留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池硅负极材料衰退机理的研究进展

马增胜 周益春 刘军 薛冬峰 杨庆生 潘勇

马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇. 锂离子电池硅负极材料衰退机理的研究进展[J]. 力学进展, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066
引用本文: 马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇. 锂离子电池硅负极材料衰退机理的研究进展[J]. 力学进展, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066
MA Zengsheng, ZHOU Yichun, LIU Jun, XUE Dongfeng, YANG Qingsheng, PAN Yong. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries[J]. Advances in Mechanics, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066
Citation: MA Zengsheng, ZHOU Yichun, LIU Jun, XUE Dongfeng, YANG Qingsheng, PAN Yong. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries[J]. Advances in Mechanics, 2013, 43(6): 581-599. doi: 10.6052/1000-0992-13-066

锂离子电池硅负极材料衰退机理的研究进展

doi: 10.6052/1000-0992-13-066
基金项目: 国家自然科学基金(11102176, 11372267);国家高技术研究发展计划(863 计划)(2013AA032502);湖南省战略性新兴产业(2012GK4075)资助项目
详细信息
    通讯作者:

    周益春,潘勇

    周益春,潘勇

  • 中图分类号: TM912

Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries

Funds: The project was supported by the National Natural Science Foundation of China (11102176, 11372267), the National High Technology Research and Development Program of China (863 Program) (2013AA032502), and the Emerging Strategic Industries of Hunan Province (2012GK4075).
More Information
    Corresponding author: ZHOU Yichun; PAN Yong
  • 摘要: 硅负极材料由于具有非常高的理论比容量,使之成为锂离子电池极具前景的负极替代材料,然而,硅负极材料在充放电过程中会发生非常大的体积变形,这会引起活性材料的破坏失效,严重影响其电化学循环性能,成为制约其在锂离子电池领域广泛应用的最大瓶颈,本文介绍了硅负极材料的不同结构形态及其在充放电过程中电化学性能的退化机理,并综述了充放电过程中的力学性能演化、相关理论分析、数值模拟计算等方面的最新国际研究进展,展望了硅负极材料力学失效方面的研究重点,

     

