留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微流控器件中的多相流动

陈晓东 胡国庆

陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 201503. doi: 10.6052/1000-0992-14-063
引用本文: 陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 201503. doi: 10.6052/1000-0992-14-063
Xiaodong CHEN, Guoqing HU. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45(1): 201503. doi: 10.6052/1000-0992-14-063
Citation: Xiaodong CHEN, Guoqing HU. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45(1): 201503. doi: 10.6052/1000-0992-14-063

微流控器件中的多相流动

doi: 10.6052/1000-0992-14-063
基金项目: 国家自然科学基金(11272321和11402274)和科技部973计划(2011CB707604)项目资助.
详细信息
    通讯作者:

    胡国庆, 中国科学院力学研究所非线性力学国家重点实验室研究员, 博士生导师. 现任中国力学学会副秘书长. 曾在美国、加拿大、英国、以色列等国家长期从事研究工作, 目前开展微纳米流体力学机理和微纳流控芯片设计理论的研究, 侧重于微纳尺度颗粒、细胞、液滴、生物大分子等输运及其在生化领域的应用. 主持国家973 计划、国家自然科学基金、中科院知识创新重要方向项目等多项课题. 在ACS Nano, Lab ona Chip, Biosensors & Bioelectronics, Analytica Chimica Acta, Physicsof Fluids, Biomicrofluidcis, Electrophoresis 等国际重要学术期刊发表SCI论文近40篇.

  • 中图分类号: O359

Multiphase flow in microfluidic devices

More Information
    Corresponding author: Guoqing HU
  • 摘要: 微流控技术及微流控器件是近年来发展迅速的多学科交叉研究领域.相比于传统方法, 微流控技术能够实现对微量多相流体的精准操控, 可应用于化学分析、先进材料合成、蛋白质结晶、单细胞培育及检测、信息处理等领域. 该文回顾微流控器件中的多相流动现象, 概述其所涉及的流体力学机理,阐述实现多相微流控的各种方法, 并分析多相微流控技术的应用现状及面临的挑战, 最后总结针对多相微流动问题的数值模拟方法和实验测量技术, 展望多相微流控器件的研究方向及应用前景.

     

  • [1] 胡国庆. 2008. 第一届Batchelor 奖获得者Howard Stone 教授研究工作简评. 力学进展, 38: 623-624(Hu G Q, 2008. Brief comments on the research of Professor Howard Stone (the first G.K.Batchelor Prizewinner). Advances in Mechanics, 38: 623-624).
    [2] 李战华, 吴健康, 胡国庆, 胡国辉. 2012. 微流控芯片中的流体流动. 北京: 科学出版社.
    [3] 林炳承. 2013. 微纳流控芯片实验室. 北京: 科学出版社.
    [4] 司廷, 尹协振. 2011. 流动聚焦研究进展及其应用. 科学通报, 56: 537-546 (Si T, Yin X Z. 2011. Progress and application of flow focusing. Chinese Science Bulletin, 56: 537-546).
    [5] 王企鲲, 孙仁. 2012. 管流中颗粒\"惯性聚集"现象的研究进展及其在微流动中的应用. 力学进展,42: 692-703 (Wang Q K, Sun R. 2012. Advances in the research on\inertial focus of particles and its application in microfluidics. Advances in Mechanics, 42: 692-703).
    [6] Abate A, Poitzsch A, Hwang Y, Lee J, Czerwinska J, Weitz D. 2009a. Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 80: 026310.
    [7] Abate A, Weitz D. 2009. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics.Small, 5: 2030-2032.
    [8] Abate A, Mary P, Van Steijn V, Weitz D. 2012. Experimental validation of plugging during drop formation in a T-junction. Lab on a Chip, 12: 1516-1521.
    [9] Abate A R, Chen C-H, Agresti J J, Weitz D A. 2009b. Beating Poisson encapsulation statistics using close-packed ordering. Lab on a Chip, 9: 2628-2631.
