对这类材料未来的发展方向进行了展望.

     

  • [1] 陈琳. 2009. 磁流变弹性体的研制及其力学性能的表征. [博士论文]. 合肥: 中国科学技术大学(Chen L. 2009. The development and mechanical characterization of magnetorheological elastomers. [PhD Thesis]. Hefei: University of Science and Technology of China).
    [2] 杜善义, 冷劲松, 王殿富. 2001. 智能材料系统和结构. 北京: 科学出版社(Du S Y, Leng J S, Wang D F. 2001. The systems and structures of smart materials. Beijing: Science Press).
    [3] 郭朝阳. 2013. 磁流变液法向力及减震器研究. [博士论文]. 合肥: 中国科学技术大学(Guo C Y. 2013.Study on normal force of magnetorheological fluid and magnetorheological damper. [PhD Thesis]. Hefei:University of Science and Technology of China).
    [4] 姜德生, Richard O C. 2000. 智能材料器件结构与应用. 武汉: 武汉工业大学出版社(Jiang D S, Richard O C. 2000. Structures and applications of intelligent material. Wuhan: Wuhan University of Technology Press).
    [5] 姚康德, 成国祥. 2002. 智能材料. 北京: 化学工业出版社(Yao K D, Cheng G X. 2002. Smart Materials. Beijing: Chemical Industrial Press).
    [6] 赵晓鹏, 尹剑波. 2011. 电场调控的智能软材料. 北京: 科学出版社(Zhao X P, Yin J B. 2010. Smart soft materials tuned by electric fields. Beijing: Science Press).
    [7] An H N, Picken S J, Mendes E. 2010. Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields. Soft Matter, 6: 4497-4503.
    [8] An H N, Picken S J, Mendes E. 2012a. Nonlinear rheological study of magneto responsive soft gels. Polymer, 53: 4164-4170.
    [9] An H N, Picken S J, Mendes E. 2012b. Direct observation of particle rearrangement during cyclic stress hardening of magnetorheological gels. Soft Matter, 8: 11995-12001.
    [10] An H N, Sun B, Picken S J, Mendes E. 2012c. Long time response of soft magnetorheological gels. Journal of Physical Chemistry B, 116: 4702-4711.
    [11] Andre S, Matthias M, Gareth J M, Mikhail S. 2013. Evaluation of highly compliant magneto-active elas-tomers with colossal magnetorheological response. Journal of Applied Polymer Science, 131: 39793 (1-7).
    [12] Bednarek S. 1999. The giant magnetostriction in ferromagnetic composites within an elastomer matrix.Applied Physics A-Materials Science & Processing, 68: 63-67.
    [13] Bell R C, Karli J O, Vavreck A N, Zimmerman D T, Ngatu G T, Wereley N M. 2008. Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Materials and Structures, 17: 015028.
    [14] Bellan C, Bossis G. 2002. Field dependence of viscoelastic properties of MR elastomers. International
    [15] Journal of Modern Physics B, 16: 2447-2453.
    [16] Bica I. 2009. Electroconductive magnetorheological suspensions: production and physical processes. Journal of Industrial and Engineering Chemistry, 15: 233-237.
    [17] Bica I. 2011. Magnetoresistor sensor with magnetorheological elastomers. Journal of Industrial and Engi-neering Chemistry, 17: 83-89.
    [18] Blom P, Kari L. 2008. Smart audio frequency energy flow control by magneto-sensitive rubber isolators.Smart Materials and Structures, 17: 015043.
    [19] Boczkowska A, Awietjan S F. 2009. Smart composites of urethane elastomers with carbonyl iron. Journal of Materials Science, 44: 4104-4111.
    [20] Boczkowska A, Awietjan S F, Wroblewski R. 2007. Microstructure-property relationships of urethane mag-netorheological elastomers. Smart Materials and Structures, 16: 1924-1930.
    [21] Bossis G, Abbo C, Cutillas S, Lacis S, Metayer C. 2001. Electroactive and electrostructured elastomers.International Journal of Modern Physics B, 15: 564-573.
