留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress and challenges in fundamental combustion research(燃烧基础研究的进展和挑战)

琚诒光

琚诒光. Recent progress and challenges in fundamental combustion research(燃烧基础研究的进展和挑战)[J]. 力学进展, 2014, 44(1): 201402. doi: 10.6052/1000-0992-14-011
引用本文: 琚诒光. Recent progress and challenges in fundamental combustion research(燃烧基础研究的进展和挑战)[J]. 力学进展, 2014, 44(1): 201402. doi: 10.6052/1000-0992-14-011
Yiguang JU. Recent progress and challenges in fundamental combustion research[J]. Advances in Mechanics, 2014, 44(1): 201402. doi: 10.6052/1000-0992-14-011
Citation: Yiguang JU. Recent progress and challenges in fundamental combustion research[J]. Advances in Mechanics, 2014, 44(1): 201402. doi: 10.6052/1000-0992-14-011

Recent progress and challenges in fundamental combustion research(燃烧基础研究的进展和挑战)

doi: 10.6052/1000-0992-14-011
基金项目: This work is was partially supported by research grants including the US DOE Energy Frontier Research Center on Combustion (DE-SC0001198), DOENETL( DE-FE0011822), AFOSR (FA9550-13-1-0119, FA9550-07-1-0136), ARO (W911NF- 12-1-0167).

Recent progress and challenges in fundamental combustion research

Funds: This work is was partially supported by the open research fund of State Key Laboratory of High-temperature Gas Dynamics at Institute of Mechanics of Chinese Academy of Science. The author would like to thank all the contributions from his students, staff members, and many collaborators including S Klippenstein (ANL), M Burke (ANL), Z Chen (PKU), XL Gou (CQU), and B Brumfield, P Dievart, FL Dryer, CK Law, J Lefkowitz, N Kurimoto, J Santner, W Sun, WQ Sun, SH Won and G Wysocki at Princeton University. This work is was partially supported by research grants including the US DOE Energy Frontier Research Center on Combustion (DE-SC0001198), DOENETL( DE-FE0011822), AFOSR (FA9550-13-1-0119, FA9550-07-1-0136), ARO (W911NF- 12-1-0167).
  • 摘要: 超过80%的世界的能源转换是由燃烧方法来实现的. 发展可利用替代燃料的清洁和高效的新型发动机是解决可持续能源发展的关键之一. 在燃烧研究领域,实现这一目标的挑战是要揭示从燃料分子到发动机的多尺度燃烧过程中化学反应和火焰动力学机理,发展高效,定量的数值模拟方法和开发新的燃烧技术. 本文从7个方面综述最近几年燃烧领域的基础燃烧研究的进展和挑战. 它们包括低温清洁燃烧的发动机技术,极限条件下的燃烧机理和现象,替代燃料和混合燃料模型,多尺度化学反应模拟方法,高压燃烧反应动力学,基础燃烧的实验方法,和先进测量技术. 本文首先介绍均值充量压缩点火(HCCI),反应控制压缩点火(RCCI)以及增压燃烧等新型发动机的概念,评述燃料特性和低温燃烧反应过程对湍流燃烧和发动机的影响,讨论发展基础燃烧研究的必要性. 第二,综述燃料浓度分层燃烧,稀薄燃烧,冷炎燃烧,以及等离子体助燃等极限燃烧条件下的新的燃烧现象和火焰机制. 第三,以航空煤油和生物柴油为例来讨论建立模拟真实燃料和替代燃料的混合燃料模型的方法. 介绍活性基指数和输运加权的反应焓的概念并用来比较燃料的高温反应特性和评价燃料的分子结构对燃烧特性的影响. 第四,评述详细化学反应机理简化的方法. 介绍多时间尺度(MTS)的化学反应的模拟和动态关联性自适应机理简化(CO-DAC)的方法来提高详细化学反应机理的计算效率. 第五,讨论高压燃烧的火焰传播速度的实验测量结果以及高压燃烧化学反应机理所存在的问题,并分析高压燃烧的关键组分和反应路径. 第六,评述测量火焰速度和组分等基础燃烧实验方法和模型中的问题和误差来源. 介绍一些改进测量方法和提高测量精度的方法. 最后,介绍测量低温燃烧中的关键组分和自由基的测量方法和最新进展.

     

  • [1] Aceves S M, Flowers D L, Martinez-Frias J, Smith J R, Westbrook C K, Pitz W, Dibble R, Christensen M, Johansson B. 2000. A multi-zone model for prediction of HCCI combustion and emissions. Paper No. SAE, 2000-01-0327.
    [2] Bahrini C, Herbinet O, Glaude P A, Schoemaecker C, Fittschen C, Battin-Leclerc F. 2012a. Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS. Chem. Phys. Lett, 534: 1-7.
    [3] Bahrini C, Herbinet O, Glaude P A, Schoemaecker C, Fittschen C, Battin-Leclerc F. 2012b. Quantification of hydrogen peroxide during the low-temperature oxidation of alkanes. Journal of the American Chemical Society, 134: 11944-11947.
    [4] Balster LM, Corporan E, DeWittMJ, Edwards J T, Ervin J S, Graham J L, Zabarnick S. 2008. Development of an advanced, thermally stable, coal-based jet fuel. Fuel Processing Technology, 89: 364-378.
