留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计算流体力学中的间断Galerkin方法述评

舒其望

舒其望. 计算流体力学中的间断Galerkin方法述评[J]. 力学进展, 2013, 43(6): 541-554. doi: 10.6052/1000-0992-13-059
引用本文: 舒其望. 计算流体力学中的间断Galerkin方法述评[J]. 力学进展, 2013, 43(6): 541-554. doi: 10.6052/1000-0992-13-059
Chi-Wang Shu. A brief survey on discontinuous Galerkin methods in computational fluid dynamics[J]. Advances in Mechanics, 2013, 43(6): 541-554. doi: 10.6052/1000-0992-13-059
Citation: Chi-Wang Shu. A brief survey on discontinuous Galerkin methods in computational fluid dynamics[J]. Advances in Mechanics, 2013, 43(6): 541-554. doi: 10.6052/1000-0992-13-059

计算流体力学中的间断Galerkin方法述评

doi: 10.6052/1000-0992-13-059
详细信息
    通讯作者:

    舒其望

  • 中图分类号: O35

A brief survey on discontinuous Galerkin methods in computational fluid dynamics

Funds: The project was partially supported by US NSF grant DMS-1112700 and by the Open Fund of State Key Laboratory of High-temperature Gas Dynamics, China (No. 2011KF02).
More Information
    Corresponding author: Chi-Wang Shu
  • 摘要: 间断Galerkin (DG)方法结合了有限元法(具有弱形式、有限维解和试验函数空间)和有限体积法(具有数值通量、非线性限制器)的优点,特别适合对流占优问题(如激波等线性和非线性波)的模拟研究,本文述评DG 方法,强调其在计算流体力学(CFD)中的应用,文中讨论了DG 方法的必要构成要素和性能特点,并介绍了该方法的一些最近研究进展,相关工作促进了DG 方法在CFD 领域的应用,

     