    [22] Bossis G, Lemaire E, Volkova O, Clercx H. 1997. Yield stress in magnetorheological and electrorheological fluids: a comparison between microscopic and macroscopic structural models. Journal of Rheology, 41: 687-704.
    [23] Bossis G, Volkova O, Lacis S, Meunier A. 2002. Magnetorheology: fluids, structures and rheology. Lecture Notes in Physics, 594: 202-230.
    [24] Bustamante R, Dorfmann A, Ogden R W. 2008. On variational formulations in nonlinear magnetoelasto-statics. Mathematics and Mechanics of Solids, 13: 725-745.
    [25] Byrom J, Biswal S L. 2013. Magnetic field directed assembly of two-dimensional fractal colloidal aggregates.Soft Matter, 9: 9167-9173.
    [26] Carlson J D, Catanzarite D M, Stclair K A. 1995. Commercial magnetorheological fluid devices. Proceeding of the 5th International Conference on ER Fluid, MR fluid and Associate Technology, 20-28.
    [27] Carlson J D, Jolly M R. 2000. MR fluid, foam and elastomer devices. Mechatronics, 10: 555-569.
    [28] Castaneda P P, Galipeau E. 2011. Homogenization-based constitutive models for magnetorheological elas-tomers at finite strain. Journal of the Mechanics and Physics of Solids, 59: 194-215.
    [29] Claracq J, Sarrazin J, Montfort J P. 2004. Viscoelastic properties of magnetorheological fluids. Rheologica Acta, 43: 38-49.
    [30] Chen L, Gong X L, Li W H. 2007. Microstructures and viscoelastic properties of anisotropic magnetorheo-logical elastomers. Smart Materials and Structures, 16: 2645-2650.
    [31] Chen L, Gong X L, Li W H. 2008. E®ect of carbon black on the mechanical performances of magnetorheo-logical elastomers. Polymer Testing, 27: 340-345.
    [32] Chen L, Gong X L, Jiang W Q, Yao J J, Deng H X, Li W H. 2007. Investigation on magnetorheological elastomers based on natural rubber. Journal of Materials Science, 42: 5483-5489.
    [33] Chen L, Jerrams S. 2011. A rheological model of the dynamic behavior of magnetorheological elastomers.Journal of Applied Physics, 110: 013513.
    [34] Chertovich A V, Stepanov G V, Kramarenko E Y, Khokhlov A R. 2010. New composite elastomers with giant magnetic response. Macromolecular Materials and Engineering, 295: 336-341.
    [35] Chin B D, Park J H, Kwon M H, Park O O. 2001. Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheologica Acta, 40: 211-219.
    [36] Cho M S, Lim S T, Jang I B, Choi H J, Jhon M S. 2004. Encapsulation of spherical iron-particle withPMMA and its magnetorheological particles. IEEE Transactions on Magnetics, 40: 3036-3038.
    [37] Choi H J, Park B J, Cho M S, You J L. 2007. Core-shell structured poly (methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics. Journal of Magnetism and Magnetic Materials, 310: 2835-2837.
    [38] Choi H J, Park B O, Park B J, Hato M J. 2011. Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field. Colloid and Polymer Science, 289: 381-386.
    [39] Choi J S, Park B J, Cho M S, Choi H J. 2006. Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions. Journal of Magnetism and Magnetic Materials, 304: E374-E376.
    [40] Coquelle E, Bossis G. 2006. Mullins e®ect in elastomers filled with particles aligned by a magnetic field.International Journal of Solids and Structures, 43: 7659-7672.
    [41] Danas K, Kankanala S V, Triantafykkidis N. 2012. Experiments and modeling of iron-particle-filled magne-torheological elastomers. Journal of the Mechanics and Physics of Solids, 60: 120-138.
    [42] Davis L C. 1999. Model of magnetorheological elastomers. Journal of Applied Physics, 85: 3348-3351.