    [5] Barnard J. 1969. Cool-flame oxidation of ketones. in: Proceedings of the Combustion Institute, 12: 365. Bendtsen A B, Glarborg P, Dam-Johansen K. 2001. Visualization methods in analysis of detailed chemical kinetics modelling. Computers & chemistry, 25: 161-170.
    [6] Bessee G B, Hutzler S A, Wilson G R. 2011. Propulsion and Power Rapid Response Research and Development Support: Analysis of Synthetic Aviation Fuels, AFRL-RZ-WP-TR-2011-2084.
    [7] Billig F S. 1993. Research on supersonic combustion. Journal of Propulsion and Power, 9: 499-514.
    [8] Binder J B, Raines R T. 2009. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J AM CHEM SOC, 131: 1979-1989.
    [9] Blakey S, Rye L, Wilson C W. 2011. Aviation gas turbine alternative fuels: A review. Proceedings of the combustion institute, 33: 2863-2885.
    [10] Borghi R. 1984. On the Structure of Turbulent Premixed Flames, Recent Advances in Aeronautical Science, C Bruno, C Casci (Eds.), Pergamon.
    [11] Bradley D. 1992. How fast can we burn? Symposium (International) on Combustion, 24: 247-262.
    [12] Bradley D, Gaskell P H, Gu X J. 1996. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combustion and Flame, 104: 176-198.
    [13] Brumfield B, Sun W, Ju Y, Wysocki G. 2013. Direct In Situ Quantification of HO2 from a Flow Reactor. The Journal of Physical Chemistry Letters 4: 872-876.
    [14] Buhre B J P, Elliott L K, Sheng C D, Gupta R P, Wall T F. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31: 283-307.
    [15] Burke M P, Chen Z, Ju Y, Dryer F L. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combustion and Flame, 156: 771-779.
    [16] Burke M P, Chaos M, Dryer F L, Ju Y. 2010. Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures. Combustion and Flame, 157: 618-631.
    [17] Burke M P, Dryer F L, Ju Y. 2011. Assessment of kinetic modeling for lean H2/CH4/O2/ /diluent flames at high pressures. Proceedings of the Combustion Institute, 33: 905-912.
    [18] Burke M P, Chaos M, Ju Y, Dryer F L, Klippenstein S J. 2011. Comprehensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics, 44: 444-474.
    [19] Burke S M, Ultan Burke, Reuben Mc Donagha, Olivier Mathieub, Irmis Osoriob, Charles Keeseeb, Eric L Petersenb, Weijing Wangc, Matthew A Oehlschlaegerc. 2014. An experimental and modeling study of propene oxidation. part 2: Ignition delay times and flame speeds, to be submitted to Combustion and Flame.
    [20] Bykovskii F A, Zhdan S A, Vedernikov E F. 2006. Continuous spin detonations. Journal of Propulsion and Power, 22: 1204-1216.
    [21] Chaos M, Kazakov A, Zhao Z, Dryer F L. 2007. A high-temperature chemical kinetic model for primary reference fuels. International Journal of Chemical Kinetics, 39 399-414.
    [22] Chaudhuri S,Wu F, Zhu D, Law C K. 2012. Flame speed and self-similar propagation of expanding turbulent premixed flames. ’ Physical Review Letters, 108: 044503.
    [23] Chen J H, Hawkes E R, Sankaran R, Mason S D, Im H G. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I Fundamental analysis and diagnostics. Combustion and flame, 145: 128-144.
    [24] Chen J H. 2011. Petascale direct numerical simulation of turbulent combustion—fundamental insights towards predictive models. Proceedings of the Combustion Institute, 33: 99-123.
    [25] Chen Z, Ju Y. 2007. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combustion Theory and Modelling, 11: 427-453.
    [26] Chen Z, Qin X, Xu B, Ju Y, Liu F. 2007. Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures. Proceedings of the Combustion Institute, 31: 2693-2700.
    [27] Chen Z, Burke M P, Ju Y. 2009a. Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combustion Theory and Modeling, 13: 343-364.
    [28] Chen Z, Burke M P, Ju Y. 2009b. Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proceedings of the Combustion Institute, 32: 1253-1260.
    [29] Chu S, Majumdar A. 2012. Opportunities and challenges for a sustainable energy future. Nature 488: 294-303.
    [30] Contino F, Jeanmart H, Lucchini T, Do‘Errico G. 2011. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: an effective method for solving combustion in engine simulations, Proc. Combust. Inst. 33: 3057-3064.
    [31] Cooke J A, Bellucci M, Smooke M D, Gomez A, Violi A, Faravelli T, Ranzi E. 2005. Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames. Proceedings of the Combustion Institute, 30: 439-446.
    [32] Corporan Edwin, Tim Edwards, Linda Shafer, Matthew J DeWitt, Christopher Klingshirn, Steven Zabarnick, Zachary West, Richard Striebich, John Graham, Jim Klein. 2011. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy & Fuels, 25: 955-966.
    [33] Cox R A, Cole J A. 1985. Chemical aspects of the autoignition of hydrocarbon-air mixtures. Combustion and Flame, 60: 109-123.
