留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀薄气体动力学: 进展与应用

樊菁

樊菁. 稀薄气体动力学: 进展与应用[J]. 力学进展, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018
引用本文: 樊菁. 稀薄气体动力学: 进展与应用[J]. 力学进展, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018
FAN Jing. Rarefied gas dynamics: Advances and applications[J]. Advances in Mechanics, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018
Citation: FAN Jing. Rarefied gas dynamics: Advances and applications[J]. Advances in Mechanics, 2013, 43(2): 185-201. doi: 10.6052/1000-0992-13-018

稀薄气体动力学: 进展与应用

doi: 10.6052/1000-0992-13-018
详细信息
    作者简介:

    樊菁, 1965 年出生, 1987 年毕业于北京大学力学系, 1996 年中国科学院力学研究所博士. 现任中国科学院力学研究所研究员、所长,《力学进展》主编, 第29届国际稀薄气体动力学会议主席.

    通讯作者:

    樊菁

  • 中图分类号: O355

Rarefied gas dynamics: Advances and applications

More Information
    Corresponding author: FAN Jing
  • 摘要: 简要回顾了稀薄气体动力学的发展历程; 重点介绍了该领域最近二三十年的主要进展, 这突出表现在分子模拟方法(DSMC 方法、信息保存方法等) 的迅速发展与成功应用; 概述了航天工业、真空技术、微机电系统等尖端技术中的稀薄气流问题, 以及最近几届国际稀薄气体动力学会议的主题. 在此基础上指出了学科前沿问题, 以及几个与实际应用有关的重大问题, 如过渡流区高超声速三维非平衡流场的精细预测和实验验证、热层大气的时空演化规律与探测、以气体为介质的微机电系统设计与优化、真空环境下原子水平的材料制备工艺的定量设计.

     

