-
摘要:
自发渗吸是发生在多孔介质里的一种常见自然现象, 存在于众多工程应用和自然科学领域, 多孔介质 中自发渗吸的基本静力学和动力学问题已成为当前国际研究的热点课题之一. 本文综述了传统理论研究中的 Lucas{Washburn(LW) 模型, Terzaghi 模型, Handy 模型, Mattax 和Kyte 无因次时间标度模型, Aronofsky 归 一化采收率标度模型以及近十年最新研究进展, 分析了渗吸机理判别参数研究, 简述了数值模拟研究及渗吸率 影响机理的实验研究现状, 总结了基于分形理论研究多孔介质自发渗吸的最新进展, 并展望了多孔介质以及裂 缝性双重多孔介质中牛顿流体和非牛顿流体自发渗吸研究的方向和课题.
-
关键词:
- 多孔介质, 毛细管力, 自发渗吸, 分形
Abstract:Spontaneous imbibition is a natural phenomenon in porous media extensively occurring in many fields of engineering applications and natural sciences. Thus, the issues on the basic statistics and kinetics of spontaneous imbibition in porous media have become one of hot topics for many years. In this review, progresses in traditionally theoretical researches on Lucas-Washburn (LW) model, Terzaghi model, Handy model, Mattax and Kyte scaled model of dimensionless time, Aronofsky scaled model of normalized recovery and recent advances in the area especially over the last decade are reviewed, including criterion parameters for analyzing the mechanisms of spontaneous imbibition and recent studies on spontaneous imbibition in porous media based on the fractal theory. Brief reviews on numerical simulations and experiments about the influence of factors on the imbibition rate are also addressed. A few of comments are also made on the future research directions and subjects on spontaneous imbibition of Newtonian and non-Newtonian fluids in porous media and fractured porous media with dual-porosity based on the fractal theory and numerical simulations.
-
1 Lucas R. Rate of capillary ascension of liquids. Kolloid- Zeitschrift, 1918, 23: 15-22 2 Washburn E W. Dynamics of capillary flow. Phys. Rev.,1921, 17(3): 273-283 3 Zhmud B V, Tiberg F, Hallstensson K. Dynamics of capillary rise. J. Colloid Interface Sci., 2000, 228: 263-269 4 Popescu M N, Ralston J, Sedev R. Capillary rise with velocity-dependent dynamic contact angle. Langmuir,2008, 24(21): 12710-12716 5 Alava M, Dubé M, Rost M. Imbibition in disordered media. Adv. Phys., 2004, 53(2): 83-175 6 Aronofsky J S, Massé L, Natanson S G. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs. Trans. AIME,1958, 213: 17-19 7 Kazemi H, Merrill L S, Porterfield K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoirs. SPEJ., 1976, 16(6): 317-326 8 Guo B, Schechter D S, Baker R O. An integrated study of imbibition waterflooding in the naturally fractured spraberry trend area reservoirs. SPE 39801, 1998 9 Graham J W, Richardson J G. Theory and application of imbibition phenomena in recovery of oil. J. Pet. Technol.,1959, 11(2): 65-69 10 Mattax C C, Kyte J R. Imbibition oil recovery from fractured water-drive reservoir. SPEJ., 1962, 2(2): 177-184 11 张红玲. 裂缝性油藏中的渗吸作用及其影响因素研究. 油气 采收率技术, 1999, 6(2): 44-48 12 Li K W, Horne R N. Characterization of spontaneous water imbibition into gas-saturated rocks. SPEJ., 2001, 6(4):375-384 13 Meleán Y, Broseta D, Blossey R. Imbibition fronts in porous media: Effects of initial wetting fluid saturation and flow rate. J. Pet. Sci. Eng., 2003, 39(3-4): 327-336 14 Blake T D, Coninck J D. The influence of pore wettability on the dynamics of imbibition and drainage. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 250(1-3):395-402 15 Yildiz H O, Gokmen M, Cesur, Y. Effect of shape factor, characteristic length, and boundary conditions on spontaneous imbibition. J. Pet. Sci. Eng., 2006, 53(3-4):158-170 16 刘卫东, 姚同玉, 刘先贵, 等. 表面活性剂体系渗吸. 北京: 石 油工业出版社, 2007 17 Hatiboglu C U, Babadagli T. Oil recovery by countercurrent spontaneous imbibition: Effects of matrix shape factor, gravity, IFT, oil viscosity, wettability, and rock type. J. Pet. Sci. Eng., 2007, 59(1-2): 106-122 18 Mason G, Fischer H, Morrow N R, et al. Effect of sample shape on counter-current spontaneous imbibition production vs time curves. J. Pet. Sci. Eng., 2009, 66(3-4):83-97 19 姚同玉, 李继山, 王建, 等. 