    [34] Cowart J S, Keck J C, Heywood J B, Westbrook C K, Pitz W J. 1991. Engine knock predictions using a fully-detailed and a reduced chemical kinetic mechanism. Proceedings of the Combustion Institute, 23: 1055-1062.
    [35] Crowley J N, Simon F G, Burrows J P, Moortgat G K, Jenkin M E, Cox R A. 1991. The HO2 radical UV absorption spectrum measured by molecular modulation, UV/diode-array spectroscopy. J Photoch. Photobio. A, 60: 1-10.
    [36] Curran H J, Gaffuri P, Pitz W J, Westbrook C K. 2002. A comprehensive modeling study of iso-octane oxidation. Combustion and flame, 129: 253-280.
    [37] Dai P, Chen Z, Chen S Y, Ju Y, Chen Z. 2014. Modes of reaction front propagation in n-heptane/air mixture with temperature gradient, Submitted to Proceedings of Combustion Institute, 35.
    [38] Dale B E, Kim S. 2006. in Biorefineries: Industrial Processes and Products, Vol. 1 (Eds.: B Kamm, P R Gruber, M Kamm), Wiley-VCH, Weinheim, 41-66.
    [39] Dec J E. 2009. Advanced compression ignition engine understanding the in-cylinder processes, Proc. Combust. Inst. 32: 2727-2742.
    [40] Diévart P, Won S H, Dooley S, Dryer F L, Ju Y. 2012. A kinetic model for methyl decanoate combustion. Combustion and Flame, 159: 1793-1805.
    [41] Diévart P, Yang X L, Tan T, Labee N, Klippenstein S J, Georgievski Y, Harding L B, Sivaramakrishnan3 R, Liu W, Davis M J, Carter E A, Ju Y. 2014. On the Pyrolysis and Oxidation Chemistry of Methyl Formate and Methanol. Combust. Flame.
    [42] Diévart P, Won S H, Gong J, Dooley S, Ju Y. 2012. A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction, Proceedings of the Combustion Institute. 34: 821–829.
    [43] DOE Report. 2006. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels, 2007, Office of Science, U S Department of Energy. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels, October 1, November 2006. Available online at: http://science.energy.gov/∼/media/bes/pdf/- reports/files/ctf rpt.pdf.
    [44] Dooley S,Won S H, Chaos M, Heyne J, Ju Y, Dryer F L, Litzinger T A. 2010. A jet fuel surrogate formulated by real fuel properties. Combustion and Flame, 157: 2333-2339.
    [45] Dooley S, Won S H, Heyne J, Farouk T I, Ju Y, Dryer F L, Brezinsky K. 2012. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combustion and Flame, 159: 1444-1466.
    [46] Dooley S, Won S, Heyne J, Farouk T, Ju Y, Dryer F, Kumar K, Hui X, Sung C J, Wang H, Oehlschlaeger M, Iyer V, Iyer S, Litzinger T, Santoro R, Malewicki T, Brezinsky K. 2012. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena. Combust. Flame, 159: 1444-1466.
    [47] Dooley S, Dryer F L, Farouk T I, Ju Y, Won S H. 2013. Reduced kinetic models for the combustion of jet propulsion fuels, AIAA-Paper 2013-158.
    [48] Driscoll J F. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science, 34: 91-134.
    [49] Dunn M J, Barlow R S. 2013. Effects of preferential transport and strain in bluff body stabilized lean and rich premixed CH4/air flames. Proceedings of the Combustion Institute, 34: 1411-1419.
    [50] Egolfopoulos F N, Hansen N, Ju Y, Kohse-Höinghaus K, Law C K, Qi F. 2014. Advances and challenges in experimental research of combustion chemistry in laminar flames. Progress of Energy and Combustion Science.
    [51] El-Asrag H A, Ju Y. 2013. Direct numerical simulations of exhaust gas recirculation effect on multistage autoignition in the negative temperature combustion regime for stratified HCCI flow conditions by using H2O2 addition. Combustion Theory and Modelling, 17: 316-334.
    [52] El-Asrag H A, Ju Y. 2014. Direct numerical simulations of NOx effect on multistage autoignition of DME/air mixture in the negative temperature coefficient regime for stratified HCCI engine conditions. Combustion and Flame, 161: 256-269.
    [53] Farouk T I, Dryer F L. 2014. Isolated n-heptane droplet combustion in microgravity: Cool Flames – Twostage combustion. Combust. Flame, in Press. http://dx.doi.org/10.1016/j.combustflame.2013.09.011.
    [54] Fernandez-Pello A C. 2002. Micropower generation using combustion: issues and approaches. Proceedings of the Combustion Institute, 29: 883-899.
    [55] Gail S, Thomson M J, Sarathy S M, Syed S A, Dagaut P, Diévart P, Dryer F L. 2007. A wide-ranging kinetic modeling study of methyl butanoate combustion. Proceedings of the Combustion Institute, 31: 305-311.
    [56] Gauthier B M, Davidson D F, Hanson R K. 2004. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combustion and Flame, 139: 300-311.
    [57] Griffiths John F, Inomata Tadaaki. 1992. Oscillatory cool flames in the combustion of diethyl ether. Journal of the Chemical Society, Faraday Transactions, 88: 3153. doi: 10.1039/FT9928803153.
    [58] Gou X, Sun W, Chen Z, Ju Y. 2010. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame, 157: 1111-1121.