  • [1] Alder B J. 2000. Reflections on the Boltzmann equation. In: T. J. Bartel & M. A. Gallis, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 585, AIP Press, pp. 1-3
    [2] Alder B J. 2012. Computer experiments on the onset turbulence. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, pp. 30-33
    [3] Alexander F J, Garcia A L , Alder B J. 1998. Cell size dependence of transport coefficients in stochastic particle algorithms Phys. Fluids, 10: 1540
    [4] Bird G A. 1963. Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids, 6: 1518-1519
    [5] Bird G A. 1981. Monte Carlo simulation in an engineering context. Progr. Astro. Aero., 74: 239-255
    [6] Bird G A. 1990. Application of the DSMC method to the full shuttle geometry. AIAA-Paper 90-1692
    [7] Bird G A. 1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press
    [8] Bird G A. 1997. The initiation of centrifugal instabilities in an axially symmetric flow. In: C. Shen, ed. Rarefied Gas Dynamics, Beijing: Peking Univ. Press, pp. 149-154
    [9] Bird G A. 1998. Recent advances and current challenges for DSMC. Computer Math. Applic., 35: 1-14
    [10] Bird R B, Stewart W E, Lightfoot E N. 2002 Transport Phenomena. Chemical Industry Press, New York.
    [11] Birkhoff G. 1960. Hydrodynamics. 2nd Edition. Princeton: Princeton University Press
    [12] Cai C P, Boyd I D, Fan J, et al. 2000. Direct simulation methods for low-speed microchannel flows. J. Thermophys. & Heat Trans., 14: 368-378
    [13] Cercignani C. 1998. Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford: Oxford University Press
    [14] Chapman S, Cowling T G. 1952. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press,
    [15] Dufty J. 2012. Kinetic theory for active and granular gases. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, p. 11-20
    [16] Fan J, Shen C. 1999. Statistical simulation of low-speed unidirectional flows in transition regime. In: R. Brun, ed. Rarefied Gas Dynamics, Toulouse: Cepadus-Editions, Vol. 2, p. 245-252
    [17] Fan J, Boyd I D, Shelton C. 2000. Monte carlo modeling of electron beam physical vapor deposition of yttrium. J. Vac. Sci. Technol. A, 18: 2937-2945
    [18] Fan J, Shen C. 2001. Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys., 167: 393-412
    [19] Fan J. 2002. A generalized soft-sphere model for Monte Carlo simulation. Phys. Fluids, 14: 4399-4405
    [20] 樊菁, 刘宏立, 蒋建政等. 2004. 火箭剩余推进剂排放过程的分析与模拟. 力学学报, 36(1): 129-139 (Fan J, Liu HL,Jiang JZ, et al. 2004. Analysis and simulation of discharging residual rocket propellants in orbit. Acta Mechanica Sinica, 36(1): 129-139 (in Chinese))
    [21] 樊菁, 张羽淮, 蒋建政. 2012. 高超声速稀薄气流微量组分的计算方法. CSTAM 2012-B03-0174.
    [22] Fan L S, Tai Y C, Muller R S. 1988. Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron Devices, 35: 724-30
    [23] Fei F, Fan J. 2012. Molecular simulation of small Knudsen number flows. In: M. Mareschal & A. Santos, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1501, AIP Press, pp. 864-871
    [24] Fei F, Fan J. 2013. A diffusive information preservation method for small Knudsen number flows. J. Comput. Phys. (accepted)
    [25] Gorji M H, Torrilhon M, Jenny P. 2011. Fokker-Planck model for computational studies of monatomic rarefied gas flows. J. Fluid Mech., 680: 574-601
    [26] Grantham W L. 1970. Flight results of a 25, 000 foot per second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance NASA TN D-6062.
    [27] Gu K, Watkins C B, Koplik J. 2010. Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations. J. Comput. Phys, 229: 1381-1400
    [28] Hadjiconstantinou N G. 2000. Analysis of discretization in the direct simulation Monte Carlo method. Phys. Fluids, 12: 2634-2638
    [29] Hassan H A, Hash D B. 1993. A generalized hard-sphere model for Monte Carlo simulations. Phys. Fluids A, 5: 738-774
    [30] Hirschfelder J O, Curtiss C F, Bird R B. 1954. Molecular Theory of Gases and Liquids. New York: John Wiley & Sons
    [31] Ho C M, Tai Y C. 1998. Micro-electromechanical systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech., 30: 579-612
    [32] Kim J G, Kwon O J, Park C. 2008. Modified and expansion of the generalized soft-sphere model to high temperature based on collision integrals. Phys. Fluids, 20: 017105
    [33] Koura K, Matsumoto H. 1992. Variable soft sphere molecular model for inverse-power law or Lennard-Jones potential. Phys. Fluids A, 3: 2459-2464