  • [1] Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal onNumerical Analysis, 39: 742-760.
    [2] Bassi F, Rebay S. 1997. A high-order accurate discontin-uous finite element method for the numerical solutionof the compressible Navier-Stokes equations. Journal ofComputational Physics, 131: 267-279.
    [3] Baumann C E, Oden J T. 1999. A discontinuous h-p fi-nite element method for convection-diffusion problems.Computer Methods in Applied Mechanics and Engineer-ing, 175: 311-341.
    [4] Biswas R, Devine K D, Flaherty J. 1994. Parallel, adaptivefinite element methods for conservation laws. Applied Numerical Mathematics, 14: 255-283.
    [5] Bokanowski O, Cheng Y, Shu C W. 2011. A discontinuous Galerkin solver for front propagation. SIAM Journal onScientific Computing, 33: 923-938.
    [6] Bokanowski O, Cheng Y, Shu C W. A discontinuous Galerkin scheme for front propagation with obsta-cles. Numerische Mathematik, to appear. DOI: 10.1007/s00211-013-0555-3.
    [7] Bokanowski O, Cheng Y, Shu C W. Convergence of dis-continuous Galerkin schemes for front propagation withobstacles. submitted to Mathematics of Computation.Burbeau A, Sagaut P, Bruneau Ch H. 2001. A problem-independent limiter for high-order Runge-Kutta discon-tinuous Galerkin methods. Journal of Computational Physics, 169: 111-150.
    [8] Canuto C, Fagnani F, Tilli P. 2012. An Eulerian approachto the analysis of Krause's consensus models. SIAM Journal on Control and Optimization, 50: 243-265.
    [9] Chen G Q, Liu H. 2003. Formation of ffi-shocks and vacuumstates in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 34: 925-938.
    [10] Cheng Y, Shu C W. 2007. A discontinuous Galerkin finiteelement method for directly solving the Hamilton-Jacobiequations. Journal of Computational Physics, 223: 398-415.
    [11] Cheng Y, Shu C W. 2008. A discontinuous Galerkin finiteelement method for time dependent partial differentialequations with higher order derivatives. Mathematics ofComputation, 77: 699-730.
    [12] Cockburn B. 1999. Discontinuous Galerkin Methods for Convection-Dominated Problems. Berlin, Heidelberg,Springer 69-224.
    [13] Cockburn B, Hou S, Shu C W. 1990. The Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅳ: the multidimensionalcase. Mathematics of Computation, 54: 545-581.
    [14] Cockburn B, Karniadakis G, Shu C W. 2000. The De-velopment of Discontinuous Galerkin Methods. Berlin,Heidelberg, Springer, 3-50.
    [15] Cockburn B, Lin S Y, Shu C W. 1989. TVB Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅲ: one-dimensional sys-tems. Journal of Computational Physics, 84: 90-113.
    [16] Cockburn B, Shu C W. 1989. TVB Runge-Kutta local pro-jection discontinuous Galerkin finite element method forconservation laws Ⅱ: general framework. Mathematics of Computation, 52: 411-435.
    [17] Cockburn B, Shu C W. 1991. The Runge-Kutta local pro-jection P1-discontinuous-Galerkin finite element methodfor scalar conservation laws. Mathematical Modellingand Numerical Analysis (M2AN), 25: 337-361.
    [18] Cockburn B, Shu C W. 1998. The Runge-Kutta discontin-uous Galerkin method for conservation laws Ⅴ: multidi-mensional systems. Journal of Computational Physics,141: 199-224.
    [19] Cockburn B, Shu C W. 1998. The local discontinu-ous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Anal-ysis, 35: 2440-2463.
    [20] Cockburn B, Shu C W. 2001. Runge-Kutta discontinuousGalerkin methods for convection-dominated problems.Journal of Scientific Computing, 16: 173-261.
    [21] Cockburn B, Shu C W. 2005. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 22-23: 1-3.
    [22] Cockburn B, Shu C W. 2009. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 40: 1-3.
    [23] Dawson C. 2006. Foreword for the special issue on discon-tinuous Galerkin method. Computer Methods in Applied Mechanics and Engineering, 195: 3183.
    [24] Du J, Shu C W, Zhang M. 2013. A simple weighted essen-tially non-oscillatory limiter for the correction procedurevia reconstruction (CPR) framework. submitted to Ap-plied Numerical Mathematics.
    [25] Einfeldt B, Munz C D, Roe P L, Sjöogreen B. 1991. On Godunov-Type methods near low densities. Journal of Computational Physics, 92: 273-295.
    [26] Gottlieb S, Ketcheson D, Shu C W. 2011. Strong Stability Preserving Runge-Kutta and Multistep Time Discretiza-tions, Singapore: World Scientific.
    [27] Harten A. 1983. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,49: 357-393.
    [28] Harten A, Lax P D, van Leer B. 1983. On upstream dif-ferencing and Godunov type schemes for hyperbolic con-servation laws. SIAM Review, 25: 35-61.