    [43] De Vicente J, Ruiz-Lopez J A, Andablo-Reyes E, Segovia-Gutierrez J P, Hidalgo-Alvarez R. 2011a. Squeeze flow magnetorheology. Journal of Rheology, 55: 753-779.
    [44] De Vicente J, Klingenberg D J, Hidalgo-Alvarez R. 2011b. Magnetorheological fluids: a review. Soft Matter,7: 3701-3710.
    [45] De Vicente J, Lopez-Lopez M T, Gonzalez-Caballero F, Duran J D G. 2003. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. Journal of Rheology, 47: 1093-1109.
    [46] Deng H X, Gong X L, Wang L H. 2006. Development of an adaptive tuned vibration absorber with magne-torheological elastomer. Smart Materials and Structures, 15: N111-N116.
    [47] Donado F, Carrillo J L, MendozaME. 2002. Sound propagation in magneto-rheological suspensions. Journal of Physics-Condensed Matter, 14: 2153-2157.
    [48] Fang F F, Choi H J. 2007. Polymeric nanobead coated carbonyl iron particles and their magnetic property.Physica Status Solidi A-Applications and Materials Science, 204: 4190-4193.
    [49] Fang F F, Choi H J, Seo Y. 2010. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its e®ect on their magnetorheology. ACS-Applied Materials &Interfaces, 2: 54-60.
    [50] Fang F F, Kim J H, Choi H J. 2009. Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer, 50: 2290-2293.
    [51] Fang F F, Liu Y D, Choi H J, Seo Y. 2011. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS-Applied Materials &Interfaces, 3: 3487-3495.
    [52] Farjoud A, Caver R, Ahmadian M, Craft M. 2009. Magnetorheological fluid behavior in squeeze mode.Smart Materials and Structures, 18: 095001.
    [53] Farjoud A, Craft M, Burke W, Ahmadian M. 2011. Experimental investigation of MR squeeze mounts.Journal of Intelligent Material Systems and Structures, 22: 1645-1652.
    [54] Farjoud A, Mahmoodi N, Ahmadian M. 2012. Nonlinear model of squeeze flow of fluids with yield stress using perturbation techniques. Modern Physics Letters B, 26: 1150040.
    [55] Farshad M, Le Roux M. 2004. A new active noise abatement barrier system. Polymer Testing, 23: 855-860.
    [56] Fuchs A, Hu B, Gordaninejad F, Evrensel C. 2005. Synthesis and characterization of magnetorheological polyimide gels. Journal of Applied Polymer Science, 98: 2402-2413.
    [57] Fuchs A, Xin M, Gordaninejad F, Wang X J, Hitchcock G H, Gecol H, Evrensel C, Korol G. 2004. Develop-ment and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels. Journal of Applied Polymer Science, 92: 1176-1182.
    [58] Fuchs A, Zhang Q, Elkins J, Gordaninejad F, Evrensel C. 2007. Development and characterization of magnetorheological elastomers. Journal of Applied Polymer Science, 105: 2497-2508.
    [59] Fuhrer R, Athanassiou E K, Luechinger N A, Stark W J. 2009. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small, 5: 383-388.
    [60] Furukawa M, Mitsui Y, Fukumaru T, Kojio K. 2005. Microphase-separated structure and mechanical proper-ties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer, 46: 10817-10822.
    [61] Galipeau E, Castaneda P P. 2013. A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. Journal of the Mechanics and Physics of Solids, 61: 1065-1090.
    [62] Ginder J M, Clark S M, Schlotter W F, Nichols M E. 2002. Magnetostrictive phenomena in magnetorheo-logical elastomers. International Journal of Modern Physics B, 16: 2412-2418.
    [63] Ginder J M, Davis L C, Elie L D. 1996. Rheology of magnetorheological fluids: models and measurements.International Journal of Modern Physics B, 10: 3293-3303.
    [64] Ginder J M, Nichols M E, Elie L D, Clark S M. 2000. Controllable-sti®ness components based on magne-torheological elastomers. Proceedings of SPIE, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Newport Beach, CA, March 06, 2000. Bellingham WA: SPIE.
