留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆虫飞行的空气动力学

孙茂

孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 201501. doi: 10.6052/1000-0992-14-065
引用本文: 孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 201501. doi: 10.6052/1000-0992-14-065
Mao SUN. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 201501. doi: 10.6052/1000-0992-14-065
Citation: Mao SUN. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 201501. doi: 10.6052/1000-0992-14-065

昆虫飞行的空气动力学

doi: 10.6052/1000-0992-14-065
详细信息
    通讯作者:

    孙茂,1955 年8 月出生

  • 中图分类号: V211

Aerodynamics of insect flight

More Information
    Corresponding author: Mao SUN
  • 摘要: 昆虫是最早出现、数量最多和体积最小的飞行者. 它们能悬停、跃升、急停、快速加速和转弯, 飞行技巧十分高超. 由于尺寸小, 因而翅膀的相对速度很小, 从而进行上述飞行所需的升力系数很大. 但昆虫翅膀的雷诺数又很低. 它们是如何在低雷诺数下产生高升力的, 是流体力学和生物学工作者都十分关心的问题. 近年来这一领域有了许多研究进展. 该文对这些进展进行综述, 并对今后工作提一些建议. 因2005 年前的工作已在几篇综述文章有了详细介绍, 该文主要介绍2005 年以来的工作. 首先简述昆虫翅的拍动运动及昆虫绕流的基本方程和相似参数; 然后对2005 年之前的工作做一简要回顾. 之后介绍2005 年后的进展, 依次为: 运动学观测; 前缘涡; 翅膀柔性变形及皱褶的影响; 拍动翅的尾涡结构; 翼/身、左右翅气动干扰及地面效应; 微小昆虫; 蝴蝶与蜻蜓; 机动飞行. 最后为对今后工作的建议.

     

  • [1] Altshuler D L, Dickson W B, Vance J T, Roberts S P, Dickinson M H. 2005. Short-amplitude high frequencywing strokes determine the aerodynamics of honeybee flight. PNAS., 102: 18213-18218.
    [2] Ansari S A, Phillips N, Stabler G, Zbikowski R, Knowles K. 2009. Spanwise flow on an impulsively-startedrotating wing at low Reynolds numbers. In: Proceedings of 39th AIAA Fluid Dynamics Conference, SanAntonio, Texas, AIAA-2009-4032: 1–9.
    [3] Ansari S A, Zbikowski R, Knowles K. 2006. Aerodynamic modeling of insect-like flapping flight for microair vehicles. Prog. Aerosp. Sci., 42: 129-172.
    [4] Aono H, Liang F, Liu H. 2008. Near-and far-field aerodynamics in insect hovering flight: An integratedcomputational study. J. Exp. Biol., 211: 239-257.
    [5] Ansari S A. 2004. A nonlinear, unsteady, aerodynamic model for insect-like flapping wings in the hover withmicro air vehicle applications. [PhD Thesis]. Shrivenham: Cranfield University.
    [6] Berman G J, Wang Z J. 2007. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech., 582:153-168.
    [7] Bergou A J, Ristroph L, Guckenheimer J, Cohen I, Wang Z J. 2010. Fruit flies modulate passive wingpitching to generate in-flight turns. Phys. Rev. Lett., 104: 148101.
    [8] Betts C R, Wootton R J. 1988. Wing shape and flight behaviour in butterflies (Lepidoptera: papilionoideaand hesperioidea): A preliminary analysis. J. Exp. Biol., 138: 271-288.
    [9] Birch J M, Dickinson M H. 2001. Spanwise flow and the attachment of the leading-edge vortex on insectwings. Nature, 412: 729-733.
    [10] Birch J M, Dickinson M H. 2003. The influence of wing-wake interactions on the production of aerodynamicforces in flapping flight. J. Exp. Biol., 206: 2257-2272.