    [59] Gou X, Chen Z, Sun W, Ju Y. 2013. A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism. Combustion and Flame, 160: 225-231.
    [60] Gu X J, Emerson D R, Bradley D. 2003. Modes of reaction front propagation from hot spots. Combustion and Flame, 133: 63-74.
    [61] Guo H, Sun W, Haas F M, Farouk T, Dryer F L, Ju Y. 2013. Measurements of H2O2 in low temperature dimethyl ether oxidation. Proceedings of the Combustion Institute, 34: 573-581.
    [62] Harper M R, Van Geem K M, Pyl S P, Marin G B, Green W H. 2011. Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combustion and Flame, 158: 16-41.
    [63] Hawkes E R, Sankaran R, Pébay P P, Chen J H. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: Ⅱ Parametric study. Combustion and Flame, 145: 145-159.
    [64] Healy D, Curran H J, Simmie J M, Kalitan D M, Zinner C M, Barrett A B, Petersen E L, Bourque G. 2008. Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures. Combust. Flame, 155: 441-448.
    [65] Hong Z, Davidson D F, Lam K Y, Hanson R K. 2012. A shock tube study of the rate constants of HO2 and CH3 reactions. Combustion and Flame, 159: 3007-3013.
    [66] Honnet S, Seshadri K, Niemann U, Peters N. 2009. A surrogate fuel for kerosene. Proceedings of the Combustion Institute, 32: 485-492.
    [67] Hsu K Y, Goss L P, Roquemore W M. 1998. Characteristics of a trapped-vortex combustor. Journal of Propulsion and Power, 14: 57-65.
    [68] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54: 621-639.
    [69] Huang Z, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D. 2006. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combustion and Flame, 146: 302-311.
    [70] Huber G W, Iborra S, Corma A. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106: 4044-4098.
    [71] Hult J, Richter M, Nygren J, Aldén M, Hultqvist A, Christensen M, Johansson B. 2002. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines. Applied Optics, 41: 5002-5014.
    [72] Ikeda Y, Nishiyama A, Wachi Y, Kaneko M. 2009. Research and development of microwave plasma combustion engine (Part Ⅰ: Concept of plasma combustion and plasma generation technique). Combustion, 1989: 04-01.
    [73] Jahangirian S, Dooley S, Haas F M, Dryer F L. 2012. A detailed experimental and kinetic modeling study of n-decane oxidation at elevated pressures. Combustion and Flame, 159: 30-43.
    [74] Jangi M, Yu R, Bai X S. 2012. A multi-zone chemistry mapping approach for direct numerical simulation of auto-ignition and flame propagation in a constant volume enclosure. Combustion Theory and Modelling, 16: 221-249.
    [75] Jalan A, Alecu I M, Meana-Panda R, Aguilera-Iparraguirre J, Yang K R, Merchant S S, Green W H. 2013. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the korcek decomposition of γ-ketohydroperoxides. J. Am. Chem. Soc., 135: 11100-11114.
    [76] Jiang Z, Yu H. 2014. Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst). AIAA paper-2014-1012.
    [77] Ju Y, Niioka T. 1994. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer. Combustion and flame, 99: 240-246.
    [78] Ju Y, Guo H, Maruta K, Liu F. 1997. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames. Journal of fluid mechanics, 342: 315-334.
    [79] Ju Y, Masuya G, Ronney P D. 1998. Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames. Proceedings of the Combustion Institute, 27: 2619-2626.
    [80] Ju Y, Choi C W. 2003. An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels. Combustion and Flame, 133: 483-493.
    [81] Ju Y, Xu B. 2005. Theoretical and experimental studies on mesoscale flame propagation and extinction. Proceedings of the Combustion Institute, 30: 2445-2453.
    [82] Ju Y, Maruta K. 2011. Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 37: 669-715.
    [83] Ju Y, Sun W, Burke M P, Gou X L, Chen Z. 2011. Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions, Proc. Combust. Inst., 33: 1245-1251.
    [84] Kelley A P, Liu W, Xin Y X, Smallbone A J, Law C K. 2011. Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane. Proceedings of the Combustion Institute, 33: 501-508.
    [85] Khodakov A Y, Chu W, Fongarland P. 2007. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 107: 1692-1744.
    [86] Kobayashi H, Nakashima T, Tamura T, Maruta K, Niioka T. 1997. Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combustion and Flame, 108: 104-117.
    [87] Kohse-Höinghaus K, Oßwald P, Cool T A, Kasper T, Hansen N, Qi F, Westbrook C K, Westmoreland P R. 2010. Angew. Chemie Int. Ed., 49: 3572-3597.
    [88] Korcek decomposition of γ-ketohydroperoxides. Journal of the American Chemical Society, 135: 11100- 11114.
    [89] Kumar Kamal, Chih-Jen Sung. 2010. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8. Combustion and Flame, 157: 676-685.
    [90] Kwon S, Tseng L K, Faeth G M. 1992. Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures. Combustion and Flame, 90: 230-246.
    [91] Kumar K, Sung C J. 2007. Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame, 151: 209-224.
    [92] Lacoste D A, Moeck J P, Paschereit C O, Laux C O. 2013. Effect of plasma discharges on nitric oxide emissions in a premixed flame. Journal of Propulsion and Power, 29: 748-751.