    [65] Ginder J M, Schlotter W F, Nichols M E. 2001. Magnetorheological elastomers in tunable vibration ab-sorbers. Smart Structures and Materials 2001: Damping and Isolation, 4331: 103-110.
    [66] Gollwitzer C, Krekhova M, Lattermann G, Rehberg I, Richter R. 2009. Surface instabilities and magnetic soft matter. Soft Matter, 5: 2093-2100.
    [67] Gong Q C, Wu J K, Gong X L, Fan Y C, Xia H S. 2013. Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property. RSC Advances, 3: 3241-3248.
    [68] Gong X L, Chen L, Li J F. 2007. Study of utilizable magnetorheological elastomers. International Journal of Modern Physics B, 21: 4875-4882.
    [69] Gong X L, Liao G J, Xuan S H. 2012a. Full-field deformation of magnetorheological elastomer under uniform magnetic field. Applied Physics Letters, 100: 211909.
    [70] Gong X L, Xu Y G, Xuan S H, Guo C Y, Zong, L H, JiangWQ. 2012b. The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. Journal of Rheology, 56: 1375-1391.
    [71] Gong X L, Zhang X Z, Zhang P Q. 2005. Fabrication and characterization of isotropic magnetorheological elastomers. Polymer Testing, 24: 669-676.
    [72] Guan X C, Dong X F, Ou J P. 2008. Magnetostrictive e®ect of magnetorheological elastomer. Journal of Magnetism and Magnetic Materials, 320: 158-163.
    [73] Guerrero-Sanchez C, Lara-Ceniceros T, Jimenez-Regalado E, Rasa M, Schubert U S. 2007. Magnetorheo-logical fluids based on ionic liquids. Advanced Materials, 19: 1740-1747.
    [74] Guo C Y, Gong X L, Xuan S H, Qin L J, Fan Y C. 2013. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field. Smart Materials and Structures, 22: 045020.
    [75] Heine M C, De Vicente J, Klingenberg D J. 2006. Thermal transport in sheared electro-and magnetorheo-logical fluids. Physics of Fluids, 18: 023301.
    [76] Holm C, Weis J J. 2005. The structure of ferrofluids: a status report. Current Opinion in Colloid and Interface Science, 10: 133-140.
    [77] Hong W, Han Y, Faidley L. 2011. Coupled magnetic field and viscoelasticity of ferrogel. International Journal of Applied Mechanics, 3: 259-278.
    [78] Hu B, Fuchs A, Huseyin S, Gordaninejad F, Evrensel C. 2006. Supramolecular magnetorheological polymer gels. Journal of Applied Polymer Science, 100: 2464-2479.
    [79] Iglesias G R, Lopez-Lopez M T, Duran J D G, González-Caballero F, Delgado A V. 2012. Dynamic char-acterization of extremely bidisperse magnetorheological fluids. Journal of Colloid & Interface Science, 377: 153-159.
    [80] Jang I B, Kim H B, Lee J Y, You J L, Choi H J, Jhon M S. 2005. Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. Journal of Applied Physics, 97: 10Q912.
    [81] Jolly M R, Bender J W, Carlson J D. 1999. Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures, 10: 5-13.
    [82] Jolly M R, Carlson J D, Munoz B C. 1996. A model of the behaviour of magnetorheological materials.Smart Materials and Structures, 5: 607-614.
    [83] Jolly M R, Carlson J D, Munoz B C, Bullions, T A. 1996. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. Journal of Intelligent Material Systems and Structures, 7: 613-622.
    [84] Kaleta J, Lewandowski D. 2007. Inelastic properties of magnetorheological composites: I. fabrication, ex-perimental tests, cyclic shear properties. Smart Materials and Structures, 16: 1948-1953.
    [85] Kallio M, Lindroos T, Aalto S, Jarvinen E, Karna T, Meinander T. 2007. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Materials and Structures, 16: 506-514.