    [34] Jenny P, Torrilhon M, Heinz S. 2010. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion J. Comput. Phys., 229: 1077-1098
    [35] Li J, Shen C, Fan J. 2009. IP simulation of micro gas flows under 3-D head sliders. In: T. Abe, ed. Rarefied Gas Dynamics, AIP Conference Proceedings 1084, AIP Press, pp. 1003-1008
    [36] 李启兵, 徐昆. 2012. 气体动理学格式研究进展. 力学进展, 42(5): 522-537 (Li Q B, Xu K. 2102. Progress in gas-kinetic scheme. Advances in Mechanics, 42(5): 522-537 (in Chinese))
    [37] Li Z H, Zhang H X. 2009. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry. J. Comput. Phys., 228: 1116-1138
    [38] 李帅辉, 舒勇华, 樊菁. 2008. 电子束物理气相沉积钇钛合金薄膜的组分和厚度分布. 中国科学E, 38: 1106-1117 (Li S H, Shu Y H, Fan J. Thickness and component distributions of yttrium-titanium alloy films in multi-electron-beam physical vapor deposition. Sci. China E, 51: 1470-1482 (in Chinese))
    [39] Millikan R A. 1923. The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev., 22: 1-23
    [40] Masters N D, Ye W. 2007 Octant flux splitting information preservation DSMC method for thermally driven flows. J. Comput. Phys., 226: 2044-2062
    [41] Moss J N. 1987. Nonequilibrium effects for hypersonic transitional flows. AIAA Paper 87-0404
    [42] Mott-Smith H M. 1951. The solution of the Boltzmann equation for a shock wave. Phys. Rev., 82: 885-892
    [43] Muntz E P. 1996. Rarefied gas dynamics. In: J. L. Lumley, A. Acrivos, L. G. Leal & S. Leibovich, ed. Research Trends in Fluid Dynamics, New York: AIP Press, pp. 209-219
    [44] Oran E S, Oh C K, Cybyk Z C. 1998. Direct Simulation Monte Carlo: Recent advances and applications, Annu. Rev. Fluid Mech., 30: 403-441
    [45] Park C. 1990. Nonequilibrium Hypersonic Aerothermodynamics. Wiley, NewYork.
    [46] Pham-Van-Diep G C, Erwin D A, Muntz E P. 1989. Nonequilibrium molecular motion in a hypersonic shock wave. Science, 245: 624-626
    [47] Rarefied Gas Dynamics, AIP Conference Proceedings 1084, edited by T. Abe, AIP Press, 2009.
    [48] Rarefied Gas Dynamics, AIP Conference Proceedings 1333, edited by D. A. Levin, I. J. Wysong, A, A. L. Garcia, AIP Press, 2011.
    [49] Rarefied Gas Dynamics, AIP Conference Proceedings 1501, edited by M. Mareschal & A. Santos, AIP Press, 2012.
    [50] 沈青, 胡振华, 王岫云. 1970. 黏性薄激波层解59-90公里球头锥空气电离流场. 中国科学院力学研究所207所640分所报告7006.
    [51] 沈青. 2002. 认识稀薄气体动力学. 力学与实践, 24(6): 1-14 (Shen Q. 2002. Get acquainted with rarefied gas dynamics. Mechanics and Engineering, 24(6): 1-14 (in Chinese))
    [52] 沈青. 2003. 稀薄气体动力学. 国防工业出版社, 北京
    [53] Shen C, Fan J, Xie C. 2003. Statistical simulation of rarefied gas flows in microchannels. J. Comput. Phys. 189: 512-526
    [54] Shen C. 2005. Rarefied Gas Dynamics: Fundamentals, Simulations and Micro-flows. Springer, Berlin
    [55] Shih J C, Ho C M, Liu J Q, Tai Y C. 1996. Monatomic and polyatomic gas flow through uniform microchannels. ASME-DSC, 59: 197
    [56] Sun Q H, Boyd I D. 2004. Drag on a flat plate in low-Reynolds number gas flows. AIAA J., 42: 1066-1072
    [57] Tsien H S. 1946. Superaerodynamics, Mechanics of Rarefied Gases. J. Aeronaut. Sci., 13: 653-664
    [58] Wagner W. 1992. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys., 66: 1011-1044
    [59] Wang R J, Xu K. 2012. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mech. Sin., 28: 1022-1029
    [60] Xu K, Huang J C. 2010. A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys., 229: 7747-7764
    [61] Zhang J, Fan J. 2009. Information preservation modelling of Rayleigh-Bénard transition from thermal conduction to convection Rarefied Gas Dynamics, AIP Conference Proceedings 1084, edited by T. Abe , AIP Press, pp. 359-364
    [62] Zhang J, Fan J. 2009. Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh-Bénard convection Physical Review E, 79: 056302
    [63] Zhang J, Fan J. 2010. Effects of convection and solid wall on the diffusion in microscale convection flows. Phys Fluids, 22: 122005
    [64] Zhang J, Fan J, Jiang J Z. 2011. Multiple temperature model for the information preservation method and its application to nonequilibrium gas flows. J. Comput. Phys., 230: 7250-7265
  • 加载中
计量
  • 文章访问数:  3849
  • HTML全文浏览量:  478
  • PDF下载量:  4684
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-03
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-03-25

目录

    /

    返回文章
    返回