留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小天体附近轨道动力学与控制研究现状与展望

崔平远 乔栋

崔平远, 乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061
引用本文: 崔平远, 乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061
CUI Pingyuan, QIAO Dong. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061
Citation: CUI Pingyuan, QIAO Dong. State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances in Mechanics, 2013, 43(5): 526-539. doi: 10.6052/1000-0992-13-061

小天体附近轨道动力学与控制研究现状与展望

doi: 10.6052/1000-0992-13-061
基金项目: 国家重点基础研究发展计划(973计划)(2012CB720000);国家自然科学基金(11102020);北京理工大学科技创新团队项目资助.
详细信息
    作者简介:

    崔平远,博士生导师.1983年毕业于哈尔滨工业大学控制工程系,1990年获哈尔滨工业大学一般力学专业博士学位,1993年任哈尔滨工业大学教授.现任北京理工大学宇航学院教授,深空探测技术研究所所长,小天体探测与防御实验室主任,机械与运载学部副主任委员;兼任863计划主题专家组成员,973计划项目首席科学家.

    通讯作者:

    乔栋

  • 中图分类号: V412.4

State-of-the-art and prospects for orbital dynamics and control near small celestial bodies

Funds: The project was supported by the National Basic Research Program of China (2012CB720000), National Natural Science Foundation of China (11102020) and Beijing Institute of Technology Innovation Team Project.
More Information
    Corresponding author: QIAO Dong
  • 摘要: 小天体探测是未来深空探测的重点领域之一, 而小天体附近轨道动力学与控制问题是小天体探测任务迫切需要解决的关键问题. 该问题涉及形状不规则小天体附近的动力学环境建模与小天体附近轨道动力学机理. 本文从不规则形状小天体引力场的建模、小天体附近的自然轨道动力学、小天体附近的受控轨道动力学3 个方面综述了小天体附近轨道动力学与控制的研究现状与发展趋势, 并分析了小天体附近轨道动力学所面临的挑战与难题, 最后对我国未来小天体探测任务可能涉及的轨道动力学与控制问题的发展方向进行了展望.

     