    [11] Birch J M, Dickson W B, Dickinson M H. 2004. Force production and flow structure of the leading edgevortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol., 207: 1063–1072.
    [12] Bomphrey R J, Taylor G K, Thomas A L R. 2009. Smoke visualization of free-flying bumblebees indicatesindependent leading-edge vortices on each wing pair. Exp Fluids, 46: 811–821.
    [13] Brodsky A K. 1991. Vortex formation in the tethered flight of the peacock butterfly Inachis Io L. (Lepidoptera,Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol., 161: 77-95.
    [14] Card G, Dickinson M H. 2008. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol.211: 341-353.
    [15] Carr Z R, Chen C, Ringuette M J. 2013. Finite-span rotating wings: three-dimensional vortex formationand variations with aspect ratio. Exp. Fluids, 54: 1–26.
    [16] Chen M W, Zhang Y L, Sun M. 2013. Wing and body motion and aerodynamic and leg forces duringtake-off in droneflies: J. R. Soc. Interface, 10: 20130808.
    [17] Chen M W, Sun M. 2014. Wing/body kinematics measurement and force and moment analyses of the takeoffflight of fruitflies. Acta Mechanica Sinica, 30: 495-506.
    [18] Davis W R, Kosichi B B, Boroson D M, Kostishack D F. 1996. Micro air vehicle for optical surveillance.The Lincoln Laboratory J., 9: 197-217.
    [19] Dickinson M H, G¨otz K G. 1993. Unsteady aerodynamic performance of model wings at low Reynoldsnumbers. J. Exp. Biol., 174: 45-64.
    [20] Dickinson M H, Lehman F O, Sane S P. 1999. Wing rotation and the aerodynamic basis of insect flight.Science, 284: 1954-1960.
    [21] Du G, Sun M. 2008. Effects of unsteady deformation of flapping wings on its aerodynamic forces. Appl.Math. Mech. Engl. Ed., 29: 731-741.
    [22] Du G, Sun M. 2010. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol.,213: 2273-2283.
    [23] Du G, Sun M. 2012. Aerodynamic effects of corrugation and deformation in flapping wings of hoveringhoverflies. J. Theor. Biol., 300: 19-28.
    [24] Dudley R. 1990. Biomechanics of flight in neotropical butterflies: Morphometrics and kinematics. J. Exp.Biol., 150: 37-53.
    [25] Dudley R. 1991. Biomechanics of flight in neotropical butterflies: Aerodynamics and mechanical powerrequirements. J. Exp. Biol. 159: 335-357.
    [26] Dudley R. 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton: PrincetonUniversity Press.
    [27] Dudley R, Ellington C P. 1900a. Mechanics of forward flight in bumblebees: I. Kinematics and morphology.J. Exp. Biol., 148: 19-52.
    [28] Dudley R, Ellington C P. 1990b. Mechanics of forward flight in bumblebees: II. Quasi-steady lift and powerrequirements. J. Exp. Biol., 148: 53-88.
    [29] Eldredge J D, Toomey J, Medina A. 2010. On the roles of chord-wise flexibility in a flapping wing withhovering kinematics. J. Fluid Mech. 659: 94-115
    [30] Ellington C P. 1984a. The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans.R. Soc. Lond. B, 305: 1-15.
    [31] Ellington C P. 1984b. The aerodynamics of hovering insect flight. II. Morphological parameters. Phil.Trans. R. Soc. Lond. B, 305: 17-40.
    [32] Ellington C P. 1984c. Aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond.B, 305: 41-78.
    [33] Ellington C P 1984d The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc.Lond. B, 305: 115–144.
    [34] Ellington C P. 1991. Aerodynamics and the origin of insect flight. Adv. Insect Physiol., 23: 171-210.
    [35] Ellington C P. 1995. Unsteady aerodynamics of insect flight. Symp. Soc. Exp. Biol., 49: 109-129.