    [86] Kchit N, Lancon P, Bossis G. 2009. Thermoresistance and giant magnetoresistance of magnetorheological elastomers. Journal of Physics D-Applied Physics, 42: 105506.
    [87] Klingenberg D J. 2001. Magnetorheology: applications and challenges. Aiche Journal, 47: 246-249.
    [88] Klingenberg D J, Ulicny J C, Golden M A. 2007. Mason numbers for magnetorheology. Journal of Rheology, 51: 883-893.
    [89] Kuzhir P, Magnet C, Bossis G, Meunier A, Bashtovoi V. 2011. Rotational di®usion may govern the rheology of magnetic suspensions. Journal of Rheology, 55: 1297-1318.
    [90] Kono A, Shimizu K, Nakano H, Goto Y, Kobayashi Y, Ougizawa T, Horibe H. 2012. Positive-temperature-coefficient e®ect of electrical resistivity below melting point of poly (vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer, 53: 1760-1764.
    [91] Koo J H, Khan F, Jang D D, Jung H J. 2010. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings. Smart Materials and Structures, 19: 117002.
    [92] Kordonski W, Golini D. 2002. Multiple application of magnetorheological e®ect in high precision finishing.Journal of Intelligent Material Systems and Structures, 13: 401-404.
    [93] Lee C H, Jang M G. 2011. Virtual surface characteristics of a tactile display using magneto-rheological fluids. Sensors, 11: 2845-2856.
    [94] Leng J S, Lan X, Liu Y J, Du S Y, Huang W M, Liu N, Phee S J, Yuan Q. 2008. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Applied Physics Letters, 92: 014104.
    [95] Li J F, Gong X L, Zhu H, Jiang W Q. 2009. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers. Polymer Testing, 28: 331-337.
    [96] Li W H, Du H, Chen G, Yeo S H, Guo N Q. 2001. Viscoelastic properties of MR fluids under oscillatory shear. Smart Structures and Materials 2001: Damping and Isolation, 4331: 333-342.
    [97] LiWH, Du H, Chen G, Yeo S H. 2002. Experimental investigation of creep and recovery behaviors of magne-torheological fluids. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 333: 368-376.
    [98] Li W H, Zhou Y, Tian T F, Alici G. 2010. Creep and recovery behaviors of magnetorheological elastomers.Frontiers of Mechanical Engineering in China, 5: 341-346.
    [99] Li Y H, Huang G Y, Zhang X H, Li B Q, Chen Y M, Lu T L, Lu T J, Xu F. 2013. Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials, 23: 660-672.
    [100] Liao G J, Gong X L, Kang C J, Xuan S H. 2011. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Materials and Structures, 20: 075015.
    [101] Lim S T, Cho M S, Jang I B, Choi H J, Jhon M S. 2004. Magnetorheology of carbonyl-iron suspensions with submicron-sized filler. IEEE Transactions on Magnetics, 40: 3033-3035.
    [102] Lim S T, Cho M S, Jang I B, Choi H J. 2004. Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. Journal of Magnetism and Magnetic Materials, 282: 170-173.
    [103] Lim S T, Choi H J, Jhon M S. 2005. Magnetorheological characterization of carbonyl iron-organoclay suspensions. IEEE Transactions on Magnetics, 41: 3745-3747.
    [104] Liu J, Flores G A, Sheng R S. 2001. In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 225: 209-217.
    [105] Liu T X, Xu Y G, Gong X L, Pang H M, Xuan S H. 2013a. Magneto-induced normal stress of magnetorhe-ological plastomer. AIP Advances, 3: 082122.
    [106] Liu T X, Gong X L, Xu Y G, Xuan S H. 2013b. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers. Soft Matter, 9: 10069-10080.
    [107] Liu T X, Gong X L, Xu Y G, Xuan S H. 2014. Magneto-induced stress enhancing e®ect in colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium. Soft Matter, 10: 813 -818.