    [93] Lam S H, Goussis D A. 1994. The CSP method for simplifying kinetics. International Journal of Chemical Kinetics, 26: 461-486.
    [94] Lefkowitz J K, Heyne J S, Won S H, Dooley S, Kim H H, Haas F M, Ju Y. 2012. A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame. Combustion and Flame, 159: 968-978.
    [95] Lefkowitz J K, Heyne J S, Won S H, Dooley S, Kim H H, Haas F M, Ju Y. 2012. A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame. Combustion and Flame, 159: 968-978.
    [96] Lefkowitz J K, Ju Y, Tsuruoka R, Ikeda Y. 2012. A study of plasma-assisted ignition in a small internal combustion engine. AIAA paper-2012-1133.
    [97] Lefkowitz J K, Won S H, Fenard Y, Ju Y. 2013. Uncertainty assessment of species measurements in acetone counterflow diffusion flames. Proceedings of the Combustion Institute, 34: 813-820.
    [98] Lefkowitz J, Ju Y, Stevens C, Hoke J, Ombrello T, Schauer F. 2013. The effects of repetitively pulsed nanosecond discharges on ignition time in a pulsed detonation engine, AIAA paper-2013-3719.
    [99] Lefkowitz J K, Mruthunjaya Uddi, Bret Windom, Guofeng Lou, Yiguang Ju. 2014. In situ species diagnostics and kinetic study of plasma activated ethylene pyrolysis and oxidation in a low temperature flow reactor, Submitted to Proceedings of Combustion Institute, 35.
    [100] Leonov S B, Savelkin K V, Firsov A A, Yarantsev D A. 2010. Fuel ignition and flame front stabilization in supersonic flow using electric discharge. High Temperature, 48: 896-902.
    [101] Li B, Jonsson M, Algotsson M, Bood J, Li Z S, Johansson O, Alden M, Tuner M, Johansson B. 2013. Quantitative detection of hydrogen peroxide in an HCCI engine using photofragmentation laser-induced fluorescence. Proc. Combust. Inst. 34: 3573-3581.
    [102] Li H, Miller D L, Cernansky N P. 1996. “Development of a Reduced Chemical Kinetic Model for Prediction of Preignition Reactivity and Autoignition of Primary Reference Fuels”, SAE Paper No. 960498.
    [103] Li J, Zhao Z, Kazakov A, Dryer F L. 2004. An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36; 566-575.
    [104] Li S C, Libby P A, Williams F A. 1994. Experimental investigation of a premixed flame in an impinging turbulent stream. Proceedings of the Combustion Institute, 25: 1207-1214.
    [105] Liang L, Stevens J G, Farrell J T.2009. A dynamic adaptive chemistry scheme for reactive flow computations, Proc. Combust. Inst., 32: 527-534.
    [106] Lignola P G, Reverchon E. 1987. Cool flames. Progress in Energy and Combustion Science, 13: 75-96.
    [107] Little J, Takashima K, Nishihara M, Adamovich I, Samimy M. 2010. High lift airfoil leading edge separation control with nanosecond pulse driven DBD plasma actuators. AIAA paper, 4256: 2010.
    [108] Lu T, Ju Y, Law C K. 2001. Complex CSP for chemistry reduction and analysis. Combustion and Flame, 126: 1445-1455.
    [109] Lu T, Law C K. 2005. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, 30: 1333-1341.
    [110] Lu X, Han D, Huang Z. 2011. Fuel design and management for the control of advanced compression-ignition combustion modes. Progress in Energy and Combustion Science, 37: 741-783.
    [111] Maas U, Pope S B. 1992. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proceedings of the Combustion Institute, 24: 103-112.
    [112] Maruta K, Kataoka T, Kim N I, Minaev S, Fursenko R. 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proceedings of the Combustion Institute, 30: 2429-2436.
    [113] Martz J B, Kwak H, Im H G, Lavoie G A, Assanis D N, Fiveland S B. 2009. Propagation of a Reacting Front in an Auto-Igniting Mixture, Proceedings of the 6th U S National Combustion Meeting, Michigan. Matsubara Y, Takita K. 2011. Effect of mixing ratio of N2/O2 feedstock on ignition by plasma jet torch. Proceedings of the Combustion Institute, 33: 3203-3209.
    [114] Mehl M, Pitz W J, Westbrook C K, Curran H J. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proceedings of the Combustion Institute, 33: 193-200.
    [115] Moeck J P, Lacoste D A, Laux C O, Paschereit C O. 2013. Control of combustion dynamics in a swirlstabilized combustor with nanosecond repetitively pulsed discharges. AIAA paper-2013-565.
    [116] Mongia H C. 2010. On continuous NOx reduction of aero-propulsion engines. AIAA paper, 1329, 4-7.
    [117] Moorthy J V S, Rajinikanth B, Charyulu D B, Rao P G. 2012. Scramjet Combustor Development: A Review. Journal of Aerospace Engineering & Technology, 2: 28-41.
    [118] Naoki Kurimoto, Brian Brumfield, Xueliang Yang, Tomoya Wada, Pascal Diévart, Gerard Wysocki, Yiguang Ju. 2014. Quantitative Measurements of HO2 / H2O2 and Intermediate Species in Low and Intermediate Temperature Oxidation of Dimethyl Ether. Proceedings of Combustion Institute, 35.