    [36] Ellington C P. 1999. The novel aerodynamics of insect flight: Applications to micro-air vehicles. J. Exp.Biol., 202: 3439-3448.
    [37] Ellington C P, Machin K E, Casey T M. 1990. Oxygen consumption of bumblebees in forward flight. Nature,347: 472.
    [38] Ellington C P, Van Den Berg C, Willmott A P, Thomas A L R. 1996. Leading-edge vortices in insect flight.Nature, 384: 626-630.
    [39] Ennos A R. 1988. The importance of torsion in the design of insect wings. J. Exp. Biol., 140: 137-160.Ennos A R. 1989. The kinematics and aerodynamics of the free flight of some Diptera. J. Exp. Biol., 142:49-85.
    [40] Fry S N, Sayaman R, Dickinson M H. 2003. The aerodynamics of free-flight maneuvers in Drosophila.Science, 300: 495-498.
    [41] Fry S N, Sayaman R, Dickinson M H. 2005. The aerodynamics of hovering flight in Drosophila: J. Exp.Biol., 208: 2303-2318.
    [42] Fung Y C. 1969. An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Inc., New York,Chapman & Hall, Ltd., London.
    [43] Garmann D J, Visbal M R. 2014. Dynamics of revolving wings for various aspect ratios. J. Fluid Mech.,748: 932–956.
    [44] Garmann D J, Visbal M R, Orkwis P. 2013. Three-dimensional flow structure and aerodynamic loading ona revolving wing. Phys. Fluids, 25: 034101-034127.
    [45] Harbig R R, Sheridan J, Thompson M C. 2013. Reynolds number and aspect ratio effects on the leading-edgevortex for rotating insect wing planforms. J. Fluid Mech., 717: 166–192.
    [46] Huang H, Sun M. 2012. Forward flight of a model butterfly: Simulation by equations of motion coupledwith the Navier–Stokes equations. Acta Mechanica Sinica, 28: 1–12.
    [47] Ishihara D, Horie T, Denda M. 2009. A two-dimensional computational study on the fluid–structure interactioncause of wing pitch changes in dipteran flapping flight. J. Exp. Biol., 212: 1-10.
    [48] Jardin T, Farcy A, David L. 2012. Three-dimensional effects in hovering fapping flight. J. Fluid Mech.,702: 102–125.
    [49] Kim D, Gharib M. 2010. Experimental study of three-dimensional vortex structures in translating androtating plates. Exp. Fluids, 49: 329–339.
    [50] Lan S L, Sun M. 2001. Aerodynamic properties of a wing performing unsteady motions at low Reynoldsnumber. Acta. Mechanica, 149: 135-147.
    [51] Lentink D, Dickinson M H. 2009. Rotational accelerations stabilize leading edge vortices on revolving flywings. J. Expl Biol., 212: 2705–2719.
    [52] Liang B, Sun M. 2013. Aerodynamic interactions between wing and body of a model insect at forward flightand in maneuvers. J. Bionic Eng., 10: 19-27.
    [53] Lighthill M J. 1973. On the Weis-Fogh mechanism of lift generation. J. Fluid Mech., 60: 1-17.
    [54] Liu H, Ellington C P, Kawachi K, Van Den Berg C, Willmott A P. 1998. A computational fluid dynamicstudy of hawkmoth hovering. J. Exp. Biol., 201: 461-477.
    [55] Liu H, Aono H. 2009. Size effects on insect hovering aerodynamics: An integrated computation study.Bioinsp. Biomm. 4: 015002.
    [56] Liu Y P, Sun M. 2008. Wing kinematics measurement and aerodynamics of hovering drone-flies. J. Exp.Biol., 211: 2014-2025.
    [57] Lu Y, Shen G X. 2008. Three-dimensional flow structures and evolution of the leading-edge vortices on aflapping wing. J. Exp. Biol., 211: 1221–1230.