    [108] Liu T Y, Hu S H, Liu T Y, Liu D M, Chen S Y. 2006. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22: 5974-5978.
    [109] Lloyd J R, Hayesmichel M O, Radcli®e C J. 2007. Internal organizational measurement for control of magnetorheological fluid properties. Journal of Fluids Engineering-Transactions of the ASME, 129: 423-428.
    [110] Lokander M, Stenberg B. 2003a. Performance of isotropic magnetorheological rubber materials. PolymerTesting, 22: 245-251.
    [111] Lokander M, Stenberg B. 2003b. Improving the magnetorheological e®ect in isotropic magnetorheological rubber materials. Polymer Testing, 22: 677-680.
    [112] Lopez-Lopez M T, Gomez-Ramirez A, Rodriguez-Arco L, Durán J D G, Iskakova L, Zubarev A. 2012.Colloids on the frontier of ferrofluids. rheological properties. Langmuir, 28: 6232-6245.
    [113] Lopez-Lopez M T, Vertelov G, Bossis G, Kuzhir P, Duran J D G. 2007. New magnetorheological fluids based on magnetic fibers. Journal of Materials Chemistry, 17: 3839-3844.
    [114] Maranville C W, Ginder J M. 2005. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams. International Journal of Applied Electromagnetics and Mechanics, 22: 25-38.
    [115] Mazlan S A, Ekreem N B, Olabi A G. 2008a. An investigation of the behaviour of magnetorheological fluids in compression mode. Journal of Materials Processing Technology, 201: 780-785.
    [116] Mazlan S A, Issal A, Olabi A G. 2008b. Magnetorheological fluids behaviour in tension loading mode.Advanced Materials Research, 47-50: 242-245.
    [117] Mietta J L, Ruiz M M, Antonel P S, PerezO E, Butera A, Jorge G, Negri R M. 2012. Anisotropic magnetore-sistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature.Langmuir, 28: 6985-6996.
    [118] Mitsumata T, Abe N. 2009a. Magnetic-field sensitive gels with wide modulation of dynamic modulus.Chemistry Letters, 38: 922-923.
    [119] Mitsumata T, Abe N. 2011. Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels.Smart Materials and Structures, 20: 124003.
    [120] Mitsumata T, Honda A, Kanazawa H, Kawai, M. 2012. Magnetically tunable elasticity for magnetic hy-drogels consisting of carrageenan and carbonyl iron particles. Journal of Physical Chemistry B, 116: 12341-12348.
    [121] Mitsumata T, Kosugi Y, Ouchi S. 2009b. E®ect of particles alignment on giant reduction in dynamic modulus of hydrogels containing needle-shaped magnetic particles. Progress on Colloid and Polymer Science, 136: 163-170.
    [122] Mitsumata T, Ohori S. 2011. Magnetic polyurethane elastomers with wide range modulation of elasticity.Polymer Chemistry, 2: 1063-1067.
    [123] Mitsumata T, Wakabayashi T, Okazaki T. 2008. Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles. Journal of Physical ChemistryB, 112: 14132-14139.
    [124] Nguyen V Q, Ahmed A S, Ramanujan R V. 2012. Morphing soft magnetic composites. Advanced Materials, 24: 4041-4054.
    [125] Olabi A G, Grunwald A. 2007. Design and application of magneto-rheological fluid. Materials & Design, 28: 2658-2664.
    [126] Park B J, Fang F F, Choi H J. 2010. Magnetorheology: materials and application. Soft Matter, 6: 5246-5253.
    [127] Phule P P. 1998. Synthesis of level magnetorheological fluids. MRS Bull, 23: 23-25.
    [128] Phule P P, Mihalcin M P, Genc S. 1999. The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids. Journal of Materials Research, 14: 3037-3041.
    [129] Rao P V, Maniprakash S, Srinivasan S M, Srinivasa A R. 2010. Functional behavior of isotropic magne-torheological gels. Smart Materials and Structures, 19: 085019.