    [119] Nayagam V, Dietrich D L, Ferkul P V, Hicks M C, Williams F A. 2012. Can cool flames support quasi-steady alkane droplet burning? Combustion and Flame, 159: 3583-3588
    [120] Ohkura Y, Rao P M, Zheng X. 2011. Flash ignition of Al nanoparticles: Mechanism and applications. Combustion and Flame, 158: 2544-2548.
    [121] Ombrello T, Qin X, Ju Y, Gutsol A, Fridman A, Carter C. 2006. Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge. AIAA journal, 44: 142-150.
    [122] Ombrello T, Ju Y, Fridman A. 2008. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma. AIAA Journal, 46: 2424-2433.
    [123] Ombrello T, Won S H, Ju Y, Williams S. 2010a. Flame propagation enhancement by plasma excitation of oxygen. Part Ⅰ: Effects of O3. Combustion and Flame, 157: 1906-1915.
    [124] Ombrello T, Won S H, Ju Y, Williams S. 2010b. Flame propagation enhancement by plasma excitation of oxygen. Part Ⅱ: Effects of O2(a1Δg). Combustion and Flame, 157: 1916-1928.
    [125] Oshibe H, Nakamura H, Tezuka T, Hasegawa S, Maruta K. 2010. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 157: 1572- 1580.
    [126] Oßwald P, Kohse-Höinghaus K, Struckmeier U, Zeuch T, Seidel L, Leon L, Mauss F. 2011. Combustion chemistry of the butane isomers in premixed low-pressure flames. Zeitschrift für Physikalische Chemie, 225: 1029-1054.
    [127] Osswald P, Struckmeier U, Kasper T, Kohse-Höinghaus K, Wang J, Cool T A, Hansen N, Westmoreland P R. 2007. J. Phys. Chem. A, 111: 4093-4101.
    [128] Pepiot-Desjardins P, Pitsch H. 2008. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combustion and Flame, 154: 67-81.
    [129] Perkin W H. 1882. Some observations on the luminous incomplete combustion of ether and other organic bodies. Journal of the Chemical Society, Transactions, 41: 363-367.
    [130] Persson H, Hultqvist A, Johansson B, Remón A. 2007. Investigation of the early flame development in spark assisted HCCI combustion using high speed chemiluminescence imaging. SAE paper, 01-0212.
    [131] Peters N, Kee R J. 1987. The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism. Combustion and Flame, 68: 17-29.
    [132] Peters N. 1988. Laminar flamelet concepts in turbulent combustion. Proceedings of the Combustion Institute, 21: 1231-1250.
    [133] Peters N. 2000. Turbulent Combustion. Cambridge University Press, 66-168.
    [134] Pilla G, Galley D, Lacoste D A, Lacas F, Veynante D, Laux C O. 2006. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma. Plasma Science, IEEE Transactions on, 34: 2471-2477.
    [135] Pitsch H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38: 453-482.
    [136] Pope S B. 2012. Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute, 34: 1-31.
    [137] Pope S B. 1997. Computationally efficient implementation of combustion chemistry using in situadaptive tabulation. Combust. Theory Model. 1: 41-63.
    [138] Qi F. 2013. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute, 34: 1-1892.
    [139] Qin X, Ju Y. 2005. Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures. Proceedings of the Combustion Institute, 30: 233-240.
    [140] Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T. 2001. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Progress in Energy and Combustion Science, 27: 99-139.
    [141] Reitz R D. 2013. Directions in Internal Combustion Engine Research. Combustion and Flame, 160: 1-8.
    [142] Ren W, Dames E, Hyland D, Davidson D F, Hanson R K. 2013. Shock tube study of methanol, methyl formate pyrolysis: CH3OH and CO time-history measurements. Combustion and Flame, 160: 2669-2679.
    [143] Ronney P D. 2003. Analysis of non-adiabatic heat-recirculating combustors. Combustion and Flame, 135: 421-439.
    [144] Rutland C J, Trouvé A. 1993. Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combustion and Flame, 94: 41-57.
    [145] Rye L, Wilson C. 2012. The influence of alternative fuel composition on gas turbine ignition performance. Fuel, 96: 277-283.
    [146] Sabourin J L, Dabbs D M, Yetter R A, Dryer F L, Aksay I A. 2009. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS nano, 3: 3945-3954.
    [147] Saitoh T, Otsuka Y. 1976. Unsteady behavior of diffusion flames and premixed flames for counter flow geometry. Combustion Science and Technology, 12: 135-146.
    [148] Sankaran R, Im H G, Hawkes E R, Chen J H. 2005. The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. Proceedings of the Combustion Institute, 30: 875-882.
    [149] Santner J, Haas F M, Ju Y, Dryer F L. 2014. Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation. Combustion and Flame, 161: 147-153.
    [150] Sarnacki B G, Esposito G, Krauss R H, Chelliah H K. 2012. Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene and n-butane in air. Combustion and Flame, 159: 1026-1043.
    [151] Satoshi Suzuki, Mikito Hori, Hisashi Nakamura, Takuya Tezuka, Susumu Hasegawa, Kaoru Maruta. 2013. Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 34: 3411-3417.