裂缝性低渗透油藏的渗吸机理及 有利条件. 吉林大学学报(工学版), 2009, 39(4): 937-940 20 Standnes D C. Calculation of viscosity scaling groups for spontaneous imbibition of water using average diffusivity coefficients. Energy Fuels, 2009, 23(4): 2149-2156 21 彭昱强, 何顺利, 郭尚平, 等. 岩心渗透率对亲水砂岩渗吸的 影响. 大庆石油学院学报, 2010, 34(4): 51-56 22 Hatiboglu C U, Babadagli T. Experimental and visual analysis of co- and counter-current spontaneous imbibition for different viscosity ratios, interfacial tensions, and wettabilities. J. Pet. Sci. Eng., 2010, 70(3-4): 214-228 23 郁伯铭. 多孔介质输运性质的分形分析研究进展. 力学进展,2003, 33(3): 333-346 24 Morrow N R, Mason G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci., 2001,6(4): 321-337 25 Fries N, Dreyer M. An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci., 2008,320(1): 259-263 26 Kim E, Whitesides G M. Imbibition and flow of wetting liquids in noncircular capillaries. J. Phys. Chem. B, 1997,101(6): 855-863 27 Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman, 1982 28 Wheatcraft S W, Tyler S W. An explanation of scaledependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res., 1988,24(4): 566-578 29 Majumdar A. Role of fractal geometry in the study of thermal phenomena. Annu. Rev. Heat Transfer, 1992, 4:51-110 30 Cai J C, Yu B M, Mei M F, et al. Capillary rise in a single tortuous capillary. Chin. Phys. Lett., 2010, 27(5):054701 31 Cai J C, Yu B M, Zou M Q, et al. Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels, 2010, 24(3): 1860-1867 32 Benavente D, Lock P, Ángeles García Del Cura M, et al. Predicting the capillary imbibition of porous rocks from microstructure. Transp. Porous Media, 2002, 49(1): 59-76 33 Lundblad A, Bergman B. Determination of contact-angle in porous molten-carbonate fuel-cell electrodes. J. Elec- trochem. Soc., 1997, 144(3): 984-987 34 Hammecker C, Jeannette D. Modelling the capillary imbibition kinetics in sedimentary rocks: Role of petrographical features. Transp. Porous Media, 1994, 17(3): 285-303 35 Leventis A, Verganelakis D A, Halse M R, et al. Capillary imbibition and pore characterisation in cement pastes. Transp. Porous Media, 2000, 39(2): 143-157 36 Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys., 1973, 45(4): 574-588 37 Barrande M, Bouchet R, Denoyel R. Tortuosity of porous particles. Anal. Chem., 2007, 79(23): 9115-9121 38 Terzaghi K. Theoretical Soil Mechanics. New York: Wiley,1943 39 Lane K S,Washburn S E. Capillary tests by capillarimeter and by soil filled tubes. Proc. Highway Research Board,1946, 26: 460-473 40 Lu N, Likos W J. Rate of capillary rise in soil. J. Geotech. Geoenvir. Eng., 2004, 130(6): 646-650 41 Amico S C, Lekakou C. Axial impregnation of a fiber bundle Part 1: Capillary experiments. Polym. Compos.,2002, 23(2): 249-263 42 Amico S C, Lekakou C. Axial impregnation of a fiber bundle. Part 2: Theoretical analysis. Polym. Compos., 2002,23(2): 264-273 43 Handy L L. Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME, 1960, 219: 75-80 44 Schembre J M, Akin S, Castanier L M, et al. Spontaneous water imbibition into diatomite. SPE 46211, 1998 45 Akin S, Kovscek A R. Imbibition studies of lowpermeability porous media. SPE 54590, 1999 46 Li K W, Horne R N. An analytical scaling method for spontaneous imbibition in gas-water-rock systems. SPE J., 2004, 9(3): 322-329 47 Cai J C, You L J, Hu X Y, et al. Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int. J. Mod. Phys. C, 2012, 23(7): 1250054 48 Mason G, Fischer H, Morrow N, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition. J. Pet. Sci. Eng., 2010, 72(1): 195-205 49 Rapoport L A. Scaling laws for use in design and operation of water-oil flow models. Trans. AIME, 1955, 204:143-150 50 Rapoport L A, Leas W J. Properties of linear waterflood. Trans. AIME, 1953, 5(5): 139-148 51 Zhang X, Morrow N R, Ma S. Experimental verification of a modified scaling group for spontaneous imbibition. SPERE, 1996, 11(4): 280-285 52 Hamon G, Vidal J V. Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. SPE 15852, 1986 53 Cuiec L E, Bourbiaux B, Kalaydjian F. Oil recovery by imbibition in low-permeability chalk. SPEFE, 1994, 9(3):200-208 54 Kazemi H, Gilman J R, El-Sharkaway A M. Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions. SPERE, 1992, 7(2):219-227 55 Ma S, Morrow N R, Zhang X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. Paper 95-138, in Proc. of the 6th Petroleum Conference of the South Saskatchewan Section, the Petroleum Society of CIM, Regina, Saskatchewan, 16-18, October, 1995 56 Ma S, Morrow N R, Zhang X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Pet. Sci. Eng., 1997, 18(3-4): 165-178 57 Arabjamaloei R, Shadizadeh S R. A new approach for specifying imbibition face boundary condition in countercurrent spontaneous imbibition. Petrol. Sci. Tech., 2010,28(18): 1855-1862 58 Standnes D C. Scaling spontaneous imbibition of water data accounting for fluid viscosities. J. Pet. Sci. Eng.,2010, 73(1-2): 214-219 59 Ma S, Morrow N R, Zhang X, et al. Characterization of wettability from spontaneous imbibition measurements. J. Can. Petrol. Tech., 1999, 38(13): 1-8 60 Fischer H, Morrow N R. Scaling of oil recovery by spontaneous imbibition for wide variation in aqueous phase viscosity with glycerol as the viscosifying agent. In: Proc. of the 8th International Symposium on Reservoir Wettability and Its Effect on Oil Recovery, Houston TX, 16-18 May, 2004 61 Gupta A, Civan F. An improved model for laboratory measurement of matrix to fracture transfer function parameters in immiscible displacement. SPE 28929, 1994 62 Zhou D, Jia L, Kamath J, et al. Scaling of counter-current imbibition processes in low-permeability porous media. J. Pet. Sci. Eng., 2002, 33(1-3): 61-74 63 Zhou K, Zhang W, Li Y, et al. Prediction of recovery by spontaneous imbibition in Gas/Liquid/Rock systems. SPE 107355, 2007 64 Olafuyi O A, Cinar Y, Knackstedt M A, et al. Spontaneous imbibition in small cores. SPE 109724, 2007 65 Li K W, Horne R N. Generalized scaling approach for spontaneous imbibition: An analytical model. SPEREE,2006, 9 (3): 251-258 66 Li K W. Scaling of spontaneous imbibition data with wettability included. J. Contam. Hydrol., 2007, 89(3-4): 218-230 67 Al-Attar H H. Experimental study of spontaneous capillary imbibition in selected carbonate core samples. J. Pet. Sci. Eng., 2010, 70(3-4): 320-326 68 Reis J, Cil M. A model for oil expulsion by counter-current water imbibition in rocks: One-dimensional geometry. J. Pet. Sci. Eng., 1993, 10(2): 97-107 69 Wang R. Gas recovery from porous media by spontaneous imbibition of liquid. [MS Thesis]. Wyoming: University of Wyoming, 1999 70 Ruth D W, Mason G, Morrow N, et al. The effect of fluid viscosities on counter-current spontaneous imbibition. paper SCA2004-11, 2004 71 Fischer H, Wo S, Morrow N R. Modeling the effect of viscosity ratio on spontaneous imbibition. SPEREE, 2008,11(3): 577-589 72 Gallego F, G′omez J P, Civan F. Matrix-to-fracture transfer functions derived from the data of oil recovery, and it’s derivative and integral. J. Pet. Sci. Eng., 2007, 