    [10] Abate A R, Hung T, Mary P, Agresti J J, Weitz D A. 2010a. High-throughput injection with microfluidics using picoinjectors. Proceedings of the National Academy of Sciences, 107: 19163-19166.
    [11] Abate A R, Thiele J, Weinhart M, Weitz D A. 2010b. Patterning microfluidic device wettability using flow confinement. Lab on a Chip, 10: 1774-1776.
    [12] Abate A R, Weitz D A. 2011. Faster multiple emulsification with drop splitting. Lab on a Chip, 11: 1911-1915.
    [13] Adams L, Kodger T E, Kim S-H, Shum H C, Franke T, Weitz D A. 2012. Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 8: 10719-10724.
    [14] Adham A M, Mohd-Ghazali N, Ahmad R. 2013. Thermal and hydrodynamic analysis of microchannel heat sinks: A review. Renewable & Sustainable Energy Reviews, 21: 614-622.
    [15] Adrian R J. 1991. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23: 261-304.
    [16] Afkhami S, Leshansky A, Renardy Y. 2011. Numerical investigation of elongated drops in a microfluidic T-junction. Physics of Fluids, 23: 022002.
    [17] Ahn K, Agresti J, Chong H, Marquez M, Weitz D. 2006a. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Applied Physics Letters, 88: 264105.
    [18] Ahn K, Kerbage C, Hunt T P, Westervelt R, Link D R, Weitz D. 2006b. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters, 88: 024104-024103.
    [19] Aidun C K, Clausen J R. 2010. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42: 439-472.
    [20] Amirouche F, Zhou Y, Johnson T. 2009. Current micropump technologies and their biomedical applications. Microsystem Technologies, 15: 647-666.
    [21] Anna S L, Bontoux N, Stone H A. 2003. Formation of dispersions using\flow focusing in microchannels.Applied Physics Letters, 82: 364-366.
    [22] Aserin A. 2008. Multiple Emulsion: Technology and Applications, New York: John Wiley & Sons.
    [23] Asmolov E S. 1999. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. Journal of Fluid Mechanics, 381: 63-87.
    [24] Aulisa E, Manservisi S, Scardovelli R, Zaleski S. 2007. Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry. Journal of Computational Physics, 225: 2301-2319.
    [25] Ausas R F, Dari E A, Buscaglia G C. 2011. A geometric mass-preserving redistancing scheme for the level set function. International Journal for Numerical Methods in Fluids, 65: 989-1010.
    [26] Baret J C. 2012. Surfactants in droplet-based microfluidics. Lab on a Chip, 12: 422-433.
    [27] Baroud C N, Delville J-P, Gallaire F, Wunenburger R. 2007. Thermocapillary valve for droplet production and sorting. Physical Review E, 75: 046302.
    [28] Baroud C N, Gallaire F, Dangla R. 2010. Dynamics of microfluidic droplets. Lab on a Chip, 10: 2032-2045.
    [29] Bartlett J M, Stirling D. 2003. A short history of the polymerase chain reaction. In: PCR Protocols,Springer: 3-6.
    [30] Berthier J. 2013. Chapter 1 -Introduction: digital microfluidics in today's microfluidics. Micro-Drops and Digital Microfluidics(Second Edition). 1-6. J. Berthier, William Andrew Publishing
    [31] Bibette J, Calderon F L, Poulin P. 1999. Emulsions: basic principles. Reports on Progress in Physics, 62: 969.
    [32] Bremond N, Thiam A R, Bibette J. 2008. Decompressing emulsion droplets favors coalescence. Physical Review Letters, 100: 024501.
    [33] Casavant B P, Berthier E, Theberge A B, Berthier J, Montanez-Sauri S I, Bischel L L, Brakke K, Hedman C J, Bushman W, Keller N P. 2013. Suspended microfluidics. Proceedings of the National Academy of Sciences, 110: 10111-10116.
    [34] Ceniceros H D, Roma A M, Silveira-Neto A, Villar MM. 2010. A robust, fully adaptive hybrid level-set/front-tracking method for two-phase flows with an accurate surface tension computation. Communications in Computational Physics, 8: 51-94.