    [29] Hesthaven J, Warburton T. 2008. Nodal Discontinuous Galerkin Methods, New York: Springer.
    [30] Hou S, Liu X D. 2007. Solutions of multi-dimensional hy-perbolic systems of conservation laws by square entropycondition satisfying discontinuous Galerkin method.Journal of Scientific Computing, 31: 127-151.
    [31] Hu C, Shu C W. 1999. Weighted essentially non-oscillatorys chemes on triangular meshes. Journal of ComputationalPhysics, 150: 97-127.
    [32] Hu C, Shu C W. 1999. A discontinuous Galerkin finiteelement method for Hamilton-Jacobi equations. SIAMJournal on Scientific Computing, 21: 666-690.
    [33] Jiang G S, Shu C W. 1994. On cell entropy inequality fordiscontinuous Galerkin methods. Mathematics of Com-putation, 62: 531-538.
    [34] Jiang G S, Shu C W. 1996. Efficient implementationof weighted ENO schemes. Journal of ComputationalPhysics, 126: 202-228.
    [35] Kanschat G. 2007. Discontinuous Galerkin Methods for Viscous Flow, Wiesbaden Deutscher Universitätsverlag.Klockner A, Warburton T, Bridge J, Hesthaven J. 2010.Nodal discontinuous Galerkin methods on graphics pro-cessors. Journal of Computational Physics, 228: 7863-7882.
    [36] Krivodonova L, Xin J, Remacle J F, Chevaugeon N, Fla-herty J E. 2004. Shock detection and limiting with dis-continuous Galerkin methods for hyperbolic conservationlaws. Applied Numerical Mathematics, 48: 323-338.
    [37] LeVeque R J. 1990. Numerical Methods for Conservation Laws, Basel: Birkhauser Verlag.
    [38] Li B. 2006. Discontinuous Finite Elements in Fluid Dy-namics and Heat Transfer, Basel Birkhauser.
    [39] Li F, Shu C W. 2005. Reinterpretation and simplifiedimplementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Applied Mathematics Let-ters, 18: 1204-1209.
    [40] Liu H, Yan J. 2009. The direct discontinuous Galerkin(DDG) methods for diffusion problems. SIAM Journalon Numerical Analysis, 47: 675-698.
    [41] Liu H, Yan J. 2010. The direct discontinuous Galerkin(DDG) methods for diffusion with interface corrections.Communications in Computational Physics, 8: 541-564.
    [42] Liu X, Osher S, Chan T. 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics,115: 200-212.
    [43] Oden J T, Babuvska I, Baumann C E. 1998. A discon-tinuous hp finite element method for diffusion problems.Journal of Computational Physics, 146: 491-519.
    [44] Perthame B. 1992. Second-order Boltzmann schemes forcompressible Euler equations in one and two space di-mensions. SIAM Journal on Numerical Analysis, 29:1-19.
    [45] Perthame B, Shu C W. 1996. On positivity preserving fi-nite volume schemes for Euler equations. NumerischeMathematik, 73: 119-130.
    [46] Qiu J M, Shu C W. 2011. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoret-ical analysis and application to the Vlasov-Poisson sys-tem. Journal of Computational Physics, 230: 8386-8409.
    [47] Qiu J X, Shu C W. 2003. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method: one-dimensional case. Journal ofComputational Physics, 193: 115-135.
    [48] Qiu J X, Shu C W. 2005. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method Ⅱ: two dimensional case. Compu-ters and Fluids, 34: 642-663.
    [49] Qiu J X, Shu C W. 2005. Runge-Kutta discontinuousGalerkin method using WENO limiters. SIAM Journalon Scientific Computing, 26: 907-929.
    [50] Qiu J X, Shu C W. 2005. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkinmethods using weighted essentially nonoscillatory lim-iters. SIAM Journal on Scientific Computing, 27: 995-1013.
    [51] Reed W H, Hill T R. 1973. Triangular mesh methods forthe neutron transport equation, Los Alamos ScientificLaboratory Report LA-UR-73-479, Los Alamos, NMRemacle J F, Flaherty J, Shephard M. 2003. An adaptivediscontinuous Galerkin technique with an orthogonal ba-sis applied to Rayleigh-Taylor flow instabilities. SIAM Review, 45: 53-72.
    [52] Riviére B. 2008. Discontinuous Galerkin Methods for Solv-ing Elliptic and Parabolic Equations: Theory and Imple-mentation, Philadelphia: SIAM
    [53] Rossmanith J A, Seal D C. 2011. A positivity-preserving high-order semi-Lagrangian discontinuousGalerkin scheme for the Vlasov-Poisson equations. Jour-nal of Computational Physics, 230: 6203-6232.
    [54] Shi J, Hu C, Shu C W. 2002. A technique of treating neg-ative weights in WENO schemes. Journal of Computa-tional Physics, 175: 108-127.
    [55] Shu C W. 1987. TVB uniformly high-order schemes for con-servation laws. Mathematics of Computation, 49: 105-121.