  • [1] Beaulieu L Y, Eberman K W, Turner R L, Krause L, DahnJ. 2001. Colossal reversible volume changes in lithiumalloys. Electrochemical and Solid-State Letters, 4: A137-A140.
    [2] Bhandakkar T K, Johnson H T. 2012. Diffusion inducedstresses in buckling battery electrodes. Journal of theMechanics and Physics of Solids, 60: 1103-1121.
    [3] Bower A F, Guduru P R, Sethuraman V A. 2011. A finitestrain model of stress, diffusion, plastic flow, and elec-trochemical reactions in a lithium-ion half-cell. Journalof the Mechanics and Physics of Solids, 59: 804-828.
    [4] Brassart L, Suo Z. 2012. Reactive flow in large deformationelectrodes of lithium-ion batteries. International Jour-nal of Applied Mechanics, 4: 1250023.
    [5] Brassart L, Suo Z. 2013. Reactive flow in solids. Journalof the Mechanics and Physics of Solids, 61: 61-77.
    [6] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X, Hug-gins R, Cui Y. 2008. High-performance lithium batteryanodes using silicon nanowires. Nature Nanotechnology,3: 31-35.
    [7] Chan M K Y, Wolverton C, Greeley J P. 2012. First prin-ciples simulations of the electrochemical lithiation anddelithiation of faceted crystalline silicon. Journal of the American Chemical Society, 134: 14362-14374.
    [8] Chen J, Xu L, Li W, Gou X. 2005. ff-Fe2O3 nanotubesin gas sensor and lithium-ion battery applications. Ad-vanced Materials, 17: 582-586.
    [9] Cheng Y-T, Verbrugge M W. 2008. The influence of surfacemechanics on diffusion induced stresses within spher-ical nanoparticles. Journal of Applied Physics, 104:083521-6.
    [10] Cheng Y-T, Verbrugge M W. 2010. Diffusion-inducedstress, interfacial charge transfer, and criteria for avoid-ing crack initiation of electrode particles. Journal of the Electrochemical Society, 157: A508-A516.
    [11] Chevrier V L, Dahn J R. 2009. First principles modelof amorphous silicon lithiation. Journal of the Electro-chemical Society, 156: A454-A458.
    [12] Chevrier V L, Dahn J R. 2010. First principles studies ofdisordered lithiated silicon. Journal of the Electrochem-ical Society, 157: A392-A398.
    [13] Chevrier V L, Zwanziger J W, Dahn J R. 2009. First prin-ciples studies of silicon as a negative electrode materialfor lithium-ion batteries. Canadian Journal of Physics,87: 625-632.
    [14] Chon M J, Sethuraman V A, McCormick A, Srinivasan V,Guduru P. 2011. Real-time measurement of stress anddamage evolution during initial lithiation of crystallinedilicon. Physical Review Letters, 107: 045503.
    [15] Cui Z, Gao F, Qu J. 2012. A finite deformation stress-dependent chemical potential and its applications tolithium-ion batteries. Journal of the Mechanics and Physics of Solids, 60: 1280-1295.
    [16] Diao J, Gall K, L. Dunn M. 2004. Atomistic simulation ofthe structure and elastic properties of gold nanowires.Journal of the Mechanics and Physics of Solids, 52:1935-1962.
    [17] Ding N, Xu J, Yao Y X,Wegner G, Fang X, Chen C, Lieber-wirth I. 2009. Determination of the diffusion coefficientof lithium ions in nano-Si. Solid State Ionics, 180: 222-225.
    [18] Golmon S, Maute K, Lee S H, Dunn M. 2010. Stress genera-tion in silicon particles during lithium insertion. AppliedPhysics Letters, 97: 033111.
    [19] 郭炳坤, 徐徽, 王先友, 肖立新. 2002. 锂离子电池. 长沙:中南大学出版社(Guo B K, Xu H,Wang X Y, Xiao L X.2002. Lithium-ion Batteries. Changsha: Central SouthUniversity Press (in Chinese))
    [20] Haftbaradaran H, Gao H. 2012. Ratcheting of silicon is-land electrodes on substrate due to cyclic intercalation.Applied Physics Letters, 100: 121907.
    [21] Hao F, Fang D. 2013. Diffusion-induced stresses of spher-ical core-shell electrodes in lithium-ion batteries: Theeffects of the shell and sturface/interface stress. Journalof the Electrochemical Society, 160: A595-A600.