    [58] Luo G Y, Sun M. 2005. The effects of corrugation and wing planform on the aerodynamic force productionof sweeping model insect wings. Acta Mechanica Sinica, 21: 531-541.
    [59] Ma K Y, Chirarattananon P, Fuller S B, Wood R J. 2013. Controlled flight of a biologically inspired,insect-scale robot. Science, 340: 603-607.
    [60] Maxworthy T. 1979. Experiments on the Weis-Fogh mechanism of lift generation by insects in hoveringflight. Part 1. Dynamics of the “fling”. J. Fluid Mech., 93: 47-63.
    [61] Meng X G, Sun M. 2013. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers.Physics of Fluids, 25 : 071905.
    [62] Miller L A, Peskin C S. 2005. A computational fluid dynamics of “clap and fling” in the smallest flyinginsects. J. Exp. Biol., 208: 195-212.
    [63] Miller L A, Peskin C S. 2009. Flexible clap and fling in tiny insect flight. J. Exp. Biol., 212: 3076-3090.
    [64] Mou X L, Liu Y P, Sun M. 2011. Wing motion measurement and aerodynamics of hovering true hoverflies.J. Exp. Biol., 214: 2832-2844.
    [65] Muijres F T, Elzinga M J, Melis J M, Dickinson M H. 2014. Flies evade looming targets by executing rapidvisually directed banked turns. Science, 344: 172-177.
    [66] Nakata T, Liu H. 2012a. A fluid-structure interaction model of insect flight with flexible wings. J. Comput.Phys., 231: 1822-1847.
    [67] Nakata T, Liu H. 2012b. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computationalapproach. Proc. R. Soc. B., 279: 722-731.
    [68] Newman D J S, Wootton R J. 1986. An approach to the mechanics of pleating in dragonfly wings. J. Exp.Biol., 125: 361-372.
    [69] Ozen C A, Rockwell D. 2012. Three-dimensional flow structure on a rotating wing. J. Fluid Mech., 707:541–550.
    [70] Pesavento U, Wang Z J. 2004. Navier–Stokes solutions, model of fluid forces, and center of mass elevation.Phys. Rev. Lett., 93: 116-164.
    [71] Rees C J C. 1975. Form and function in corrugated insect wings. Nature, 256: 200-203.
    [72] Sane S P. 2003. The aerodynamics of insect flight. J. Exp. Biol., 206: 4191-4208.
    [73] Sane S P, Dickinson M H. 2002. The aerodynamic effects of wing rotation and a revised quasi-steady modelof flapping flight. J. Exp. Biol., 205: 1087-1098.
    [74] Shyy W, Liu H. 2007. Flapping wings and aerodynamic lift: The role of leading-edge vortices. AIAAJournal, 45: 2817–2819
    [75] Shyy W, Trizilla P, Kang C K, Aono H. 2009. Can Tip Vortices enhance lift of a flapping wing? AIAAJournal, 2: 289–293.
    [76] Shyy W, Aono H, Chimakurthi S K, Trizila P, Kang C K, Cesink C E S, Liu H. 2010. Recent progress inflapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci., 46: 284.
    [77] Shyy W, Berg M, Ljungqvist D. 1999. Flapping and flexible wings for biological and micro air vehicles.Prog. Aerosp. Sci., 35: 455.
    [78] Shyy W, Lian Y, Tang J, Viieru D, Liu H. 2008. Aerodynamics of Low Reynolds Number Fliers. New York:Cambridge University Press.
    [79] Srygley R B, Thomas A L R. 2002. Unconventional lift-generating mechanisms in free-flying butterflies.Nature, 420: 660-664.
    [80] Sun M. 2005. High-lift generation and power requirements of insect flight. Fluid Dynamics Research, 37:21-39
    [81] Sun M, Du G. 2003. Lift and power requirements of hovering insect flight. Acta Mechanica Sinica, 19:458-469.