    [35] Chabert M, Dorfman K D, Viovy J L. 2005. Droplet fusion by alternating current (AC) field electrocoales-cence in microchannels. Electrophoresis, 26: 3706-3715.
    [36] Chabert M, Viovy J-L. 2008. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proceedings of the National Academy of Sciences, 105: 3191-3196.
    [37] Chen J, Li J, Sun Y. 2012. Microfluidic approaches for cancer cell detection, characterization, and separation.Lab on a Chip, 12: 1753-1767.
    [38] Chen X, Ma D, Yang V, Popinet S. 2013. High-fidelity simulations of impinging jet atomization. Atomization and Sprays, 23: 1079-1101.
    [39] Chen X, Yang V. 2014. Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions. Journal of Computational Physics, 269: 22-39.
    [40] Choi C H, Jung J H, Hwang T S, Lee C S. 2009. In situ microfluidic synthesis of monodisperse PEG microspheres. Macromolecular Research, 17: 163-167.
    [41] Choi C H, Yi H, Hwang S, Weitz D A, Lee C S. 2011. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab on a Chip, 11: 1477-1483.
    [42] Choi C H, Kim J, Nam J O, Kang S M, Jeong S G, Lee C S. 2014. Microfluidic design of complex emulsions.Chem. Phys. Chem., 15: 21-29.
    [43] Christopher G, Anna S. 2007. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 40: R319.
    [44] Christopher G, Bergstein J, End N, Poon M, Nguyen C, Anna S L. 2009. Coalescence and splitting of confined droplets at microfluidic junctions. Lab on a Chip, 9: 1102-1109.
    [45] Christopher G F, Noharuddin N N, Taylor J A, Anna S L. 2008. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 78: 036317.
    [46] Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. 2007. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 46: 8970-8974.
    [47] Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller O J, Frenz L, Blouwolff J, Humphry K J, Köster S, Duan H. 2008. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry and Biology, 15: 427-437.
    [48] Cohen D E, Schneider T, Wang M, Chiu D T. 2010. Self-digitization of sample volumes. Analytical Chem-istry, 82: 5707-5717.
    [49] Cordero M L, Rolfsnes H O, Burnham D R, Campbell P A, Mcgloin D, Baroud C N. 2009. Mixing via thermocapillary generation of flow patterns inside a microfluidic drop. New Journal of Physics, 11: 075033.
    [50] Cramer C, Fischer P, Windhab E J. 2004. Drop formation in a co-flowing ambient fluid. Chemical Engi-neering Science, 59: 3045-3058.
    [51] Cristofanilli M, Hayes D F, Budd G T, Ellis M J, Stopeck A, Reuben J M, Doyle G V, Matera J, Allard W J, Miller M C. 2005. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. Journal of Clinical Oncology, 23: 1420-1430.
    [52] Cubaud T, Mason T G. 2008. Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 20: 053302.
    [53] Cui H-H, Silber-Li Z-H, Zhu S-N. 2004. Flow characteristics of liquids in microtubes driven by a high pressure. Physics of Fluids, 16: 1803-1810.
    [54] Dai B, Leal L G. 2008. The mechanism of surfactant effects on drop coalescence. Physics of Fluids, 20: 040802.
    [55] Datta S S, Abbaspourrad A, Amstad E, Fan J, Kim S H, Romanowsky M, Shum H C, Sun B, Utada A S, Windbergs M. 2014. 25th Anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release. Advanced Materials, 26: 2205-2218.
    [56] De Menech M. 2006. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Physical Review E, 73: 031505.
    [57] De Menech M, Garstecki P, Jousse F, Stone H. 2008. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595: 141-161.
    [58] Di Carlo D. 2009. Inertial microfluidics. Lab on a Chip, 9: 3038-3046.
    [59] Ding H, Spelt P D, Shu C. 2007. Diffuse interface model for incompressible two-phase flows with large density ratios. Journal of Computational Physics, 226: 2078-2095.