    [22] Hertzberg B, Alexeev A, Yushin G. 2010. Deformationsin Si-Li anodes upon electrochemical alloying in nano-confined space. Journal of the American Chemical So-ciety, 132: 8548-8549.
    [23] Hertzberg B, Benson J, Yushin G. 2011. Ex-situ depth-sensing indentation measurements of electrochemicallyproduced Si-Li alloy films. Electrochemistry Communi-cations, 13: 818-821.
    [24] Hu Y, Zhao X, Suo Z. 2010. Averting cracks caused byinsertion reaction in lithium{ion batteries. Journal of Materials Research, 25: 1007-1010.
    [25] Huang S, Zhu T. 2011. Atomistic mechanisms of lithium in-sertion in amorphous silicon. Journal of Power Sources,196: 3664-3668.
    [26] Jung S C, Han Y-K. 2012. Ab initio molecular dynamicssimulation of lithiation-induced phase-transition of crys-talline silicon. Electrochimica Acta, 62: 73-76.
    [27] Lee S J, Lee J K, Chung S H, Lee H, Lee S, Baik H. 2001.Stress effect on cycle properties of the silicon thin-filmanode. Journal of Power Sources, 97-98: 191-193.
    [28] Lee J K, Smith K B, Hayner C M, Kung H. 2010. Siliconnanoparticles-graphene paper composites for Liion bat-tery anodes. Chemical Communications, 46: 2025-2027.Lei W, Pan Y, Zhou Y, Zhou W, Peng M, Ma Z. 2013.
    [29] CNTs-Cu composite layer enhanced Sn-Cu alloy as highperformance anode materials for lithium-ion batteries.RSC Advances, DOI: 10.1039/C3RA44431G.
    [30] Li F, Zou Q Q, Xia Y Y. 2008. Co O-loaded graphitablecarbon hollow spheres as anode materials for lithium-ionbattery. Journal of Power Sources, 177: 546-552.Li H, Huang X, Chen L, Wu Z, Liang Y. 1999. A highcapacity nano Si composite anode material for lithiumrechargeable batteries. Electrochemical and Solid-StateLetters, 2: 547-549.
    [31] Li H, Shi L, Lu W, Huang X, Chen L. 2001. Studies on ca-pacity loss and capacity fading of nanosized SnSb alloyanode for Li-ion batteries. Journal of the Electrochemi-cal Society, 148: A915-A922.
    [32] Li H, Wang Z, Chen L, Huang X. 2009. Research on ad-vanced materials for Li-ion batteries. Advanced Materi-als, 21: 4593-4607.
    [33] Li J, Dahn J R. 2007. An in situ X-ray diffraction studyof the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 154: A156-A161.
    [34] Li K, Xie H, Liu J, Ma Z, Zhou Y, Xue D. 2013. Fromchemistry to mechanics: Bulk modulus evolution of Li-Si and Li-Sn alloys via metallic electronegativity scale.Physical Chemistry Chemical Physics, 15: 17658-17663.
    [35] Li X, Meduri P, Chen X, Qi W, Englehard M, Xu W, DingF, Xiao J, Wang W, Wang C, et al. 2012. Hollow core-shell structured porous Si-C nanocomposites for Li-ionbattery anodes. Journal of Materials Chemistry, 22:11014-11017.
    [36] Limthongkul P, Jang Y I, Dudney N J, Chiang Y. 2003.Electrochemically-driven solid-state amorphization inlithium-silicon alloys and implications for lithium stor-age. Acta Materialia, 51: 1103-1113.
    [37] Lindley D. 2010. The energy storage problem. Nature, 463:18-20.
    [38] Liu C, Li F, Ma L P, Cheng H M. 2010. Advanced materialsfor energy storage. Advanced Materials, 22: E28-E62.
    [39] Liu J, Wan Y, Liu W, Ma Z, Ji S, Wang J, Zhou Y, Hodg-son P, Li Y. 2013. Mild and cost-effective synthesis ofiron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes. Journal of Materials ChemistryA, 1: 1969-1975.
    [40] Liu J, Xia H, Xue D, Lu L. 2009. Double-shelled nanocap-sules of V2O5-based composites as high-performance an-ode and cathode materials for Li ion batteries. Journalof the American Chemical Society, 131: 12086-12087.
    [41] Liu J, Xue D. 2008. Thermal oxidation strategy towardsporous metal oxide hollow architectures. Advanced Ma-terials, 20: 2622-2627.
