留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂系统和涌现: 理论如何与现实结合

高剑波

高剑波. 复杂系统和涌现: 理论如何与现实结合[J]. 力学进展, 2013, 43(4): 359-389. doi: 10.6052/1000-0992-13-046
引用本文: 高剑波. 复杂系统和涌现: 理论如何与现实结合[J]. 力学进展, 2013, 43(4): 359-389. doi: 10.6052/1000-0992-13-046
GAO Jianbo. Complex systems and emergence: How theory meets reality[J]. Advances in Mechanics, 2013, 43(4): 359-389. doi: 10.6052/1000-0992-13-046
Citation: GAO Jianbo. Complex systems and emergence: How theory meets reality[J]. Advances in Mechanics, 2013, 43(4): 359-389. doi: 10.6052/1000-0992-13-046

复杂系统和涌现: 理论如何与现实结合

doi: 10.6052/1000-0992-13-046
详细信息
    通讯作者:

    高剑波

  • 中图分类号: N941.4 O414.2

Complex systems and emergence: How theory meets reality

More Information
    Corresponding author: GAO Jianbo
  • 摘要: 复杂系统所表现出的涌现行为吸引了人类极长时间的关注. 然而只是在近几十年来, 大量的工作才对这些行为进行了定量的研究, 并发展出许多重要的理论和方法, 比如混沌理论, 随机分形理论以及多尺度分析. 本文旨在对这个广阔研究领域内最好的研究和实践进行介绍, 并着重强调了理论如何与实际问题相结合. 作为说明的例子, 对网络安全、经济危机、河流动力学以及世界范围内的政治冲突进行了简要讨论. 也列举了未来几个重要研究方向.

     