  • [1] Bellerose J, Yano H, Scheeres D J. 2010. Solar radiation pressure perturbations at binary asteroid systems. Advances in the Astronautical Sciences, 135: 747-764.
    [2] Broschart S B, Scheeres D J. 2005. Control of hovering spacecraft near small bodies: Application to Asteroid 25143 Itokawa. Journal of Guidance Control and Dynamics, 28: 343-354.
    [3] Broschart S B, Scheeres D J, Villac B F. 2010. New families of multi-revolution terminator orbits near small orbits. Advances in the Astronautical Sciences, 135: 1685-1702.
    [4] Broschart S B, Scheeres D J. 2003. Numerical solution to the small-body hovering problem. Advances in the Astronautical Sciences, 114: 875-894.
    [5] Byram S M, Scheeres D J, Combi M R. 2007. Models for the comet dynamical environment. Journal of Guidance, Control, and Dynamics, 30: 1445-1454.
    [6] Cui P Y,Qiao D,Cui H T,Luan E J. 2010. Target selection and transfer trajectories design for exploring asteroid mission. Science China Technological Sciences, 53: 1150-1158.
    [7] 崔祜涛, 史雪岩, 崔平远, 栾恩杰. 2004a. 绕飞慢自旋小天体的航天器运动分析. 航空学报, 25: 16-20 (Cui H T, Shi X Y, Cui P Y, Luan E J. 2004a. Spacecraft motion analysis about slowly rotating small body. Acta Aeronautica et Astronautica Sinica, 25: 16-20 (in Chinese)
    [8] 崔祜涛, 史雪岩, 崔平远, 栾恩杰. 2004b. 航天器环绕小行星Ivar的运动分析. 宇航学报, 25: 251-255 (Cui H T, Shi X Y, Cui P Y, Luan E J. 2004b. Motion analysis of spacecraft around the asteroid Ivar. Journal of Astronautics, 25: 251-255 (in Chinese)
    [9] Dechambre D, Scheeres D J. 2002. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients. Astronomy & Astrophysics, 387: 1114-1122.
    [10] Garmier R, Barriot J P. 2001. Ellipsoidal harmonic expansions of the gravitational potential: Theory and application. Celestial Mechanics and Dynamical Astronomy, 79: 235-275.
    [11] Hobson E. 1955. The Theory of Spherical and Ellipsoidal Harmonics. New York: Chelsea Publishing Company.
    [12] 黄江川, 王晓磊, 孟林智, 饶炜, 李克行, 乔栋, 黄昊, 周文艳. 2013. 嫦娥二号卫星飞越4179小行星逼近策略及成像技术. 中国科学(技术科学), 43: 478-486 (Huang J C, Wang X L, Meng L Z, Rao W, Li K X, Qiao D, Huang H, Zhou W Y. 2013. Approaching strategy and imaging technique for CE-2 flyby 4179 asteroid mission. Science China (Technological Sciences), 43: 478-486 (in Chinese)
    [13] 胡寿村, 季江徽, 赵玉晖, 孟林智. 2013. 嫦娥二号飞越小行星试验中图塔蒂斯轨道确定与精度分析. 中国科学 技术科学, 43: 506-511 (Hu S C, Ji J H. Zhao Y H, Meng L Z. 2013. Orbit determination and precision analysis of Toutatis asteroid for CE-2 flyby asteroid mission. Science China Technological Sciences, 43: 506-511 (in Chinese)
    [14] Hu W D, Scheeres D J. 2004. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planetary and Space Science, 52: 685-692.
    [15] Hu W D, Scheeres D J. 2008. Periodic orbits in rotating second degree and order gravity fields. Chinese Journal of Astronomy and Astrophysics, 8: 108-118.
    [16] Hu W D, Scheeres D J. 2002. Spacecraft motion about slowly rotating asteroids. Journal of Guidance Control and Dynamics, 25: 765-775.
    [17] Hu W D, Scheeres D J, Xiang K H. 2009. The characteristics of near asteroid orbital dynamics and its implication to mission analysis. Progress in Astronomy, 27: 152-166 (in Chinese).
    [18] Kaula W M. 2000. Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Mineola: Dover Publications. 4-8.
    [19] Lara M, Scheeres D J. 2002. Stability bounds for three dimensional motion close to asteroids. Journal of the Astronautical Sciences, 50: 389-409.
    [20] Li X Y, Qiao D, Cui P Y. 2013. The equilibria and periodic orbits around a dumbbell-shaped body. Astrophysics and Space Science, DOI 10.1007/s10509-013-1592-1.
    [21] Liu X D, Baoyin H X, Ma X R. 2011a. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophysics Space Science, 333: 409-418.
    [22] Liu X D, Baoyin H X, Ma X R. 2011b. Periodic orbits in the gravity field of a fixed homogeneous cube. Astrophysics Space Science, 334: 357-364.
    [23] Morrow E, Scheeres D J, Lubin D. 2011. Solar sail orbit operations at asteroids. Journal of Spacecraft and Rockets, 38: 279-286.
