[1] |
Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal onNumerical Analysis, 39: 742-760.
|
[2] |
Bassi F, Rebay S. 1997. A high-order accurate discontin-uous finite element method for the numerical solutionof the compressible Navier-Stokes equations. Journal ofComputational Physics, 131: 267-279.
|
[3] |
Baumann C E, Oden J T. 1999. A discontinuous h-p fi-nite element method for convection-diffusion problems.Computer Methods in Applied Mechanics and Engineer-ing, 175: 311-341.
|
[4] |
Biswas R, Devine K D, Flaherty J. 1994. Parallel, adaptivefinite element methods for conservation laws. Applied Numerical Mathematics, 14: 255-283.
|
[5] |
Bokanowski O, Cheng Y, Shu C W. 2011. A discontinuous Galerkin solver for front propagation. SIAM Journal onScientific Computing, 33: 923-938.
|
[6] |
Bokanowski O, Cheng Y, Shu C W. A discontinuous Galerkin scheme for front propagation with obsta-cles. Numerische Mathematik, to appear. DOI: 10.1007/s00211-013-0555-3.
|
[7] |
Bokanowski O, Cheng Y, Shu C W. Convergence of dis-continuous Galerkin schemes for front propagation withobstacles. submitted to Mathematics of Computation.Burbeau A, Sagaut P, Bruneau Ch H. 2001. A problem-independent limiter for high-order Runge-Kutta discon-tinuous Galerkin methods. Journal of Computational Physics, 169: 111-150.
|
[8] |
Canuto C, Fagnani F, Tilli P. 2012. An Eulerian approachto the analysis of Krause's consensus models. SIAM Journal on Control and Optimization, 50: 243-265.
|
[9] |
Chen G Q, Liu H. 2003. Formation of ffi-shocks and vacuumstates in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 34: 925-938.
|
[10] |
Cheng Y, Shu C W. 2007. A discontinuous Galerkin finiteelement method for directly solving the Hamilton-Jacobiequations. Journal of Computational Physics, 223: 398-415.
|
[11] |
Cheng Y, Shu C W. 2008. A discontinuous Galerkin finiteelement method for time dependent partial differentialequations with higher order derivatives. Mathematics ofComputation, 77: 699-730.
|
[12] |
Cockburn B. 1999. Discontinuous Galerkin Methods for Convection-Dominated Problems. Berlin, Heidelberg,Springer 69-224.
|
[13] |
Cockburn B, Hou S, Shu C W. 1990. The Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅳ: the multidimensionalcase. Mathematics of Computation, 54: 545-581.
|
[14] |
Cockburn B, Karniadakis G, Shu C W. 2000. The De-velopment of Discontinuous Galerkin Methods. Berlin,Heidelberg, Springer, 3-50.
|
[15] |
Cockburn B, Lin S Y, Shu C W. 1989. TVB Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅲ: one-dimensional sys-tems. Journal of Computational Physics, 84: 90-113.
|
[16] |
Cockburn B, Shu C W. 1989. TVB Runge-Kutta local pro-jection discontinuous Galerkin finite element method forconservation laws Ⅱ: general framework. Mathematics of Computation, 52: 411-435.
|
[17] |
Cockburn B, Shu C W. 1991. The Runge-Kutta local pro-jection P1-discontinuous-Galerkin finite element methodfor scalar conservation laws. Mathematical Modellingand Numerical Analysis (M2AN), 25: 337-361.
|
[18] |
Cockburn B, Shu C W. 1998. The Runge-Kutta discontin-uous Galerkin method for conservation laws Ⅴ: multidi-mensional systems. Journal of Computational Physics,141: 199-224.
|
[19] |
Cockburn B, Shu C W. 1998. The local discontinu-ous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Anal-ysis, 35: 2440-2463.
|
[20] |
Cockburn B, Shu C W. 2001. Runge-Kutta discontinuousGalerkin methods for convection-dominated problems.Journal of Scientific Computing, 16: 173-261.
|
[21] |
Cockburn B, Shu C W. 2005. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 22-23: 1-3.
|
[22] |
Cockburn B, Shu C W. 2009. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 40: 1-3.
|
[23] |
Dawson C. 2006. Foreword for the special issue on discon-tinuous Galerkin method. Computer Methods in Applied Mechanics and Engineering, 195: 3183.
|
[24] |
Du J, Shu C W, Zhang M. 2013. A simple weighted essen-tially non-oscillatory limiter for the correction procedurevia reconstruction (CPR) framework. submitted to Ap-plied Numerical Mathematics.
|
[25] |
Einfeldt B, Munz C D, Roe P L, Sjöogreen B. 1991. On Godunov-Type methods near low densities. Journal of Computational Physics, 92: 273-295.
|
[26] |
Gottlieb S, Ketcheson D, Shu C W. 2011. Strong Stability Preserving Runge-Kutta and Multistep Time Discretiza-tions, Singapore: World Scientific.
|
[27] |
Harten A. 1983. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,49: 357-393.