  • [1] Amaral L A N, Goldberger A L, Ivanov P C, Stanley H E, 1998. Scale-independent measures and pathologic cardiac dynamics. Phys. Rev. Lett., 81: 2388.
    [2] Anderson D, Frivold T, Valdes A, 1995. Next generation Intrusion Detection Expert System (NIDES): A summary, Technical Report SRI-CSL-97-07, Menlo Park, Calif,: SRI Int’l.
    [3] Anderson P L, Meerschaert M M, 1998. Modeling river flows with heavy tails. Water Resources Research, 34: 2271-2280.
    [4] Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A, 1996. Growth of non-infinitesimal perturbations in turbulence. Phys. Rev. Lett., 77: 1262.
    [5] Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A, 1997. Predictability in the large: An extension of the concept of Lyapunov exponent. J. Physics A, 30: 1-26.
    [6] Bar-Yam Y, 1992. Dynamics of Complex Systems, Addison-Wesley, Reading, Massachusetts.
    [7] Bernaola-Galvan P, Ivanov P C, Amaral L A N, Stanley H E, 2001. Scale invariance in the nonstationarity of human heart rate. Phys. Rev. Lett., 87: 168105.
    [8] Boccara N, 2010. Modeling Complex Systems, 2nd Ed., Springer.
    [9] Box G E P, Jenkins G M, 1976. Time Series Analysis: Forecasting and Control. 2nd ed. San Francisco: Holden- Day.
    [10] Bussiere M, Fratzscher M, 2002. Towards a new early warning system of financial crises, European Central Bank Working Paper No.145.
    [11] Chen Y Q, Ding M Z, Scott Kelso J A, 1997. Long memory processes ( 1/f Type) in human coordination. Phys. Rev. Lett., 79: 4501.
    [12] Collins J J, De Luca C J, 1994. Random walking during quiet standing. Phys. Rev. Lett., 73: 764.
    [13] Cox D R, 1984. Long-range dependence: A review. In: Statistics, An Appraisal. (David, H.A. & Davis, H.T. eds.) 55-74, Iowa: Iown State Univ. Press
    [14] Darwin C, 1859. On The Origin of Species. London, John Murray
    [15] De Domenico D M, Latora V, 2011. Scaling and universality in river flow dynamics, EPL, 94: doi:10.1209/0295- 5075/94/58002.
    [16] D’Orsogna M R, Chuang Y L, Bertozzi A L, Chayes L S, 2006. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Physical Review Let- ters, 96: 10.
    [17] Forrest S, Hofmeyr S A, Somayaji A, Longstaff T A, 1996. A sense of self for Unix processes, in: Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, Los Alamos, CA, 120-128.
    [18] Fraser A, Swinney H, 1986. Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33: 1134-1140.
    [19] Frisch U, 1995. Turbulence—The Legacy of A.N. Kolmogorov. Cambridge University Press.
    [20] Gao J B, Zheng Z M, 1993. Local exponential divergence plot and optimal embedding of a chaotic time series. Phys. Lett. A, 181: 153-158.
    [21] Gao J B, Zheng Z M, 1994a. Direct dynamical test for deterministic chaos. Europhys. Lett., 25: 485-490.
    [22] Gao J B, Zheng Z M, 1994b. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E, 49: 3807-3814.
    [23] Gao J B, 1997. Recognizing randomness in a time series. Physica D, 106: 49.
    [24] Gao J B, Hwang S K, Liu J M, 1999a. When can noise induce chaos? Phys. Rev. Lett., 82: 1132.
    [25] Gao J B, Chen C C, Hwang S K, Liu J M, 1999b. Noiseinduced chaos. Int. J. Mod. Phys. B, 13: 3283.
    [26] Gao J B, Rubin I, 2001a. Multiplicative multifractal modeling of long-range-dependent network traffic. Int. J. Comm. Systems, 14: 783-801.
    [27] Gao J B, Rubin I, 2001b. Multifractal modeling of counting processes of long-range-dependent network Traffic. Computer Communications, 24: 1400-1410.
    [28] Gao J B, Rao J S V, Hu J, Ai J, 2005a. Quasi-periodic route to chaos in the dynamics of Internet transport protocols. Phys. Rev. Lett., 94: 198702.
    [29] Gao J B, Qi Y, Cao Y H, Tung W W, 2005b. Protein coding sequence identification by simultaneously characterizing the periodic and random features of dna sequences. Journal of Biomedicine and Biotechnology, 2: 139-146.
    [30] Gao J B, Billock V, Merk I, et al. 2006a. Inertia and memory in ambiguous visual perception. Cognitive Pro- cessing, 7: 105-112.
    [31] Gao J B, Hu J, Tung W W, Cao Y H, Sarshar N and Roychowdhury Vwani P. 2006b. Assessment of long range correlation in time series: How to avoid pitfalls. Phys. Rev. E, 73: 016117.
    [32] Gao J B, Hu J, TungWW, Cao Y H, 2006c. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Phys. Rev. E, 74: 066204.
    [33] Gao J B, Cao Y H, Tung W W, Hu J, 2007. Multiscale Analysis of Complex Time Series — Integration of Chaos and Random Fractal Theory, and Beyond, Wiley.
    [34] Gao J B, Tung W W, Hu J, 2009. Quantifying dynamical predictability: The pseudo-ensemble approach (in honor of Professor Andrew Majda’s 60th birthday). Chinese Annals. Math. Series B, 30: 569-588.
    [35] Gao J B, Sultan H, Hu J, Tung W W, 2010. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Let- ters, 17: 237-240.