    [60] Diwakar S, Das S K, Sundararajan T. 2009. A quadratic spline based interface(QUASI) reconstruction algorithm for accurate tracking of two-phase flows. Journal of Computational Physics, 228: 9107-9130.
    [61] Dreyfus R, Tabeling P, Willaime H. 2003. Ordered and disordered patterns in two-phase flows in microchan-nels. Physical Review Letters, 90: 144505.
    [62] Edd J F, Di Carlo D, Humphry K J, Köster S, Irimia D,Weitz D A, Toner M. 2008. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip, 8: 1262-1264.
    [63] Edgar J S, Milne G, Zhao Y, Pabbati C P, Lim D S, Chiu D T. 2009. Compartmentalization of chemically separated components into droplets. Angewandte Chemie International Edition, 48: 2719-2722.
    [64] Eggleton C D, Tsai T-M, Stebe K J. 2001. Tip streaming from a drop in the presence of surfactants. Physical Review Letters, 87: 048302.
    [65] Erni P, Windhab E J, Gunde R, Graber M, Pfister B, Parker A, Fischer P. 2007. Interfacial rheology of surface-active biopolymers: Acacia senegal gum versus hydrophobically modifed starch. Biomacro-molecules, 8: 3458-3466.
    [66] Erni P, Cramer C, Marti I, Windhab E J, Fischer P. 2009. Continuous flow structuring of anisotropic biopolymer particles. Advances in Colloid and Interface Science, 150: 16-26.
    [67] Fair R B. 2007. Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 3: 245-281.
    [68] Fidalgo L, Abell C, Huck W. 2007. Surface-induced droplet fusion in microfluidic devices. Lab on a Chip, 7: 984.
    [69] Franke T, Abate A R, Weitz D A, Wixforth A. 2009. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip, 9: 2625-2627.
    [70] Freytag T, Dashevsky A, Tillman L, Hardee G, Bodmeier R. 2000. Improvement of the encapsulation effciency of oligonucleotide-containing biodegradable microspheres. Journal of Controlled Release, 69: 197-207.
    [71] Funfschilling D, Debas H, Li H Z, Mason T G. 2009. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics. Physical Review E, 80: 015301.
    [72] GÜnther A, Khan S A, Thalmann M, Trachsel F, Jensen K F. 2004. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 4: 278-286.
    [73] Gañán-Calvo A M. 1998. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80: 285.
    [74] Gad-El-Hak M. 1999. The fluid mechanics of microdevices|the Freeman scholar lecture. Journal of Fluids Engineering, 121: 5-33.
    [75] Garstecki P, Stone H A, Whitesides G M. 2005. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 94: 164501. Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. 2006. Formation of droplets and bubbles in a microfluidic T-junction|scaling and mechanism of break-up. Lab on a Chip, 6: 437-446.
    [76] Ginzburg I, Wittum G. 2001. Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. Journal of Computational Physics, 166: 302-335.
    [77] Glawdel T, Elbuken C, Ren C L. 2012a. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Physical Review E, 85: 016323.
    [78] Glawdel T, Elbuken C, Ren C L. 2012b. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Physical Review E, 85: 016322.
    [79] Greaves D. 2004. A quadtree adaptive method for simulating fluid flows with moving interfaces. Journal of Computational Physics, 194: 35-56.
    [80] Groβ S, Reichelt V, Reusken A. 2006. A finite element based level set method for two-phase incompressible flows. Computing and Visualization in Science, 9: 239-257.
    [81] Gu H, Malloggi F, Vanapalli S A, Mugele F. 2008. Electrowetting-enhanced microfluidic device for drop generation. Applied Physics Letters, 93: 183507.
    [82] Guillot P, Colin A, Utada A S, Ajdari A. 2007. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Physical Review Letters, 99: 104502.
    [83] Guillot P, Colin A, Ajdari A. 2008. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Physical Review E, 78: 016307.
    [84] Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. 1991. Lattice Boltzmann model of immiscible fluids.Physical Review A, 43: 4320-4327.