|
[28] |
Harten A, Lax P D, van Leer B. 1983. On upstream dif-ferencing and Godunov type schemes for hyperbolic con-servation laws. SIAM Review, 25: 35-61.
|
[29] |
Hesthaven J, Warburton T. 2008. Nodal Discontinuous Galerkin Methods, New York: Springer.
|
[30] |
Hou S, Liu X D. 2007. Solutions of multi-dimensional hy-perbolic systems of conservation laws by square entropycondition satisfying discontinuous Galerkin method.Journal of Scientific Computing, 31: 127-151.
|
[31] |
Hu C, Shu C W. 1999. Weighted essentially non-oscillatorys chemes on triangular meshes. Journal of ComputationalPhysics, 150: 97-127.
|
[32] |
Hu C, Shu C W. 1999. A discontinuous Galerkin finiteelement method for Hamilton-Jacobi equations. SIAMJournal on Scientific Computing, 21: 666-690.
|
[33] |
Jiang G S, Shu C W. 1994. On cell entropy inequality fordiscontinuous Galerkin methods. Mathematics of Com-putation, 62: 531-538.
|
[34] |
Jiang G S, Shu C W. 1996. Efficient implementationof weighted ENO schemes. Journal of ComputationalPhysics, 126: 202-228.
|
[35] |
Kanschat G. 2007. Discontinuous Galerkin Methods for Viscous Flow, Wiesbaden Deutscher Universitätsverlag.Klockner A, Warburton T, Bridge J, Hesthaven J. 2010.Nodal discontinuous Galerkin methods on graphics pro-cessors. Journal of Computational Physics, 228: 7863-7882.
|
[36] |
Krivodonova L, Xin J, Remacle J F, Chevaugeon N, Fla-herty J E. 2004. Shock detection and limiting with dis-continuous Galerkin methods for hyperbolic conservationlaws. Applied Numerical Mathematics, 48: 323-338.
|
[37] |
LeVeque R J. 1990. Numerical Methods for Conservation Laws, Basel: Birkhauser Verlag.
|
[38] |
Li B. 2006. Discontinuous Finite Elements in Fluid Dy-namics and Heat Transfer, Basel Birkhauser.
|
[39] |
Li F, Shu C W. 2005. Reinterpretation and simplifiedimplementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Applied Mathematics Let-ters, 18: 1204-1209.
|
[40] |
Liu H, Yan J. 2009. The direct discontinuous Galerkin(DDG) methods for diffusion problems. SIAM Journalon Numerical Analysis, 47: 675-698.
|
[41] |
Liu H, Yan J. 2010. The direct discontinuous Galerkin(DDG) methods for diffusion with interface corrections.Communications in Computational Physics, 8: 541-564.
|
[42] |
Liu X, Osher S, Chan T. 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics,115: 200-212.
|
[43] |
Oden J T, Babuvska I, Baumann C E. 1998. A discon-tinuous hp finite element method for diffusion problems.Journal of Computational Physics, 146: 491-519.
|
[44] |
Perthame B. 1992. Second-order Boltzmann schemes forcompressible Euler equations in one and two space di-mensions. SIAM Journal on Numerical Analysis, 29:1-19.
|
[45] |
Perthame B, Shu C W. 1996. On positivity preserving fi-nite volume schemes for Euler equations. NumerischeMathematik, 73: 119-130.
|
[46] |
Qiu J M, Shu C W. 2011. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoret-ical analysis and application to the Vlasov-Poisson sys-tem. Journal of Computational Physics, 230: 8386-8409.
|
[47] |
Qiu J X, Shu C W. 2003. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method: one-dimensional case. Journal ofComputational Physics, 193: 115-135.
|
[48] |
Qiu J X, Shu C W. 2005. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method Ⅱ: two dimensional case. Compu-ters and Fluids, 34: 642-663.
|
[49] |
Qiu J X, Shu C W. 2005. Runge-Kutta discontinuousGalerkin method using WENO limiters. SIAM Journalon Scientific Computing, 26: 907-929.
|
[50] |
Qiu J X, Shu C W. 2005. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkinmethods using weighted essentially nonoscillatory lim-iters. SIAM Journal on Scientific Computing, 27: 995-1013.
|
[51] |
Reed W H, Hill T R. 1973. Triangular mesh methods forthe neutron transport equation, Los Alamos ScientificLaboratory Report LA-UR-73-479, Los Alamos, NMRemacle J F, Flaherty J, Shephard M. 2003. An adaptivediscontinuous Galerkin technique with an orthogonal ba-sis applied to Rayleigh-Taylor flow instabilities. SIAM Review, 45: 53-72.
|
[52] |
Riviére B. 2008. Discontinuous Galerkin Methods for Solv-ing Elliptic and Parabolic Equations: Theory and Imple-mentation, Philadelphia: SIAM
|
[53] |
Rossmanith J A, Seal D C. 2011. A positivity-preserving high-order semi-Lagrangian discontinuousGalerkin scheme for the Vlasov-Poisson equations. Jour-nal of Computational Physics, 230: 6203-6232.