    [36] Gao J B, Hu J, Tung W W, 2011a. Facilitating joint chaos and fractal analysisof biosignals through nonlinear adaptive filtering. PLoS ONE, 6: e24331.
    [37] Gao J B, Hu J, Tung W W, 2011b. Complexity measures of brain wave dynamics. Cognitive Neurodynamics, 5: 171-182.
    [38] Gao J B, Hu J, Mao X, Zhou M, Gurbaxani B, Lin J W B, 2011c. Entropies of negative incomes, Pareto-distributed loss, and financial crises. PLoS ONE, 6: e25053.
    [39] Gao J B, Hu J, Mao X, Perc M, 2012a. Culturomics meets random fractal theory: Insights into longrange correlations of social and natural phenomena over the past two centuries. J. Royal Society Interface, doi: 10.1098/rsif.2011.0846.
    [40] Gao J B, Hu J, Mao X, Tung W W, 2012b. Detecting low-dimensional chaos by the “noise titration” technique: possible problems and remedies. Chaos, Solitons, & Fractals, 45: 213-223.
    [41] Gao J B, Hu J, Tung W W, Blasch E, 2012c. Multiscale analysis of physiological data by scale-dependent Lyapunov exponent. Frontiers in Fractal Physiology, doi: 10.3389/fphys.2011.00110.
    [42] Gao J B, Hu J, Tung W W, Zheng Y, 2013. Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quantitative Finance, 13: 265-274.
    [43] Gilden D L, Thornton T, Mallon M W, 1/f noise in human cognition. 1995. Science , 267: 1837.
    [44] Goldberger A S, 1972. Structural equation methods in the social sciences. Econometrica, 40: 979-1001.
    [45] Goldstein J S, 1992. A conflict-cooperation scale for WEIS events data. Journal of Con ict Resolution, 36: 369-385.
    [46] Hemelrijk C K, Hildenbrandt H, 2007. Self-organized shape and frontal density of fish schools. Ethology, 114: 3.
    [47] Hemelrijk C K, Hildenbrandt H, 2011. Some causes of the variable shape of flocks of birds. PLoS ONE, 6: e22479.
    [48] Hildenbrandt H, Carere C, Hemelrijk C K, 2010. Selforganized aerial displays of thousands of starlings: a model. Behavioral Ecology, 21: 1349-1359.
    [49] Hu J, Gao J B, Cao Y H, Bottinger E, Zhang W, 2007. Exploiting noise in array cgh data to improve detection of dna copy number change. Nucleic Acids Research, 35: e35.
    [50] Hu J, Gao J B, Tung W W, 2009a. Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos, 19: 028506.
    [51] Hu J, Gao J B, Wang X S, 2009b. Multifractal analysis of sunspot time series: the effects of the 11-year cycle and Fourier truncation. J. Statistical Mech., 02/P02066.
    [52] Hu J, Gao J B, TungWW, Cao Y H, 2010. Multiscale analysis of heart rate variability: A comparison of different complexity measures Annals of Biomedical Engineering, 38: 854-864.
    [53] Islam M N, Sivakumar B, 2002. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Adv. Water Res., 25: 179.
    [54] Ivanov P C, Rosenblum M G, Peng C K, Mietus J, Havlin S, Stanley H E, Goldberger A L, 1996. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 383: 323.
    [55] Ivanov P C, Rosenblum M G, Amaral L A N, Struzik Z R, Havlin S, Goldberger A L, Stanley H E, 1999. Multifractality in human heartbeat dynamics. Nature, 399: 461.
    [56] Kastens K A, Manduca C A, Cervato C, et al. 2009. How geoscientists think and learn. Eos, Trans. American Geophy. Union. 90: 265-272.
    [57] Kennel M, Brown R, Abarbanel H, 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45: 3403- 3411.
    [58] Kroy K, Sauermann G, Herrmann H J, 2002. Minimal model for sand dunes. Physical Review Letters, 88: 054301.
    [59] Kruegel C, Vigna G, 2003. Anomaly detection of web-based attacks, in: Proceedings of the 10th ACM Conference on Computer and Communication Security (CCS 2003).
    [60] Washington D.C., USA: ACM Press, Oct. 2003, 251-261.
    [61] Kuznetsov N, Bonnette S, Gao J B, Riley M A, 2012. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories. Annals of Biomedical En- gineering, DOI 10.1007/s10439-012-0646-9.
    [62] Liebert W, Pawelzik K, Schuster H, 1991. Optimal embedding of chaotic attractors from topological considerations. Europhys. Lett., 14: 521-526.
    [63] Li W, Kaneko K, 1992. Long-range correction and partial 1/f = spectrum in a noncoding DNA sequence. Euro- phys. Lett., 17: 655.
    [64] Lin C C, Shu F H, 1964. On the spiral structure of disk galaxies. The Astrophysical Journal, 140: 646-655.
    [65] Mandelbrot B B, 1982. The Fractal Geometry of Nature. San Francisco: Freeman.
    [66] Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H, 2011. Big data: The next frontier for innovation, competition, and productivity. http://www.mckinsey.com/insights/mgi/research/ technology and innovation/big data the next frontier for innovation
    [67] Osborne A R, Provenzale A, 1989. Finite correlation dimension for stochastic-systems with power-law spectra. Physica D, 35: 357-381.