    [42] Liu X H, Zhong L, Huang S, Mao S, Zhu T, Huang J.2012a. Size-dependent fracture of silicon nanoparticlesduring lithiation. ACS Nano, 6: 1522-1531.
    [43] Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y.2012b. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 12: 3315-3321.
    [44] Liu X H, Zhang L Q, Zhong L, Liu Y, Zheng H, Wang J,Cho J, Dayeh S, Picraux S, Sullivan J, Mao S, Ye Z,Huang J. 2011. Ultrafast electrochemical lithiation ofindividual Si nanowire anodes. Nano Letters, 11: 2251-2258.
    [45] Lu B, Song Y, Guo Z, Zhang J. 2013. Modeling of pro-gressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids andStructures, 50: 2495-2507.
    [46] Ma Z, Li T, Huang Y L, Liu J, Zhou Y, Xue D. 2013. Crit-ical silicon-anode size for averting lithiation-induced me-chanical failure of lithium-ion batteries. RSC Advances,3: 7398-7402.
    [47] Ma Z, Zhou Z, Huang Y, Zhou Y, Sun C. 2012. Meso-scopic superelasticity, superplasticity, and superrigidity.Science China Physics, Mechanics and Astronomy, 55:963-979.
    [48] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J,Yushin G. 2010. High-performance lithium-ion anodesusing a hierarchical bottom-up approach. Nature Mate-rials, 9: 353-358.
    [49] Maranchi J P, Hepp A F, Evans A G, Nuhfer N, KumtaP. 2006. Interfacial properties of the a-Si/Cu: Active{inactive thin-film anode system for lithium-ion batter-ies. Journal of the Electrochemical Society, 153: A1246-A1253.
    [50] Maranchi J P, Hepp A F, Kumta P N. 2003. High capacity,reversible silicon thin-film anodes for lithium-ion batter-ies. Electrochemical and Solid-State Letters, 6: A198-A201.
    [51] Obrovac M N, Krause L J. 2007. Reversible cycling of crys-talline silicon powder. Journal of the ElectrochemicalSociety, 154: A103-A108.
    [52] 潘勇, 周益春, 李玮, 王建兴, 周兆峰, 杜超, 堵艳艳. 2010.一种镀覆含纳米线的多层复合薄膜的钢带及其制备方法. 中国发明专利, 201010110129.X,(Pan Y, Zhou YC, Li W, Wang J X, Zhou Z F, Du Y Y. 2010. Onekind of plating multilayer containing nanowires compos-ite film strip and method. Chinese Invention Patent,201010110129.X. (in Chinese))
    [53] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, CuiY, Cho J. 2009. Silicon nanotube battery anodes. NanoLetters, 9: 3844-3847.
    [54] Peng K, Xu Y, Wu Y, Pan Y, Lee S, Zhu J. 2005. Alignedsingle-crystalline Si nanowire arrays for photovoltaic ap-plications. Small, 1: 1062-1067.
    [55] Ryu I, Choi J W, Cui Y, Nix W D. 2011. Size-dependentfracture of Si nanowire battery anodes. Journal of theMechanics and Physics of Solids, 59: 1717-1730.
    [56] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V,Guduru P. 2010a. In situ measurements of stress evolu-tion in silicon thin films during electrochemical lithiationand delithiation. Journal of Power Sources, 195: 5062-5066.
    [57] Sethuraman V A, Chon M J, Shimshak M, Winkle N,Guduru P. 2010b. In situ measurement of biaxial mod-ulus of Si anode for Li-ion batteries. ElectrochemistryCommunications, 12: 1614-1617.
    [58] Sethuraman V A, Srinivasan V, Bower A F, Guduru P.2010c. In situ measurements of stress-potential couplingin lithiated silicon. Journal of the Electrochemical Soci-ety, 157: A1253-A1261.
    [59] Shenoy V B, Johari P, Qi Y. 2010. Elastic softening ofamorphous and crystalline Li{Si phases with increasingLi concentration: A first-principles study. Journal ofPower Sources, 195: 6825-6830.
    [60] Stoney G G. 1909. The tension of metallic films depositedby electrolysis. Proceedings of the Royal Society of Lon-don. Series A, 82: 172-175.
    [61] Sun C Q. 2007. Size dependence of nanostructures: Im-pact of bond order deficiency. Progress in Solid StateChemistry, 35: 1-159.