    [82] Sun M, Lan S L. 2004. A computational study of the aerodynamic forces and power requirements of dragonfly(Aeschna juncea) hovering. J. Exp. Biol., 207: 1887-1901.
    [83] Sun M, Tang J. 2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.J. Exp. Biol., 205: 55-70.
    [84] Sun M, Wu J H. 2004. Large aerodynamic forces on a sweeping wing at low Reynolds number. ActaMechanica Sinica, 20: 24–31.
    [85] Sun M, Yu X. 2003. Flow around two airfoils performing fling and subsequent translation and translationand subsequent flap. Acta Mechanica Sinica, 19: 103-117.
    [86] Sun M, Yu X. 2006. Aerodynamic force generation in hovering flight in a tiny insect. AIAA Journal, 44:1532-1540.
    [87] Sunada S, Kawachi K, Watanabe I. 1993. Performance of a butterfly in take-off flight. J. Exp. Biol., 183:249-227.
    [88] Sunada S, Takashima H, Hattori T, Yasuda K, Kawachi K. 2002. Fluid-dynamic characteristics of a bristledwing. J. Exp. Biol., 205: 2737–2744.
    [89] Tanaka S. 1995. Thrips’ flight. Part 1. In: Symposia 95 of Exploratory Research for Advanced Technology,Japan Science and Technology Corporation, Tokyo, 27–34.
    [90] Usherwood J R, Ellington C P. 2002a. The aerodynamics of revolving wings. I. Model hawkmoth wings. J.Exp. Biol., 205: 1547-1564.
    [91] Usherwood J R, Ellington C P. 2002b. The aerodynamics of revolving wings. II. Propeller force coefficientsfrom mayfly to quail. J. Exp. Biol., 205: 1565-1576.
    [92] Usherwood J R, Lehmann F. 2008. Phasing of dragonfly wings can improve aerodynamic efficiency byremoving swirl. J. R. Soc. Interface, 5: 1303–1307.
    [93] Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B. 2009. Influence of flexibility on theaerodynamic performance of a hovering wing. J. Exp. Biol., 212: 95-105.
    [94] Vogel S. 1967a. Flight in Drosophila. II. Variations in stroke parameters and wing contour. J. Exp. Biol.,46: 383-392.
    [95] Vogel S. 1967b. Flight in Drosophila. III. Aerodynamic characteristics of fly wings and wing models. J.Exp. Biol., 46: 431-443.
    [96] Walker S M, Thomas A L R, Taylor G K. 2010. Deformable wing kinematics in free-flying hoverflies. J. R.Soc. Interface, 7: 131-142.
    [97] Wang H, Zeng L J, Liu H, Yin C Y. 2003. Measuring wing kinematics, flight trajectory and body attitudeduring forward flight and turning maneuvers in dragonflies. J. Exp. Biol., 206: 745-757
    [98] Wang H, Zeng L J, Yin C Y. 2002. Measuring the body position, attitude and wing deformation of a freeflightdragonfly by combining a comb fringe pattern with sign points on the wing. Measurement Scienceand Technology, 13: 903-908.
    [99] Wang Z J. 2004. The role of drag in insect hovering. J. Exp. Biol., 207: 4147-4155.
    [100] Wang Z J. 2005. Dissecting insect flight. Annu. Rev. Fluid Mech., 37: 183-210.
    [101] Wang Z J, Russell D. 2007. Effect of forewing and hindwing interactions on aerodynamic forces and powerin hovering dragonfly flight. Phys. Rev. Lett., 99: 148101.
    [102] Wang X X, Wu Z N. 2010. Stroke-averaged lift forces due to vortex rings and their mutual interactions fora flapping flight model. J. Fluid Mech., 654: 453-472.
    [103] Wang X X, Wu Z N. 2012. Lift force reduction due to body image of vortex for a hovering flight model. J.Fluid Mech., 709: 648-658.
    [104] Weis-Fogh T. 1972. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol., 56:79-104.