    [130] Rinaldi C, Chaves A, Elborai S, He X W, Zahn M. 2005. Magnetic fluid rheology and flows. Current Opinion in Colloid & Interface Science, 10: 141-157.
    [131] Rosensweig R E. 1997. Ferrohydrodynamics. New York: Dover publications.
    [132] Rudykh S, Bertoldi K. 2013. Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach. Journal of the Mechanics and Physics of Solids, 61: 949-967.
    [133] Ruiz-Lopez J A, Hidalgo-Alvarez R, De Vicente J. 2012. On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression. Rheologica Acta, 51: 595-602.
    [134] Sahin H, Wang X J, Gordaninejad F. 2009. Temperature dependence of magneto-rheological materials.Journal of Intelligent Material Systems and Structures, 20: 2215-2222.
    [135] Sedlacik M, Pavlinek V, Saha P, ·Svrinová P, Filip P, Stejskal J. 2010. Rheological properties of magne-torheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles. SmartMaterials and Structures, 19: 115008.
    [136] See H, Chen R, Keentok M. 2004. The creep behaviour of a field-responsive fluid. Colloid and PolymerScience, 282: 423-428.
    [137] Shahrivar K, De Vicente J. 2013. Thermoresponsive polymer-based magneto-rheological (MR) composites as a bridge between MR fluids and MR elastomers. Soft Matter, 9: 11451-11456.
    [138] Shahrivar K, De Vicente J. 2014. Thermogelling magnetorheological fluids. Smart Materials and Structures, 23: 025012.
    [139] Shen Y, Golnaraghi M F, Heppler G R. 2004. Experimental research and modeling of magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 15: 27-35.
    [140] Shiga T, Okada A, Kurauchi T. 1995. Magnetroviscoelastic behavior of composite gels. Journal of AppliedPolymer Science, 58: 787-792.
    [141] Stepanov G V, Abramchuk S S, Grishin D A, Nikitin L V, Kramarenko E Y, Khokhlov A R. 2007. E®ect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 48: 488-495.
    [142] Stepanov G V, Semerenko D A, Bakhtiiarov A V, Storozhenko P A. 2013. Magnetoresistive e®ect in magnetoactive elastomers. Journal of Superconductivity and Novel Magnetism, 26: 1055-1059.
    [143] Sun T L, Gong X L, Jiang W Q, Li J F, Xu Z B, Li W H. 2008. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polymer Testing, 27: 520-526.
    [144] Tian T F, Li W H, Deng Y M. 2011. Sensing capabilities of graphite based MR elastomers. Smart Materials and Structures, 20: 025022.
    [145] Tiraferri A, Chen K L, Sethi R, Elimelech M. 2008. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324: 71-79.
    [146] Trendler A M, Bose H. 2005. Influence of particle size on the rheological properties of magnetorheological suspensions. Proceedings, Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004), 433-439.
    [147] Ulicny J C, Balogh M P, Potter N M,Waldo R A. 2007. Magnetorheological fluid durability test-iron analysis.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 443: 16-24.
    [148] Varga Z, Filipcsei G, Zrinyi M. 2006. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer, 47: 227-233.
    [149] Wang H Y, Bi C, Zhang Z H, Kan J W, Gao C F. 2013. An investigation of tensile behavior of magnetorhe-ological fluids under di®erent magnetic fields. Journal of Intelligent Material Systems and Structures, 24: 541-547.
    [150] Wang X J, Gordaninejad F, Calgar M, Liu Y M, Sutrisno J, Fuchs A. 2009. Sensing behavior of magne-torheological elastomers. Journal of Mechanical Design, 131: 091004 (1-6).
    [151] Wei B, Gong X L, Jiang W Q. 2010a. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers. Journal of Applied Polymer Science, 116: 771-778.
    [152] Wei B, Gong X L, Jiang W Q, Qin L J, Fan Y C. 2010b. Study on the properties of magnetorheological gel based on polyurethane. Journal of Applied Polymer Science, 118: 2765-2771.