    [62] Sun Q, Zhang B, Fu Z W. 2008. Lithium electrochemistryof SiO2 thin film electrode for lithium-ion batteries. Ap-plied Surface Science, 254: 3774-3779.
    [63] Whittingham M S. 2004. Lithium batteries and cathodematerials. Chemical Reviews, 104: 4271-4301.
    [64] Xiao X, Liu P, Verbrugge M W, Haftbaradaran H, Gao H.2011. Improved cycling stability of silicon thin film elec-trodes through patterning for high energy density lithiumbatteries. Journal of Power Sources, 196: 1409-1416.
    [65] Yang B, He Y P, Irsa J, Landgren C, Ratchford J, Zhao Y.2012. Effects of composition-dependent modulus, finiteconcentration and boundary constraint on Li-ion diffu-sion and stresses in a bilayer Cu-coated Si nano-anode.Journal of Power Sources, 204: 168-176.
    [66] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W,Cui Y. 2011. Interconnected silicon hollow nanospheresfor lithium-ion battery anodes with long cycle life. Nano Letters, 11: 2949-2954.
    [67] Yin R Z, Kim Y S, Choi W, Kim S, Kim H. 2008. Chap-ter 3 structural analysis and first-principles calculationof lithium vanadium oxide for advanced Li-ion batteries,Advances in Quantum Chemistry, 54: 23-33.
    [68] Zeng S, Tang K, Li T, Liang Z, Wang D, Wang Y, ZhouW. 2007. Hematite hollow spindles and microspheres:Selective synthesis, growth mechanisms, and applicationin lithium ion battery and water treatment. The Journalof Physical Chemistry C, 111: 10217-10225.
    [69] Zhang X, Shyy W, Marie Sastry A. 2007. Numerical sim-ulation of intercalation-induced stress in Li-ion batteryelectrode particles. Journal of the Electrochemical Soci-ety, 154: A910-A916.
    [70] Zhang Z, Fouchard D, Rea J R. 1998. Differential scanningcalorimetry material studies: implications for the safetyof lithium-ion cells. Journal of Power Sources, 70: 16-20.
    [71] Zhao J, Buldum A, Han J, Lu J. 2000. First-principlesstudy of Li-intercalated carbon nanotube ropes. Physi-cal Review Letters, 85: 1706-1709.
    [72] Zhao K, Pharr M, Vlassak J J, Joost J, Suo Z. 2010. Frac-ture of electrodes in lithium-ion batteries caused by fastcharging. Journal of Applied Physics, 108: 073517-6.
    [73] Zhao K, Pharr M, Cai S, Vlassak J, Suo Z. 2011a. Largeplastic deformation in high-capacity lithium-ion batteriescaused by charge and discharge. Journal of the Ameri-can Ceramic Society, 94: s226-s235.
    [74] Zhao K, Wang W L, Gregoire J, Pharr M, Suo Z, Valas-sak J, Kaxiras E. 2011b. Lithium-assisted plastic de-formation of silicon electrodes in lithium-ion batteries:A first-principles theoretical study. Nano Letters, 11:2962-2967.
    [75] Zhao K, Pharr M, Hartle L, Valassak J, Suo Z. 2012a. Frac-ture and debonding in lithium-ion batteries with elec-trodes of hollow core{shell nanostructures. Journal ofPower Sources, 218: 6-14.
    [76] Zhao K, Pharr M, Wan Q, Wang W, Kaxiras E. VlassakJ, Suo Z. 2012b. Concurrent reaction and plasticity dur-ing initial lithiation of crystalline silicon in lithium-ionbatteries. Journal of the Electrochemical Society, 159:A238-A243.
    [77] Zhao K, Tritsaris G A, Pharr M, Wang W, Okeke O, SuoZ, Vlassak J, Kaxiras E. 2012c. Reactive flow in sili-con electrodes assisted by the insertion of lithium. NanoLetters, 12: 4397-4403.
    [78] 周益春, 潘勇, 李玮, 王建兴, 赌艳艳, 杜超, 戴翠英. 2010. 一种镀覆微/纳米晶镍多层薄膜的钢带及其制备方法. 中国发明专利, 201010110128.5 (Zhou YC, Pan Y, Li W, Wang J X, Du Y Y, Du C, Dai CY. One kind of plating micronano-crystal multilayernickel films strip and method. Chinese Invention Patent,201010110128.X. (in Chinese))
  • 加载中
计量
  • 文章访问数:  3429
  • HTML全文浏览量:  189
  • PDF下载量:  4791
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-01
  • 修回日期:  2013-10-22
  • 刊出日期:  2013-11-25

目录

    /

    返回文章
    返回