    [105] Weis-Fogh T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanism for liftproduction. J. Exp. Biol., 59: 169-230.
    [106] Weis-Fogh T, Jensen M. 1956. Biology and physics of locust flight. I. Basic principles of insect flight. Acritical review. Philos. Trans. R. Soc. B: Biol. Sci., 239: 415-458.
    [107] Willmott A P, Ellington C P. 1997a. The mechanics of flight in the hawkmoth Manduca Sexta. I. Kinematicsof hovering and forward flight. J. Exp. Biol., 200: 2705-2722.
    [108] Willmott A P, Ellington C P. 1997b. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamicconsequences of kinematic and morphological variation. J. Exp. Biol., 200: 2723-2745.
    [109] Wilson J. 2001. Micro warfare. Popular Mechanics, 2: 62.Wojcik C J, Buchholz J H J. 2014. Vorticity transport in the leading-edge vortex on a rotating blade. J.Fluid Mech., 743: 249-261.
    [110] Wootton R J. 1981. Palaeozoic insects. Annu. Rev. Ent., 26: 319-344.
    [111] Wu J H, Sun M. 2004. Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol., 207: 1137-1150.Wu J H, Sun M. 2005. The influence of the wake of a flapping wing on the production of aerodynamic forces.Acta Mechanica Sinica, 21: 411-418.
    [112] Wu T Y. 2011. Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech., 43: 25-48.
    [113] Yamamoto M, Isogai K. 2005. Measurement of unsteady aerodynamic forces for a mechanical dragonflymodel. AIAA Journal, 43: 2475-2480.
    [114] Yokoyama N, Senda K, Iima M, Hirai N. 2013. Aerodynamic forces and vortical structures in flappingbutterfly’s forward flight. Physics of Fluids, 25: 021902.
    [115] Young J, Walker S M, Bomphrey R J, Taylor G K, Thomas L R. 2009. Details of insect wing design anddeformation enhance aerodynamic function and flight efficiency. Science, 325: 1549-1552.
    [116] Yu X, Sun M. 2009. A computational study of the wing-wing and wing-body interactions of a model insect.Acta Mechanica Sinica, 25: 421-431.
    [117] Yu Y L, Tong B G. 2005. A flow control mechanism in wing flapping with stroke asymmetry during insectforward flight. Acta Mechanica Sinica, 21: 218-227.
    [118] Yu Y L, Tong B G, Ma H Y. 2003. An analytical approach to theoretical modeling of highly unsteadyviscous flow excited by wing flapping in small insects. Acta Mechanica Sinica, 19: 508-516.
    [119] Yu Y L, Tong B G, Ma H Y. 2005. Unsteady flow mechanics revisited in insect flapping flight. ActaMechanica Sinica, 37: 257-265.
    [120] Zhang J, Lu X Y. 2009. Aerodynamic performance due to forewing and hindwing interaction in glidingdragonfly flight. Physical Review E, 80: 017302-017305.
    [121] Zhang Y L, Sun M. 2010. Wing kinematics measurement and aerodynamics of free-flight maneuvers indrone-flies. Acta Mechanica Sinica, 26: 371-382.
    [122] Zanker J M. 1990. The wing beat of Drosophila melanogaster. I. Kinematics. Phil. Trans. R. Soc. Lond.B, 327: 1-18.
    [123] Zhao L, Huang Q, Deng X Y, Sane S P. 2010. Aerodynamic effects of flexibility in flapping wings. J. R.Soc. Interface, 7: 485-497.
    [124] Zhao L, Deng X Y, Sane S P. 2011. Modulation of leading edge vorticity and aerodynamic forces in flexibleflapping wings. Bioinsp. Biomim., 6: 036007.flapping wings. Bioinsp. Biomim., 6: 036007.
  • 加载中
计量
  • 文章访问数:  4391
  • HTML全文浏览量:  531
  • PDF下载量:  3953
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-05
  • 修回日期:  2014-11-24
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回