    [153] Wereley N M, Chaudhuri A, Yoo J H, John S, Kotha S, Suggs A, Radhakrishnan R, Love B J, Sudarshan TS. 2006. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. Journal of Intelligent Material Systems and Structures, 17: 393-401.
    [154] Wilson M J, Fuchs A, Gordaninejad F. 2002. Development and characterization of magnetorheological polymer gels. Journal of Applied Polymer Science, 84: 2733-2742.
    [155] Wu J K, Gong X G, Chen L, Xia H S, Hu Z G. 2009. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization. Journal of Applied PolymerScience, 114: 901-910.
    [156] Wu J K, Gong X L, Fan Y C, Xia H S. 2010. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field. Smart Materials and Structures, 19: 105007.
    [157] Wu J K, Gong X L, Fan Y C, Xia H S. 2011. Physically crosslinked poly (vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter, 7: 6205-6212.
    [158] Wu J K, Gong X L, Fan Y C, Xia H S. 2012. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization. Journal of Applied Polymer Science, 123: 2476-2484.
    [159] Xu Y G, Gong X L, Liu T X, Xuan S H. 2013. Magneto-induced microstructure characterization of magne-torheological plastomers using impedance spectroscopy. Soft Matter, 9: 7701-7709.
    [160] Xu Y G, Gong X L, Xuan S H, Li X F, Qin L J, Jiang W Q. 2012. Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties. Soft Matter, 8: 8483-8492.
    [161] Xu Y G, Gong X L, Xuan S H, Zhang W, Fan Y C. 2011. A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties. Soft Matter, 7: 5246-5254.
    [162] Xu Y G, Liu T X, Gong X L, Xuan S H. 2014. Squeeze flow behaviors of magnetorheological plastomers under constant volume. Journal of Rheology, 58: 659-679.
    [163] Xu Z B, Gong X L, Liao G J, Chen X M. 2010. An Active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. Journal of Intelligent Material Systems and Structures, 21: 1039-1047.
    [164] Xuan S H, Zhang Y L, Zhou Y F, Jiang W Q Gong X L. 2012. Magnetic Plasticine (TM): a versatile magnetorheological material. Journal of Materials Chemistry, 22: 13395-13400.
    [165] Yin H M, Sun L Z, Chen J S. 2006. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles. Journal of the Mechanics and Physics of Solids, 54: 975-1003.
    [166] York D, Wang X, Gordaninejad F. 2007. A new MR fluid-elastomer vibration isolator. Journal of IntelligentMaterial Systems and Structures, 18: 1221-1225.
    [167] Zajac P, Kaleta J, Lewandowski D, Gasperowicz, A. 2010. Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing. Smart Materials and Structures, 19: 045014.
    [168] Zhang W, Gong X L, Jiang W Q, Fan Y C. 2010. Investigation of the durability of anisotropic magnetorhe-ological elastomers based on mixed rubber. Smart Materials and Structures, 19: 085008.
    [169] Zhang W, Gong X L, Xuan S H, Xu Y G. 2010. High-performance hybrid magnetorheological materials: preparation and mechanical properties. Industrial & Engineering Chemistry Research, 49: 12471-12476.
    [170] Zhou G Y. 2003. Shear properties of a magnetorheological elastomer. Smart Materials and Structures, 12: 139-146.
    [171] Zielinski T G, Rak M. 2010. Acoustic absorption of foams coated with MR fluid under the influence of magnetic field. Journal of Intelligent Material Systems and Structures, 21: 125-131.
    [172] Zrinyi M. 2000. Intelligent polymer gels controlled by magnetic fields. Colloid and Polymer Science, 278: 98-103.
    [173] Zubarev A Y. 2012. On the theory of the magnetic deformation of ferrogel. Soft Matter, 8: 3174-3179.
  • 加载中
计量
  • 文章访问数:  2328
  • HTML全文浏览量:  207
  • PDF下载量:  1279
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02
  • 修回日期:  2015-06-10
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回