    [24] Pick M, Picha J, Vyskocil V. 1973. Theory of the Earth's Gravity Field. New York: Elsevier Scientific Publishing Company, 223-245.
    [25] 乔栋, 黄江川, 崔平远, 饶炜, 姜晓军, 孟林智, 黄昊, 黄晓峰. 2013. 嫦娥二号卫星飞越探测小行星的目标选择. 中国科学 技术科学, 43: 602-608 (Qiao D, Huang J C, Cui P Y, Rao W, Jiang X J, Meng L Z, Huang H, Huang X F. 2013. Selection target for CE-2 flyby asteroid mission. Science China Technological Sciences, 43: 602-608 (in Chinese)
    [26] 乔栋, 黄江川, 崔平远, 饶炜, 王晓磊, 黄昊, 孟林智, 周文艳. 2013. 嫦娥二号卫星飞越Toutatis小行星转移轨道设计. 中国科学 (技术科学), 43: 487-492 (Qiao D, Huang J C, Cui P Y, Wang X L, Huang H, Meng L Z, Zhou W Y. 2013. Trajectory design of CE-2 flyby Toutatis asteroid mission. Science China (Technological Sciences), 43: 487-492 (in Chinese)
    [27] Rossi A, Marzari F, Farinella P. 1999. Orbital evolution around irregular bodies. Earth Planets Space, 51: 1173-1180.
    [28] Sawai S, Scheeres D J, Broschart S B. 2002. Control of hovering spacecraft using altimetry. Journal of Guidance, Control and Dynamics, 25: 786-795.
    [29] Sawai S, Scheeres D J. 2001. Hovering and translational motions over small bodies. Advance in the Astronautical Sciences, 108: 781-796.
    [30] Scheers D J. 1999. The effect of C22 on orbit energy and angular momentum. Celestial Mechanics and Dynamical Astronomy, 73: 339-348.
    [31] Scheeres D J. 1994a. Dynamics about uniformly rotating tri-axial ellipsoids applications to asteroids. Icarus, 110: 225-238
    [32] Scheeres D J. 1994b. Satellite dynamics about asteroids. Advances in the Astronautical Sciences Series Spaceflight Mechanics, 87: 275-292.
    [33] Scheeres D J, Ostro S J, Hudson R S, Werner R A. 1996. Orbits close to asteroid 4769 Castalia. Icarus, 121: 67-87.
    [34] Scheeres D J, Ostro S J, Hudson R S, DeJong E M, Suzuki S. 1998. Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 132: 53-79.
    [35] Scheeres D J. 1994. Satellite dynamics about triaxial ellipsoids. in: Proceedings of Advances in Nonlinear Astrodynamics, Belbruno E. Ed., Geometry Center No.GCG65, 1-28.
    [36] Scheeres D J, Hu W D. 2001. Secular motion in a 2nd degree and order-gravity field with no rotation. Celestial Mechanics & Dynamical Astronomy, 79: 183-200.
    [37] Scheeres D J. 1999. Satellite dynamics about small bodies: averaged solar radiation pressure effects. Journal of the Astronautical Sciences, 47: 25-46.
    [38] Scheeres D J. 2012. Orbit Mechanics about asteroids and comets. Journal of Guidance Control and Dynamics, 35: 987-997.
    [39] Scheeres D J. 2012. Orbital mechanics about small bodies. Acta Astronautica, 72: 1-14.
    [40] Sharma A K, Narasaiah M L. 2007. Dynamics of Rigid Bodies. New Delhi: Discovery Publishing House, 89-97.
    [41] Walter H G. 1969. Dynamics of Satellites. Berlin: Springer Heidelberg, 28-35.
    [42] Werner R A. 1996. On the gravity field of irregularly shaped celestial bodies. [Ph.D. Thesis] Austin: University of Texas, 36-52.
    [43] Werner R A. 1994. The gravitational potential of a homogeneous polyhedron. Celestial Mechanics and Dynamical Astronomy, 59: 253-278.
    [44] Werner R A. Scheeres D J. 1997. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy, 65: 313-344.
    [45] William B. 1997. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid. Celestial Mechanics and Dynamical Astronomy, 67: 107-110.
    [46] Winkler T M. 2013. Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids. [Master Thesis] Iowa: Iowa State University, 36-37.
    [47] Yu Y, Baoyin H X. 2012a. Generating families of 3D periodic orbits about asteroids. Monthly Notices of the Royal Astronomical Society, 427: 872-881.
    [48] Yu Y, Baoyin H X. 2012b. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. The Astronomical Journal, 143: 62-71.
    [49] Yu Y, Baoyin H X. 2012. Resonant orbits in the vicinity of asteroid 216 Kleopatra. Astrophysics Space Science, 343: 75-82.
  • 加载中
计量
  • 文章访问数:  1812
  • HTML全文浏览量:  131
  • PDF下载量:  2013
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-02
  • 修回日期:  2013-09-19
  • 刊出日期:  2013-09-25

目录

    /

    返回文章
    返回