    [85] Gupta A, Kumar R. 2010. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluidics and Nanofluidics, 8: 799-812.
    [86] Harlow F H, Welch J E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8: 2182.
    [87] Hartmann D, Meinke M, Schröder W. 2008. Differential equation based constrained reinitialization for level set methods. Journal of Computational Physics, 227: 6821-6845.
    [88] Hartmann D, Meinke M, Schröder W. 2010. The constrained reinitialization equation for level set methods.Journal of Computational Physics, 229: 1514-1535.
    [89] Hasinovic H, Friberg S E. 2011. One-step inversion process to a Janus emulsion with two mutually insoluble oils. Langmuir, 27: 6584-6588.
    [90] Hatch A C, Patel A, Beer N R, Lee A P. 2013. Passive droplet sorting using viscoelastic flow focusing. Lab on a Chip, 13: 1308-1315.
    [91] Hirt C, Amsden A A, Cook J. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds.Journal of Computational Physics, 14: 227-253.
    [92] Hirt C W, Nichols B D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39: 201-225.
    [93] Ho B, Leal L. 1974. Inertial migration of rigid spheres in two-dimensional unidirectional flows. Journal of Fluid Mechanics, 65: 365-400.
    [94] Hoang D, Portela L, Kleijn C, Kreutzer M, Van Steijn V. 2013. Dynamics of droplet breakup in a T-junction. Journal of Fluid Mechanics, 717: R4.
    [95] Hogg A J. 1994. The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. Journal of Fluid Mechanics, 272: 285-318.
    [96] Holtze C, Rowat A, Agresti J, Hutchison J, Angile F, Schmitz C, Köster S, Duan H, Humphry K, Scanga R. 2008. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on a Chip, 8: 1632-1639.Hu H H, Patankar N A, Zhu M. 2001. Direct numerical simulations of fluid{solid systems using the arbitrary Lagrangian{Eulerian technique. Journal of Computational Physics, 169: 427-462.
    [97] Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Edel J. 2007. Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications, 12: 1218-1220.
    [98] Huebner A, Bratton D, Whyte G, Yang M, Abell C, Hollfelder F. 2009. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab on a Chip, 9: 692-698.
    [99] Huerre P, Monkewitz P A. 1990. Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 22: 473-537.
    [100] Humphry K J, Ajdari A, Fernández-Nieves A, Stone H A, Weitz D A. 2009. Suppression of instabilities in multiphase flow by geometric confinement. Physical Review E, 79: 056310.
    [101] Hur S C, Henderson-Maclennan N K, Mccabe E R, Di Carlo D. 2011. Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip, 11: 912-920.
    [102] I Solvas X. 2011. Droplet microfluidics: recent developments and future applications. Chemical Communi-cations, 47: 1936-1942.
    [103] Jensen M J. 2002. Bubbles in microchannels. Master project, Denmark: MIC{Technical University of Denmark.
    [104] Jeong W J, Kim J Y, Choo J, Lee E K, Han C S, Beebe D J, Seong G H, Lee S H. 2005. Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir, 21: 3738-3741.
    [105] Joensson H N, Andersson Svahn H. 2012. Droplet microfluidics-a tool for single-cell analysis. Angewandte Chemie International Edition, 51: 12176-12192.
    [106] Kadam S T, Kumar R. 2014. Twenty first century cooling solution: Microchannel heat sinks. International Journal of Thermal Sciences, 85: 73-92.
    [107] Kantak C, Zhu Q, Beyer S, Bansal T, Trau D. 2012. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing. Biomicrofluidics, 6: 022006.
    [108] Karimi A, Yazdi S, Ardekani A. 2013. Hydrodynamic mechanisms of cell and particle trapping in microflu-idics. Biomicrofluidics, 7: 021501.
    [109] Khodaparast S, Borhani N, Thome J. 2014. Application of micro particle shadow velocimetry PSV to two-phase flows in microchannels. International Journal of Multiphase Flow, 62: 123-133.