|
[54] |
Shi J, Hu C, Shu C W. 2002. A technique of treating neg-ative weights in WENO schemes. Journal of Computa-tional Physics, 175: 108-127.
|
[55] |
Shu C W. 1987. TVB uniformly high-order schemes for con-servation laws. Mathematics of Computation, 49: 105-121.
|
[56] |
Shu C W. 2009. Discontinuous Galerkin methods: Generalapproach and stability. Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathemat-ics CRM Barcelona, 149-201.
|
[57] |
Shu C W, Osher S. 1988. Efficient implementation of essen-tially non-oscillatory shock-capturing schemes. Journalof Computational Physics, 77: 439-471.
|
[58] |
Toro E F. 1999. Riemann Solvers and Numerical Methodsfor Fluid Dynamics, Berlin: Springer-Verlag.
|
[59] |
Wang Z J, Gao H. 2009. A unifying lifting colloca-tion penalty formulation including the discontinuousGalerkin, spectral volume/difference methods for conser-vation laws on mixed grids. Journal of Computational Physics, 228: 8161-8186.
|
[60] |
Wheeler M F. 1978. An elliptic collocation-finite elementmethod with interior penalties. SIAM Journal on Nu-merical Analysis, 15: 152-161.
|
[61] |
Xing Y, Zhang X, Shu C W. 2010. Positivity preservinghigh order well balanced discontinuous Galerkin meth-ods for the shallow water equations. Advances in Water Resources, 33: 1476-1493.
|
[62] |
Xu Y, Shu C W. 2010. Local discontinuous Galerkin meth-ods for high-order time-dependent partial differentialequations. Communications in Computational Physics,7: 1-46.
|
[63] |
Yan J, Osher S. 2011. A local discontinuous Galerkinmethod for directly solving Hamilton Jacobi equations.Journal of Computational Physics, 230: 232-244.
|
[64] |
Yang Y, Shu C W. 2013. Discontinuous Galerkin method for hyperbolic equations involving ffi-singularities:negative-order norm error estimates and applications.Numerische Mathematik, 124: 753-781.
|
[65] |
Yang Y, Wei D, Shu C W. 2013. Discontinuous Galerkinmethod for Krause's consensus models and pressureless Euler equations. Journal of Computational Physics, 252:109-127.
|
[66] |
Zhang Q, Shu C W. 2010. Stability analysis and a priorierror estimates to the third order explicit Runge-Kuttadiscontinuous Galerkin method for scalar conservationlaws. SIAM Journal on Numerical Analysis, 48: 1038-1063.
|
[67] |
Zhang X, Shu C W. 2010. On maximum-principle-satisfying high order schemes for scalar conservationlaws. Journal of Computational Physics, 229: 3091-3120.
|
[68] |
Zhang X, Shu C W. 2010. On positivity preserving highorder discontinuous Galerkin schemes for compressibleEuler equations on rectangular meshes. Journal of Com-putational Physics, 229: 8918-8934.
|
[69] |
Zhang X, Shu C W. 2011a. Positivity-preserving high orderdiscontinuous Galerkin schemes for compressible Eulerequations with source terms. Journal of ComputationalPhysics, 230: 1238-1248.
|
[70] |
Zhang X, Shu C W. 2011b. Maximum-principle-satisfyingand positivity-preserving high order schemes for conser-vation laws: Survey and new developments, in: Proceed-ings of the Royal Society A, 467: 2752-2776.
|
[71] |
Zhang X, Shu C W. 2012. A minimum entropy principleof high order schemes for gas dynamics equations. Nu-merische Mathematik, 121: 545-563.
|
[72] |
Zhang X, Xia Y, Shu C W. 2012. Maximum-principle-satisfying and positivity-preserving high order discontin-uous Galerkin schemes for conservation laws on triangu-lar meshes. Journal of Scientific Computing, 50: 29-62.
|
[73] |
Zhang Y, Zhang X, Shu C W. 2013. Maximum-principle-satisfying second order discontinuous Galerkin schemesfor convection-diffusion equations on triangular meshes.Journal of Computational Physics, 234: 295-316.
|
[74] |
Zhang Y T, Shu C W. 2009. Third order WENO scheme onthree dimensional tetrahedral meshes. Communicationsin Computational Physics, 5: 836-848.
|
[75] |
Zhong X, Shu C W. 2012. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuousGalerkin methods. Journal of Computational Physics,232: 397-415.
|
[76] |
Zhu J, Qiu J X, Shu C W, Dumbser M. 2008. Runge-Kutta discontinuous Galerkin method using WENO lim-iters II: Unstructured meshes. Journal of ComputationalPhysics, 227: 4330-4353.
|
[77] |
Zhu J, Zhong X, Shu C W, Qiu J X. 2013. Runge-Kutta dis-continuous Galerkin method using a new type of WENOlimiters on unstructured meshes. Journal of Computa-tional Physics, 248: 200-220.
|