    [68] Packard N H, Crutchfield J P, Farmer J D, Shaw R S, 1980.Geometry from a time series. Phys. Rev. Lett., 45: 712- 716.
    [69] Peng C K, Buldyrev S V, Goldberger A L, Havlin S, Sciortino F, Simons M, Stanley H E, 1992. Long-range correlations in nudeotide sequences. Nature, 356: 168.
    [70] Peng C K, Buldyrev S V, Harlin S, Simons M, Stanley H E and Goldberger A L. 1994. Mosaic organization of dna nucleotides. Phys. Rev. E, 49: 1685-1689.
    [71] Pomeau Y, Manneville P, 1980. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74: 189-197.
    [72] Provenzale A, Osborne A R, Soj R, 1991. Convergence of the K2 entropy for random noises with power law spectra. Physica D, 47: 361-372.
    [73] Reinhart C M, Rogoff K S, 2008. Is the 2007 US sub-prime financial crisis so different? An international historical comparison. American Economic Review, 98: 339-344.
    [74] Reynolds C W, 1987. Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 21: 25- 34.
    [75] Riley M A, Kuznetsov N, Bonnette S, Wallot S, Gao J B, 2012. A tutorial introduction to adaptive fractal analysis. Frontiers in Fractal Physiology, doi: 10.3389/fphys.2012.00371.
    [76] Rose A K, Spiegel M M, 2009. Cross-Country Causes and Consequences of the 2008 Crisis: Early Warning, CEPR Discussion Paper 7354.
    [77] Ruelle D, Takens F, 1971. On the nature of turbulence. Commun. Math. Phys., 20: 167.
    [78] Ryan D A, Sarson G R, 2008. The geodynamo as a lowdimensional deterministic system at the edge of chaos. EPL, 83: 49001.
    [79] Sauer T, Yorke J A, Casdagli M, 1991. Embedology. J. Stat. Phys., 65: 579-616.
    [80] Scheffer M, Carpenter S R, Lenton T M, Bascompte J, Brock W, Dakos V, Koppel Johan van de Kopper et al. 2012. Anticipating critical transitions. Science, 338: 344-349.
    [81] Schrodt P A, Gerner D J, Ömür G, 2009. Conflict and mediation event observations (CAMEO): an event data frameworkfor a post cold war world. in(eds. Bercovitch, J. & Gartner, S.): International Conflict Mediation: New Approaches and Findings, Routledge, New York.
    [82] Shaw E, 1978. Schooling fishes. American Scientist, 66: 166-175.
    [83] Sivakumar B, 2004. Chaos theory in geophysics: Past, present and future. Chaos, Solitons Fractals, 19: 441- 462.
    [84] Solow R, 1956. A contribution to the theory of economic growth. Quarterly Journal of Economics (The MIT Press), 70: 65-94.
    [85] Swan T, 1956. Economic growth and capital accumulation. Economic Record, 32: 334-361.
    [86] Takens F, 1981. Detecting strange attractors in turbulence, in (eds. Rand, D.A. & Young, L.S.): Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol.898, Springer-Verlag, Berlin, pp. 366.
    [87] Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S, 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geo- phys. Res. Atmos., 101: 26427.
    [88] Torcini A, Grassberger P, Politi A, 1995. Error propagation in extended chaotic systems. J. Phys. A: Mathematical and General, 28: 4533.
    [89] Tung W W, Gao J B, Hu J, Yang L, 2011. Recovering chaotic signals in heavy noise environments. Phys. Rev. E, 83: 046210.
    [90] Turnovsky S J, 2000. Methods of Macroeconomic Dynamics, MIT Press.
    [91] Vasavada A R, Showman A, 2005. Jovian atmospheric dynamics: An update after Galileo and Cassini. Reports on Progress in Physics, 68: 1935-1996.
    [92] Voss R F, 1992. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys. Rev. Lett., 68: 3805.
    [93] Wang K, Stolfo S J, 2004. Anomalous payload-based network intrusion detection, in: 7th International Symposium on Recent Advances in Intrusion Detection (RAID 2004), Sophia Antipolis, French Riviera, France.
    [94] Wang W, Vrijling J K, Van Gelder P H A J M, Ma J, 2006. Testing for nonlinearity of streamflow processes at different timescales. Journal of Hydrology, 322: 247-268.
    [95] Warrender C, Forrest S, Pearlmutter B, 1999. Detecting intrusions using system calls: Alternative data models, in: Proceedings of 1999 IEEE Symposium on Security and Privacy, 133-145.
    [96] Wolf M, 1997. 1/f noise in the distribution of prime numbers. Physica A, 241: 493.
    [97] Wolf A, Swift J B, Swinney H L, Vastano J A, 1985. Determining Lyapunov exponents from a time series. Physica D, 16: 285-317.
    [98] Yan Q, Xie W, Yan B, Song G, 2002. An anomaly intrusion detection method based on HMM. Electronics Letters, 38: 663-664.
    [99] Ye N, Zhang Y, Borror C M, 2004. Robustness of the Markov chain model for cyber attack detection. IEEE Transactions on Reliability, 51: 116-121.
    [100] Zhang G M, Yu L, 2010. Emergent phenomena in physics. Physics (in Chinese), 39: 543.
  • 加载中
计量
  • 文章访问数:  3155
  • HTML全文浏览量:  159
  • PDF下载量:  3487
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-10
  • 刊出日期:  2013-07-25

目录

    /

    返回文章
    返回