    [110] Kim H, Luo D, Link D, Weitz D A, Marquez M, Cheng Z. 2007. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Applied Physics Letters, 91: 133106.
    [111] Kim S H, Weitz D A. 2011. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angewandte Chemie, 123: 8890-8893.
    [112] Kim Y W, Yoo J Y. 2012. Transport of solid particles in microfluidic channels. Optics and Lasers in Engineering, 50: 87-98.
    [113] Kinoshita H, Kaneda S, Fujii T, Oshima M. 2007. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip, 7: 338-346.
    [114] Ko H, Liu C, Gau C, Jeng D. 2008. Flow characteristics in a microchannel system integrated with arrays of micro-pressure sensors using a polymer material. Journal of Micromechanics and Microengineering, 18:075016.
    [115] Lagus T P, Edd J F. 2013a. High-throughput co-encapsulation of self-ordered cell trains: Cell pair interac-tions in microdroplets. RSC Advances, 3: 20512-20522.
    [116] Lagus T P, Edd J F. 2013b. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. Journal of Physics D: Applied Physics, 46: 114005.
    [117] Lee B, Yoo J Y. 2011. Droplet bistability and its application to droplet control. Microfluidics and Nanoflu-idics, 11: 685-693.
    [118] Li L, Du W, Ismagilov R F. 2010. Multiparameter screening on slip chip used for nanoliter protein crystal-lization combining free interface diffusion and microbatch methods. J. Am. Chem . Soc., 132: 112-119.
    [119] Li X B, Li F C, Yang J C, Kinoshita H, Oishi M, Oshima M. 2012. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 69: 340-351.
    [120] Liau A, Karnik R, Majumdar A, Cate J H D. 2005. Mixing crowded biological solutions in milliseconds. Analytical Chemistry, 77: 7618-7625.
    [121] Link D, Anna S L, Weitz D, Stone H. 2004. Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters, 92: 054503.
    [122] Liu H, Zhang Y. 2011. Droplet formation in microfluidic cross-junctions. Physics of Fluids, 23: 082101.
    [123] Lundgaard L, Berg G, Ingebrigsten S, Atten P. 2006. Electrocoalescence for oil-water separation: Funda-mental aspects. In: Emulsions and Emulsion Stability, CRC Press. 549-592.
    [124] Maddala J, Wang W S, Vanapalli S A, Rengaswamy R. 2013. Tra±c of pairs of drops in microfluidic ladder networks with fore-aft structural asymmetry. Microfluidics and Nanofluidics, 14: 337-344.
    [125] Mai D J, Brockman C, Schroeder C M. 2012. Microfluidic systems for single DNA dynamics. Soft Matter, 8: 10560-10572.
    [126] Malik M, Fan E S C, Bussmann M. 2007. Adaptive VOF with curvature-based refinement. International Journal for Numerical Methods in Fluids, 55: 693-712.
    [127] Manz A, Graber N, Widmer H. 1990. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1: 244-248.
    [128] Marti I, Höfler O, Fischer P, Windhab E J. 2005. Rheology of concentrated suspensions containing mixtures of spheres and fibres. Rheologica Acta, 44: 502-512.
    [129] Matas J-P, Morris J F, Guazzelli 2009. Lateral force on a rigid sphere in large-inertia laminar pipe flow. Journal of Fluid Mechanics, 621: 59.
    [130] Mazutis L, Baret J-C, Gri±ths A D. 2009. A fast and e±cient microfluidic system for highly selective one-to-one droplet fusion. Lab on a Chip, 9: 2665-2672.
    [131] Mazutis L, Gri±ths A D. 2012. Selective droplet coalescence using microfluidic systems. Lab on a Chip, 12: 1800-1806.
    [132] Meinhart C D, Wereley S T, Santiago J G. 1999. PIV measurements of a microchannel flow. Experiments in Fluids, 27: 414-419.
    [133] Migler K B. 2001. String formation in sheared polymer blends: coalescence, breakup, and finite size effects.Physical Review Letters, 86: 1023.