    [152] Schott G L. 1965. Observations of the structure of spinning detonation. Physics of Fluids, 8: 850. Schulz W D. 1992. Oxidation products of a surrogate JP-8 fuel. Preprints-American Chemical Society. Division of Petroleum Chemistry, 37: 383-392.
    [153] Schreiber M, Sadat Sakak A, Lingens A, Griffiths J F. 1994. December). A reduced thermokinetic model for the autoignition of fuels with variable octane ratings. Proceedings of the Combustion Institute, 25: 933-940.
    [154] Schwer D, Kailasanath K. 2011. Numerical investigation of the physics of rotating-detonation-engines. Proceedings of the Combustion Institute, 33: 2195-2202.
    [155] Serbin S, Mostipanenko A, Matveev I, Tropina A. 2011. Improvement of the gas turbine plasma assisted combustor characteristics. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (pp. 4-7)., AIAA-paper 2011-61.
    [156] Shen H P S, Steinberg J, Vanderover J, Oehlschlaeger M A. A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevated pressures. Energy & Fuels, 23: 2482-2489.
    [157] Shen X, Yang X, Santner J, Sun J, Ju Y. 2014. Experimental and Kinetic Studies of Acetylene Flames at Elevated Pressures, Submitted to Proceedings of Combustion Institute, 35.
    [158] Shepherd I G, Ashurst W T. 1992. Flame front geometry in premixed turbulent flames. Proceedings of the Combustion Institute, 24: 485-491.
    [159] Shi Y, Liang L, Ge H W, Reitz R D. 2010. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes. Combustion Theory and Modelling, 14: 69-89.
    [160] Simon B, Rye L, Wilson C W. 2011. Aviation gas turbine alternative fuels: A review, Proc. Combust. Inst., 33: 2863-2885.
    [161] Singleton D, Pendleton S J, Gundersen M A. 2011. The role of non-thermal transient plasma for enhanced flame ignition in C2H4–air. Journal of Physics D: Applied Physics, 44: 022001.
    [162] Smallwood G J, Gülder ¨ O. L, Snelling D R, Deschamps B M, Gökalp I. 1995. Characterization of flame front surfaces in turbulent premixed methane/air combustion. Combustion and Flame, 101: 461-470.
    [163] Soetaert W, Vandamme E J. 2009. Biofuels, John Wiley and Sons, Ltd.
    [164] Soika A, Dinkelacker F, Leipertz A. 2003. Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory. Combustion and flame, 132: 451-462.
    [165] Stancu G D, Janda M, Kaddouri F, Lacoste D A, Laux C O. 2009. Time-Resolved CRDS Measurements of the N2 (A3Σ u+) Density Produced by Nanosecond Discharges in Atmospheric Pressure Nitrogen and Air. The Journal of Physical Chemistry A, 114: 201-208.
    [166] Starikovskaia S. 2006. Plasma assisted ignition and combustion. Journal of Physics D: Applied Physics, 39: 265-299.
    [167] Starikovskiy A, Aleksandrov N. 2012. Plasma-assisted ignition and combustion. Progress in Energy and Combustion Science, 39: 61-110.
    [168] Stepanyan S A, Boumehdi M A, Vanhove G, Starikovskaia S M. 2013. Time–resolved electric field measurements in nanosecond surface dielectric discharge. Comparison of different polarities. Ignition of combustible mixtures by surface discharge in a rapid compression machine, AIAA-paper 2013-1053.
    [169] Sugiyama Y, Matsuo A. 2013. Numerical study of acoustic coupling in spinning detonation propagating in a circular tube. Combustion and Flame, 160: 2457-2470.
    [170] Sun W, Chen Z, Gou X, Ju Y. 2010. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combustion and Flame, 157: 1298-1307.
    [171] Sun W, Uddi M, Ombrello T, Won S H, Carter C, Ju Y. 2011. Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. Proceedings of the Combustion Institute, 33: 3211-3218.
    [172] Sun W, Uddi M, Won S H, Ombrello T, Carter C, Ju Y. 2012. Kinetic effects of non-equilibrium plasmaassisted methane oxidation on diffusion flame extinction limits. Combustion and Flame, 159: 221-229.
    [173] Sun W, Won S H, Ombrello T, Carter C, Ju Y. 2013. Direct ignition and s-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counterflow flame. Proceedings of the Combustion Institute, 34: 847-855.
    [174] Sun W, Ju Y. 2013. Nonequilibrium plasma-assisted combustion: a review of recent progress. J Plasma Fusion Res., 89: 208-219.
    [175] Sun W, Won S H, Ju Y. 2014. In situ plasma activated low temperature chemistry and the S-curve transition in DME/Oxygen/Helium Mixture, Combustion and Flame.
    [176] SunWQ,Won S H, Gou X L, Ju Y. 2014. Multi-scale modeling of dynamics and ignition to flame transitions of high pressure stratified n-heptane/toluene mixtures. Proceedings of Combustion Institute, 35.
    [177] Suzuki S, Mikito Hori, Hisashi Nakamura, Takuya Tezuka, Susumu Hasegawa, Kaoru Maruta. 2013. Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile, Proceedings of the Combustion Institute, 34: 3411-3417.
    [178] Taatjes C A, Hansen N, Osborn D L, Kohse-Höinghaus K, Cool T A, Westmoreland P R. 2008. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. Physical Chemistry Chemical Physics, 10: 20-34.