    [56] Shu C W. 2009. Discontinuous Galerkin methods: Generalapproach and stability. Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathemat-ics CRM Barcelona, 149-201.
    [57] Shu C W, Osher S. 1988. Efficient implementation of essen-tially non-oscillatory shock-capturing schemes. Journalof Computational Physics, 77: 439-471.
    [58] Toro E F. 1999. Riemann Solvers and Numerical Methodsfor Fluid Dynamics, Berlin: Springer-Verlag.
    [59] Wang Z J, Gao H. 2009. A unifying lifting colloca-tion penalty formulation including the discontinuousGalerkin, spectral volume/difference methods for conser-vation laws on mixed grids. Journal of Computational Physics, 228: 8161-8186.
    [60] Wheeler M F. 1978. An elliptic collocation-finite elementmethod with interior penalties. SIAM Journal on Nu-merical Analysis, 15: 152-161.
    [61] Xing Y, Zhang X, Shu C W. 2010. Positivity preservinghigh order well balanced discontinuous Galerkin meth-ods for the shallow water equations. Advances in Water Resources, 33: 1476-1493.
    [62] Xu Y, Shu C W. 2010. Local discontinuous Galerkin meth-ods for high-order time-dependent partial differentialequations. Communications in Computational Physics,7: 1-46.
    [63] Yan J, Osher S. 2011. A local discontinuous Galerkinmethod for directly solving Hamilton Jacobi equations.Journal of Computational Physics, 230: 232-244.
    [64] Yang Y, Shu C W. 2013. Discontinuous Galerkin method for hyperbolic equations involving ffi-singularities:negative-order norm error estimates and applications.Numerische Mathematik, 124: 753-781.
    [65] Yang Y, Wei D, Shu C W. 2013. Discontinuous Galerkinmethod for Krause's consensus models and pressureless Euler equations. Journal of Computational Physics, 252:109-127.
    [66] Zhang Q, Shu C W. 2010. Stability analysis and a priorierror estimates to the third order explicit Runge-Kuttadiscontinuous Galerkin method for scalar conservationlaws. SIAM Journal on Numerical Analysis, 48: 1038-1063.
    [67] Zhang X, Shu C W. 2010. On maximum-principle-satisfying high order schemes for scalar conservationlaws. Journal of Computational Physics, 229: 3091-3120.
    [68] Zhang X, Shu C W. 2010. On positivity preserving highorder discontinuous Galerkin schemes for compressibleEuler equations on rectangular meshes. Journal of Com-putational Physics, 229: 8918-8934.
    [69] Zhang X, Shu C W. 2011a. Positivity-preserving high orderdiscontinuous Galerkin schemes for compressible Eulerequations with source terms. Journal of ComputationalPhysics, 230: 1238-1248.
    [70] Zhang X, Shu C W. 2011b. Maximum-principle-satisfyingand positivity-preserving high order schemes for conser-vation laws: Survey and new developments, in: Proceed-ings of the Royal Society A, 467: 2752-2776.
    [71] Zhang X, Shu C W. 2012. A minimum entropy principleof high order schemes for gas dynamics equations. Nu-merische Mathematik, 121: 545-563.
    [72] Zhang X, Xia Y, Shu C W. 2012. Maximum-principle-satisfying and positivity-preserving high order discontin-uous Galerkin schemes for conservation laws on triangu-lar meshes. Journal of Scientific Computing, 50: 29-62.
    [73] Zhang Y, Zhang X, Shu C W. 2013. Maximum-principle-satisfying second order discontinuous Galerkin schemesfor convection-diffusion equations on triangular meshes.Journal of Computational Physics, 234: 295-316.
    [74] Zhang Y T, Shu C W. 2009. Third order WENO scheme onthree dimensional tetrahedral meshes. Communicationsin Computational Physics, 5: 836-848.
    [75] Zhong X, Shu C W. 2012. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuousGalerkin methods. Journal of Computational Physics,232: 397-415.
    [76] Zhu J, Qiu J X, Shu C W, Dumbser M. 2008. Runge-Kutta discontinuous Galerkin method using WENO lim-iters II: Unstructured meshes. Journal of ComputationalPhysics, 227: 4330-4353.
    [77] Zhu J, Zhong X, Shu C W, Qiu J X. 2013. Runge-Kutta dis-continuous Galerkin method using a new type of WENOlimiters on unstructured meshes. Journal of Computa-tional Physics, 248: 200-220.
  • 加载中
计量
  • 文章访问数:  2102
  • HTML全文浏览量:  4
  • PDF下载量:  2691
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-27
  • 刊出日期:  2013-11-25

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学进展》(Advances in Mechanics)杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学进展》(Advances in Mechanics)官方网站(https://lxjz.cstam.org.cn/)是本刊唯一的投稿渠道,《力学进展》(Advances in Mechanics)所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学进展》(Advances in Mechanics)在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62637035。

    感谢大家多年来对《力学进展》(Advances in Mechanics)的支持与厚爱,欢迎继续关注我们!