    [134] Morini G, Spiga M, Tartarini P. 1998. Laminar viscous dissipation in rectangular ducts. International Communications in Heat and Mass Transfer, 25: 551-560.
    [135] Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1992. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Biotechnology Series, 51: 263-273.
    [136] Nakano M. 2000. Places of emulsions in drug delivery. Advanced Drug Delivery Reviews, 45: 1-4.
    [137] Nie J, Kennedy R T. 2010. Sampling from nanoliter plugs via asymmetrical splitting of segmented flow. Analytical Chemistry, 82: 7852-7856.
    [138] Nisar A, Aftuipurkar N, Mahaisavariya B, Tuantranont A. 2008. MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B, 130: 917-942.
    [139] Niu X, Gulati S, Edel J B. 2008. Pillar-induced droplet merging in microfluidic circuits. Lab on a Chip, 8: 1837-1841.
    [140] Nobari M, Jan Y J, Tryggvason G. 1996. Head-on collision of drops|a numerical investigation. Physics of Fluids, 8: 29-42.
    [141] Nochetto R H, Walker S W. 2010. A hybrid variational front tracking-level set mesh generator for problems exhibiting large deformations and topological changes. Journal of Computational Physics, 229: 6243-6269.
    [142] Noh W F, Woodward P. 1976. SLIC (simple line interface calculation). In: Proceedings of the Fifth Inter-national Conference on Numerical Methods in Fluid Dynamics, June 28-July 2, 1976, Twente University, Enschede, Springer.
    [143] Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D. 2003. The Lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 29: 117-169.
    [144] Nunes J, Tsai S, Wan J, Stone H. 2013. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied Physics, 46: 114002.
    [145] Ogończyk D, Siek M, Garstecki P. 2011. Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics, 5: 013405.
    [146] Okushima S, Nisisako T, Torii T, Higuchi T. 2004. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 20: 9905-9908.
    [147] Olsson E, Kreiss G. 2005. A conservative level set method for two phase flow. Journal of Computational Physics, 210: 225-246.
    [148] Osher S, Sethian J A. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79: 12-49.
    [149] Park J S, Kihm K D. 2006. Use of confocal laser scanning microscopy(CLSM) for depthwise resolved microscale-particle image velocimetry (μ-PIV). Optics and Lasers in Engineering, 44: 208-223.
    [150] Pekin D, Skhiri Y, Baret J C, Le Corre D, Mazutis L, Salem C B, Millot F, El Harrak A, Hutchison J B, Larson J W. 2011. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a Chip, 11: 2156-2166.
    [151] Popinet S. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Com-putational Physics, 228: 5838-5866.
    [152] Prakash M, Gershenfeld N. 2007. Microfluidic bubble logic. Science, 315: 832-835.
    [153] Priest C, Herminghaus S, Seemann R. 2006. Controlled electrocoalescence in microfluidics: Targeting a single lamella. Applied Physics Letters, 89: 134101.
    [154] Probstein R. 1994. Physicochemical Hydrodynamics: An Introduction, New York: Wiley and Sons.Quan S, Schmidt D P. 2007. A moving mesh interface tracking method for 3D incompressible two-phase flows. Journal of Computational Physics, 221: 761-780.
    [155] Quan S, Lou J, Schmidt D P. 2009. Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations. Journal of Computational Physics, 228: 2660-2675.
    [156] Quan S. 2011. Simulations of multiphase flows with multiple length scales using moving mesh interface tracking with adaptive meshing. Journal of Computational Physics, 230: 5430-5448.
    [157] Renardy Y, Renardy M. 2002. PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method. Journal of Computational Physics, 183: 400-421.
    [158] Romanowsky M B, Abate A R, Rotem A, Holtze C, Weitz D A. 2012. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab on a Chip, 12: 802-807.
    [159] Rubinow S, Keller J B. 1961. The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 11: 447-459.
    [160] Rudman M. 1997. Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24: 671-691.
    [161] Saffman P. 1965. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22: 385-400.