    [179] Tacina R, Mao C P, Wey C. 2003. Experimental investigation of a multiplex fuel injector module for low emission combustors. AIAA paper, 827, 2003.
    [180] Tien J H, Matalon M. 1991. On the burning velocities of stretched flames. Combustion and Flame, 84: 238-248.
    [181] Tonse S R, Moriarty N W, Brown N J, Frenklach M. 1999. PRISM: piecewise reusable implementation of solution mapping: an economical strategy for chemical kinetics, Israel J Chem., 39: 97–106.
    [182] Tranter R S, Sivaramakrishnan R, Brezinsky K, Allendorf M D. 2002. High pressure, high temperature shock tube studies of ethane pyrolysis and oxidation. Physical Chemistry Chemical Physics, 4: 2001-2010.
    [183] Tse S D, Zhu D L, Law C K. 2000. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proceedings of the Combustion Institute, 28: 1793-1800.
    [184] Uddi M, Jiang N, Mintusov E, Adamovich I V, Lempert W R. 2009. Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proceedings of the Combustion Institute, 32: 929-936.
    [185] Vanhove G, Petit G, Minetti R. 2006. Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel. Combust. Flame, 145: 521-532.
    [186] Vedha Nayagam, Daniel L Dietrich, Paul V Ferkul, Michael C Hicks, Forman A. Williams. 2012. Can cool flames support quasi-steady alkane droplet burning. Combustion and Flame, 159: 3583-3588.
    [187] Veloo P S, Wang Y L, Egolfopoulos F N, Westbrook C K. 2010. A comparative experimental and computational study of methanol, ethanol, and i-butanol flames. Combustion and Flame, 157: 1989-2004.
    [188] Violi A, Yan S, Eddings E G, Sarofim A F, Granata S, Faravelli T, Ranzi E. 2002. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology, 174: 399-417.
    [189] Westbrook C K. 2013. Biofuels Combustion. Annual review of physical chemistry, 64: 201-219.
    [190] Williams S, Gupta M, Owano T, Baer D S, O’Keefe A, Yarkony D R, Matsika S. 2004. Quantitative detection of singlet O2 by cavity-enhanced absorption. Optics letters, 29: 1066-1068.
    [191] Won S H, Sun W, Ju Y. 2010. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames. Combustion and Flame, 157: 411-420.
    [192] Won S H, Dooley S, Dryer F L, Ju Y. 2011. Kinetic effects of aromatic molecular structures on diffusion flame extinction. Proceedings of the Combustion Institute, 33: 1163-1170.
    [193] Won S H, Dooley S, Dryer F L, Ju Y. 2012. A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels. Combustion and Flame, 159: 541- 551.
    [194] Won S H, Dooley S, Veloo P S, Wang H, Oehlschlaeger M A, Dryer F L, Ju Y. 2013. The combustion properties of 2, 6, 10-trimethyl dodecane and a chemical functional group analysis. Combustion and Flame, in press.
    [195] Won S H, Windom B, Jiang B, Ju Y. 2014. The role of low temperature fuel chemistry on turbulent flame propagation. Combustion and Flame, 161: 475-483.
    [196] Won S H, Jiang B, Diévart P, Sohn C H, Ju Y. 2014. Self-Sustaining n-Heptane Cool Diffusion Flames Activated by Ozone. Proceedings of Combustion Institute, 35.
    [197] Wohlwend K, Maurice L Q, Edwards T, Striebich R C, Vangsness M, Hill A S. 2001. Thermal stability of energetic hydrocarbon fuels for use in combined cycle engines. Journal of Propulsion and Power, 17:1258-1262.
    [198] Wood C P, McDonell V G, Smith R A, Samuelsen G S. 1989. Development and application of a surrogate distillate fuel. Journal of Propulsion and Power, 5: 399-405.
    [199] Wu C K, Law C K. 1985. On the determination of laminar flame speeds from stretched flames. Proceedings of the Combustion Institute, 20: 1941-1949.
    [200] Xu B, Ju Y. 2009. Studies on non-premixed flame streets in a mesoscale channel. Proceedings of the Combustion Institute, 32: 1375-1382.
    [201] Yoo C S, Edward S Richardson, Ramanan Sankaran, Jacqueline H Chen. 2011. Proceedings of the Combustion Institute, 33: 1619-1627.
    [202] Yu G, Fan X J. 2013. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 43: 449-471.
    [203] Yuen F T, Gülder Ö L. 2009. Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime. Proceedings of the Combustion Institute, 32: 1747-1754. Zeldovich Y B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combustion and Flame, 39: 211-214.
    [204] Zhang H, Hawkes E R, Chen J H, Kook S. 2013. A numerical study of the autoignition of dimethyl ether with temperature inhomogeneities. Proceedings of the Combustion Institute, 34: 803-812.
    [205] Zhao P, Law C K. 2013. The role of global and detailed kinetics in the first-stage ignition delay in NTCaffected phenomena. Combustion and Flame, 160: 2352-2358.
  • 加载中
计量
  • 文章访问数:  3581
  • HTML全文浏览量:  330
  • PDF下载量:  3129
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-29
  • 修回日期:  2014-03-27
  • 刊出日期:  2014-11-30

目录

    /

    返回文章
    返回