-
摘要:
同几何分析(isogeometric analysis) 是当前工程分析的一种发展趋势, 有可能对计算机辅助工程(CAE) 产生重大影响. 同几何分析的思想是采用计算机辅助设计(CAD) 的几何语言, 如NURBS(non-uniform rational B-spline) 几何替代拉格朗日插值作为分析计算的基础. 这种看似简单的几何语言变化, 消除了困扰CAE 多年 的瓶颈问题, 开启了一条紧密联系分析、设计和优化的新途径. 本文论述了同几何分析的产生背景、理论、优 点及其在各个领域的应用. 系统总结了同几何分析在NURBS, T 样条基函数构建, 非结构化网格构建, 有效 积分方法, 曲面修剪技术, 网格细化等基础理论方面的进展, 以及在板壳问题、大变形问题、流固耦合、结构优 化、接触问题、生物力学、温度场和电磁场等领域的应用, 展示了同几何分析相对于标准多项式插值有限元法 的优势.
Abstract:Isogeometric analysis (IGA) is a current trend in engineering analysis that is likely to leave a significantly impact on Computer-Aided Engineering (CAE). The basic idea of IGA is to utilize CAD geometry to facilitate analysis. This seemingly simple change of geometric language eliminates many bottle-neck issues that plagued CAE for years, and opens a pathway for a tighter integration of design, analysis, and optimization. In this review paper, the background, theory, advantages, and applications of isogeometric analysis are discussed. Topics of algorithmic development, including NURBS bases, T-spline bases, unstructured meshes, efficient quadrature methods, trimmed surface technologies, refinements and so on are reviewed. Recent advances of IGA in shell problems, large deformation, fluid-structure interaction, structural optimization, contact problems, biomechanics, thermal analysis, and electromagnetics are also summarized.
-
1 Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechan- ics and Engineering, 2005, 194(39-41): 4135-4195 2 Bazilevs Y, Calo V M, Cottrell J A, et al. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 229-263 3 Liu G R. Meshfree Methods: Moving Beyond the Finite Element Method. 2nd ed. Singapore: CRC Press, 2009.1-20 4 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009,39(1): 1-36 5 Zhou X L, Lu J. NURBS-based Galerkin method and application to skeletal muscle modeling. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, Cambridge, 2005-06-13-15 6 Fischer P, Klassen M, Mergheim J, et al. Isogeometric analysis of 2D gradient elasticity. Computational Mechan- ics, 2011, 47(3): 325-334 7 Elguedj T, Bazilevs Y, Calo V M, et al. B and F projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 2732-2762 8 Lu J, Zhou X L. Cylindrical element: Isogeometric model of continuum rod. Computer Methods in Applied Mechan- ics and Engineering, 2011, 200(1-4): 233-241 9 Cottrell J A, Hughes T J R, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. Chichester: John Wiley and Sons, Ltd, 2009 10 Sederberg T W, Zheng J, Bakenov A, et al. T-splines and T-NURCCs. ACM Transactions on Graphics, 2003,22(3): 477-484 11 Dörfel M R, Jüttler B, Simeon B. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering, 2010,199(5-8): 264-275 12 Wang W, Zhang Y, Scott M A, et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics, 2011, 48(4): 477-498 13 Beirão da Veiga L, Buffa A, Cho D, et al. Isogeometric analysis using T-splines on two-patch geometries. Com- puter Methods in Applied Mechanics and Engineering,2011, 200(21-22): 1787-1803 14 Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineer- ing, 2011, 200(21-22): 1892-1908 15 Borden M J, Scott M A, Evans J A, et al. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 2011, 87(1-5): 15-47 16 ScottMA, BordenMJ, Verhoosel C V, et al. Isogeometric finite element data structures based on Bézier extraction of T-splines. International Journal for Numerical Meth- ods in Engineering, 2011, 88(2): 126-156 17 Costantini P, Manni C, Pelosi F, et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines. Computer Aided Geometric Design, 2010, 27(8): 656-668 18 Manni C, Pelosi F, Lucia Sampoli M. Generalized Bsplines as a tool in isogeometric analysis. Computer Meth- ods in Applied Mechanics and Engineering, 2011, 200(5-8): 867-881 19 Kim H J, Seo Y D, Youn S K. Isogeometric analysis for trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 2009, 198(37-40): 2982-2995 20 Kim H J, Seo Y D, Youn S K. Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2796-2812 21 Bazilevs Y, Da Veiga L B, Cottrell J A, et al. Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences, 2006, 16(7): 1031-1090 22 Cottrell J A, Hughes T J R, Reali A. Studies of refinement and continuity in isogeometric structural analysis. Computer Methods in Applied Mechanics and Engineer- ing, 2007, 196(41-44): 4160-4183 23 徐岗, 王毅刚, 胡维华. 等几何分析中的r-p 型细化方法. 计 算机辅助设计与图形学学报, 2011, 23(12): 2019-2024 24 Elguedj T, Bazilevs Y, Calo V M, et al. F-bar projection method for finite deformation elasticity and plasticity using NURBS based isogeometric analysis. International Journal of Material Forming, 2008, 1(1): 1091-1094 25 Lu J. Circular element: isogeometric elements of smooth boundary. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2391-2402 26 Lipton S, Evans J A, Bazilevs Y, et al. Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 357-373 27 Cohen E, Martin T, Kirby R M, et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis. Computer Methods in Ap- plied Mechanics and Engineering, 2010, 199(5-8): 334-356 28 Nagy A P, Abdalla M M, Gürdal Z. On the variational formulation of stress constraints in isogeometric design. Computer Methods in Applied Mechanics and Engineer- ing, 2010, 199(41-44): 2687-2696 29 Wang D D, Zhang H J, Xuan J C. A strain smoothing formulation for NURBS-based isogeometric finite element analysis. Science China Physics, Mechanics & Astron- omy, 2012, 55(1): 132-140 30 轩军长. 基于改进边界条件施加方式和应变光滑子域积分 的几何精确NURBS 有限元分析: [硕士论文]. 厦门: 厦门大 学, 2010 31 Wang D D, Xuan J C. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Computer Methods in Applied Me- chanics and Engineering, 2010, 199(37-40): 2425-2436 32 王东东, 轩军长, 张灿辉. 几何精确NURBS 有限元中边界 条件施加方式对精度影响的三维计算分析. 计算力学学报,2012, 29(1): 31-37 33 陈涛, 莫蓉, 张欣. 固体介质瞬态传热问题的等几何分析. 计 算机集成制造系统, 2011, 17(9): 1988-1996 34 Embar A, Dolbow J, Harari I. Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. International Journal for Numerical Meth- ods in Engineering, 2010, 83(7): 877-898 35 Rypl D, Patzák B. From the finite element analysis to the isogeometric analysis in an object oriented computing environment. Advances in Engineering Software, 2012,44(1): 116-125 36 Beirão da Veiga L, Buffa A, Rivas J, et al. Some estimates for h-p-k-refinement in Isogeometric Analysis. Nu- merische Mathematik, 2011, 118(2): 271-305 37 Van der Zee K G, Verhoosel C V. Isogeometric analysisbased goal-oriented error estimation for free-boundary problems. Finite Elements in Analysis and Design, 2011,47(6): 600-609 38 Hughes T J R, Reali A, Sangalli G. Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):301-313 39 Echter R, Bischoff M. Numerical efficiency, locking and unlocking of NURBS finite elements. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):374-382 40 Evans J A, Bazilevs Y, Babuˇska I, et al. N-widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Ap- plied Mechanics and Engineering, 2009, 198(21-26): 1726-1741 41 Xu G, Mourrain B, Duvigneau R, et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison. Computer Methods in Applied Me- chanics and Engineering, 2011, 200(23-24): 2021-2031 42 Schmidt R, Kiendl J, Bletzinger K U, et al. Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput- ing and Visualization in Science, 2010, 13(7): 315-330 43 Aigner M, Heinrich C, Jüttler B, et al. Swept volume parameterization for isogeometric analysis. Mathematics of Surfaces XIII, 2009, LNCS 5654: 19-44 44 Kiendl J, Bletzinger K U, Linhard J, et al. Isogeometric shell analysis with Kirchhoff-Love elements. Computer Methods in Applied Mechanics and Engineering, 2009,198(49-52): 3902-3914 45 Kiendl J, Bazilevs Y, Hsu M-C, et al. The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering, 2010,199(37-40): 2403-2416 46 Uhm T K, Youn S K. T-spline finite element method for the analysis of shell structures. International Journal for Numerical Methods in Engineering, 2009, 80(4): 507-536 47 Benson D J, Bazilevs Y, Hsu M-C, et al. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16):1367-1378 48 Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, et al. Rotation free isogeometric thin shell analysis using PHTsplines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(48-49): 3410-3424 49 Benson D J, Bazilevs Y, Hsu M-C, et al. Isogeometric shell analysis: the Reissner-Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):276-289 50 张汉杰, 王东东, 轩军长. 薄梁板结构NURBS 几何精确有 限元分析. 力学季刊, 2010, 31(4): 469-477 51 Schmit L A. Structural design by systematic synthesis. In: Proceedings of the second ASCE conference on electronic computation, Pittsburgh, 1960. 105-122 52 Wall W A, Frenzel M A, Cyron C. Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 2976-2988 53 Cho S, Ha S H. Isogeometric shape design optimization: Exact geometry and enhanced sensitivity. Structural and Multidisciplinary Optimization, 2009, 38(1): 53-70 54 Ha S H. Isogeometric shape design optimization using NURBS basis functions: [Ph.D. Thesis]. Seoul Korea: Seoul National University, 2010 55 Ha S H, Choi K K, Cho S. Numerical method for shape optimization using T-spline based isogeometric method. Structural and Multidisciplinary Optimization,2010, 42(3): 417-428 56 Nagy A P, Abdalla M M, Gürdal Z. Isogeometric sizing and shape optimisation of beam structures. Computer Methods in Applied Mechanics and Engineering, 2010,199(17-20): 1216-1230 57 Nagy A P, Abdalla M M, Gürdal Z. Isogeometric design of elastic arches for maximum fundamental frequency. Struc- tural and Multidisciplinary Optimization, 2011, 43(1):135-149 58 Seo Y D, Kim H J, Youn S K. Shape optimization and its extension to topological design based on isogeometric analysis. International Journal of Solids and Structures,2010, 47(11-12): 1618-1640 59 Seo Y D, Kim H J, Youn S K. Isogeometric topology optimization using trimmed spline surfaces. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49-52): 3270-3296 60 Manh N D, Evgrafov A, Gersborg A R, et al. Isogeometric shape optimization of vibrating membranes. Computer Methods in Applied Mechanics and Engineering, 2011,200(13-16): 1343-1353 61 Qian X. Full analytical sensitivities in NURBS based isogeometric shape optimization. Computer Methods in Ap- plied Mechanics and Engineering, 2010, 199(29-32): 2059-2071 62 Qian X, Sigmund O. Isogeometric shape optimization of photonic crystals via Coons patches. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28):2237-2255 63 Hassani B, Khanzadi M, Tavakkoli S M. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and Multidisciplinary Optimiza- tion, 2012, 45(2):223-233 64 El-Abbasi N, Meguid S A, Czekanski A. On the modelling of smooth contact surfaces using cubic splines. Inter- national Journal for Numerical Methods in Engineering,2001, 50(4): 953-967 65 Lu J. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5-8): 726-741 66 Temizer I, Wriggers P, Hughes T J R. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9-12):1100-1112 67 De Lorenzis L, Temizer I, Wriggers P, et al. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numeri- cal Methods in Engineering, 2011, 87(13): 1278-1300 68 Stadler M, Holzapfel G A, Korelc J. Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. International Journal for Nu- merical Methods in Engineering, 2003, 57(15): 2177-2203 69 De Lorenzis L, Wriggers P, Zavarise G. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics, 2012, 49(1): 1-20 70 Temizer Wriggers P, Hughes T J R. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Me- chanics and Engineering, 2012, 209-212: 115-128 71 Kim J Y, Youn S K. Isogeometric contact analysis using mortar method. International Journal for Numerical Methods in Engineering, 2012, 89(12): 1559-1581 72 Bazilevs Y, Calo V M, Zhang Y, et al. Isogeometric fluid- structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 2006, 38(4-5):310-322 73 Zhang Y, Bazilevs Y, Goswami S, et al. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2943-2959 74 Bazilevs Y, Calo V M, Hughes T J R, et al. Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Computational Mechanics, 2008, 43(1): 3-37 75 Bazilevs Y, Gohean J R, Hughes T J R, et al. Patientspecific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Computer Meth- ods in Applied Mechanics and Engineering, 2009, 198(45-46): 3534-3550 76 Bazilevs Y. Isogeometric analysis of turbulence and fluidstructure interaction: [Ph.D. Thesis]. Austin: The University of Texas, 2006 77 Akkerman I, Bazilevs Y, Calo V M, et al. The role of continuity in residual-based variational multiscale modeling of turbulence. Computational Mechanics, 2008, 41(3):371-378 78 Bazilevs Y, Calo V M, Cottrell J A, et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1-4): 173-201 79 Bazilevs Y, Akkerman I. Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. Journal of Computational Physics, 2010, 229(9): 3402-3414 80 Bazilevs Y, Michler C, Calo V M, et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Computer Methods in Applied Me- chanics and Engineering, 2010, 199(13-16): 780-790 81 Gamnitzer P, Gravemeier V, Wall W A. Advances in variational multiscale methods for turbulent flows. Multiscale Methods in Computational Mechanics, 2011, 55: 39-52 82 Bazilevs Y, Hsu M -C, Kiendl J, et al. A computational procedure for prebending of wind turbine blades. Inter- national Journal for Numerical Methods in Engineering,2012, 89(3): 323-336 83 Bazilevs Y, Hsu M -C, Kiendl J, et al. 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids, 2011, 65(1-3):236-253 84 HsuMC, Akkerman I, Bazilevs Y. High-performance computing of wind turbine aerodynamics using isogeometric analysis. Computers & Fluids, 2011, 49(1): 93-100 85 Akkerman I, Bazilevs Y, Kees C E, et al. Isogeometric analysis of free-surface flow. Journal of Computational Physics, 2011, 230(11): 4137-4152 86 Calo V M, Brasher N F, Bazilevs Y, et al. Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Computational Mechanics, 2008, 43(1): 161-177 87 Hossain S S, Hossainy S F A, Bazilevs Y, et al. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Computational Mechanics, 2012, 49(2): 213-242 88 Cottrell J A, Reali A, Bazilevs Y, et al. Isogeometric analysis of structural vibrations. Computer Methods in Ap- plied Mechanics and Engineering, 2006, 195(41-43): 5257-5296 89 Buffa A, Sangalli G, V′azquez R. Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, 2010,199(17-20): 1143-1152 90 Gomez H, Hughes T J R, Nogueira X, et al. Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics and En- gineering, 2010, 199(25-28): 1828-1840 91 Manni C, Pelosi F, Sampoli M L. Isogeometric analysis in advection-diffusion problems: Tension splines approximation. Journal of Computational and Applied Mathemat- ics, 2011, 236(4): 511-528 92 Anders D, Weinberg K, Reichardt R. Isogeometric analysis of thermal diffusion in binary blends. Computational Materials Science, 2012, 52(1): 182-188 93 G′omez H, Calo V M, Bazilevs Y, et al. Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 2008,197(49-50): 4333-4352 94 Elguedj T, R′ethor′e J, Buteri A. Isogeometric analysis for strain field measurements. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1-4): 40-56 95 Haasemann G, Kerber T, Ulbricht V. Modeling and homogenization of textile reinforced composites based on the isogeometric analysis. PAMM, 2011, 11(1): 523-524 96 张勇, 林皋, 胡志强, 等. 基于等几何分析的比例边界有限元 方法. 计算力学学报, 2012, 29(3): 433-438 97 Qin H, Terzopoulos D. D-NURBS: A physics-based framework for geometric design. IEEE Transactions on Visu- alization and Computer Graphics, 1996, 2(1): 85-96
计量
- 文章访问数: 3211
- HTML全文浏览量: 287
- PDF下载量: 2971
- 被引次数: 0