    [162] Santiago J G, Wereley S T, Meinhart C D, Beebe D, Adrian R J. 1998. A particle image velocimetry system for microfluidics. Experiments in Fluids, 25: 316-319.
    [163] Sarrazin F, Prat L, Di Miceli N, Cristobal G, Link D, Weitz D. 2007. Mixing characterization inside microdroplets engineered on a microcoalescer. Chemical Engineering Science, 62: 1042-1048.
    [164] Schaerli Y, Wootton R C, Robinson T, Stein V, Dunsby C, Neil M A, French P M, Demello A J, Abell C, Hollfelder F. 2008. Continuous-flow polymerase chain reaction of single-copy DNA in microdroplets. Analytical Chemistry, 81: 302-306.microfluidic
    [165] Schmid L, Franke T. 2013. SAW-controlled drop size for flow focusing. Lab on a Chip, 13: 1691-1694.
    [166] Schmitz C H, Rowat A C, Köster S, Weitz D A. 2009. Dropspots: a picoliter array in a microfluidic device. Lab on a Chip, 9: 44-49.
    [167] Schneider T, Kreutz J, Chiu D T. 2013. The potential impact of droplet microfluidics in biology. Analytical Chemistry, 85: 3476-3482.
    [168] Schonberg J A, Hinch E. 1989. Inertial migration of a sphere in Poiseuille flow. Journal of Fluid Mechanics, 203: 517-524.
    [169] Seemann R, Brinkmann M, Pfohl T, Herminghaus S. 2012. Droplet based microfluidics. Reports on Progress in Physics, 75: 016601.
    [170] Segré G, Silberberg A. 1961. Radial particle displacements in poiseuille flow of suspensions. Nature, 189: 209-210.
    [171] Segré G, Silberberg A. 1962. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. Journal of Fluid Mechanics, 14: 136-157.
    [172] Seo M, Paquet C, Nie Z, Xu S, Kumacheva E. 2007. Microfluidic consecutive flow-focusing droplet generators. Soft Matter, 3: 986-992.
    [173] Seppecher P. 1996. Moving contact lines in the Cahn-Hilliard theory. International Journal of Engineering Science, 34: 977-992.
    [174] Sethian J, Smereka P. 2003. Level set methods for fluid interfaces. Annual Review of Fluid Mechanics, 35: 341-372.
    [175] Shan X, Chen H. 1993. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47: 1815-1819.
    [176] Shi W, Qin J, Ye N, Lin B. 2008. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab on a Chip, 8: 1432-1435.
    [177] Shi W, Wen H, Lu Y, Shi Y, Lin B, Qin J. 2010. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab on a Chip, 10: 2855-2863.
    [178] Shim J-U, Cristobal G, Link D R, Thorsen T, Jia Y, Piattelli K, Fraden S. 2007a. Control and measurement of the phase behavior of aqueous solutions using microfluidics. Journal of the American Chemical Society, 129: 8825-8835.
    [179] Shim J U, Cristobal G, Link D R, Thorsen T, Jia Y, Piattelli K, Fraden S. 2007b. Control and measurement of the phase behavior of aqueous solutions using microfluidics. Journal of the American Chemical Society, 129: 8825-8835.
    [180] Shim J U, Olguin L F, Whyte G, Scott D, Babtie A, Abell C, Huck W T, Hollfelder F. 2009. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. Journal of the American Chemical Society, 131: 15251-15256.
    [181] Shin S, Juric D. 2009. A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. International Journal for Numerical Methods in Fluids, 60: 753-778.
    [182] Sivasamy J, Wong T-N, Nguyen N-T, Kao L T-H. 2011. An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluidics and Nanofluidics, 11: 1-10.
    [183] Song H, Bringer M R, Tice J D, Gerdts C J, Ismagilov R F. 2003a. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Applied Physics Letters, 83: 4664-4666.
  • 加载中
计量
  • 文章访问数:  2725
  • HTML全文浏览量:  305
  • PDF下载量:  2750
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2015-01-27
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回