59(3-4):183-194 73 Matejka M C, Llanos E M, Civan F. Experimental determination of the matrix-to-fracture transfer functions for oil recovery by water imbibition. J. Pet. Sci. Eng., 2002,33(4): 253-264 74 Standnes D C. Experimental study of the impact of boundary conditions on oil recovery by co-current and counter-current spontaneous imbibition. Energy Fuels,2004, 18(1): 271-282 75 Standnes D C. A single-parameter fit correlation for estimation of oil recovery from fractured water-wet reservoirs. J. Pet. Sci. Eng., 2010, 71(1-2): 19-22 76 Chen J, Miller M A, Sepehrnoori K. Theoretical investigation of countercurrent imbibition in fractured reservoir matrix blocks. SPE 29141, 1995 77 Iffly R, Rousselet D C, Vermeulen J L. Fundamental study of imbibition in fissured oil fields. SPE 4102, 1972 78 Standnes D C. Scaling group for spontaneous imbibition including gravity. Energy Fuels, 2010, 24(5): 2980-2984 79 Babadagli T, Hatiboglu C U, Hamida T. Evaluation of matrix-fracture transfer functions for countercurrent capillary imbibition. SPE92111, 2005 80 Tavassoli Z, Zimmerman R W, Blunt M J. Analytic analysis for oil recovery during counter-current imbibition in strongly water-wet systems. Transp. Porous Media, 2005,58(1): 173-189 81 Viksund B G, Morrow N R, Ma S, et al. Initial water saturation and oil recovery from chalk and sandstone by spontaneous imbibition. paper SCA-9814, 1998 82 Civan F. Waterflooding of naturally fractured reservoirs: an efficient simulation approach. SPE 25449, 1993 83 Civan F. A theoretically derived transfer function for oil recovery from fractured reservoirs by waterflooding. SPEREE, 1998, 1(2): 141-147 84 杨正明, 朱维耀, 陈权, 等. 低渗透裂缝性砂岩油藏渗吸机理 及其数学模型. 江汉石油学院院报, 2001, 23(9): 25-27 85 Civan F, Rasmussen M L. Asymptotic analytical solutions for imbibition waterfloods in fractured reservoirs. SPEJ.,2001, 6(2): 171-181 86 Hammecker C, Mertz J D, Fischer C, et al. A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transp. Porous Media, 1993, 12(2):125-141 87 Standnes D C. Spontaneous imbibition of water into cylindrical cores with high aspect ratio: numerical and experimental results. J. Pet. Sci. Eng., 2006, 50(2): 151-160 88 Høgnesen E J, Standnes D C, Austad T. Experimental and numerical investigation of high temperature imbibition into preferential oil-wet chalk. J. Pet. Sci. Eng.,2006, 53(1-2): 100-112 89 Yu L, Evje S, Kleppe H, et al. Spontaneous imbibition of seawater into preferentially oil-wet chalk coresexperiments and simulations. J. Pet. Sci. Eng., 2009,66(3-4): 171-179 90 Arabjamaloei R, Shadizadeh S, Ekramzadeh M, et al. Numerical model of countercurrent spontaneous imbibition in underbalanced drilling: formation damage investigation. Petrol. Sci. Tech., 2011, 29(16): 1615-1624 91 El-Amin M F, Sun S Y. Effects of gravity and inlet/outlet location on a two-phase cocurrent imbibition in porous media. J. Appl. Math., 2011, 2011: 673523 92 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两 相流驱替数值模拟. 物理学报, 2011, 60(9): 098103 93 Hatiboglu C U, Babadagli T. Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E, 2008, 77: 066311 94 Ahrenholz B, Töke J, Lehmann P,et al. Prediction of capillary hysteresis in a porous material using Lattice- Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Res., 2008, 31(9): 1151-1173 95 Kaul S P, Putra E, Schechter D S. Spontaneous imbibition simulation with Rayleigh-Ritz Finite Element method. SPE 90053, 2004 96 Constantinides G N, Payatakes A C. Network simulation of steady-state two-phase flow in consolidated porous media. AIChE J., 1996, 42(2): 369-382 97 Knackstedt M A, Sheppard A P, Sahimi M. Pore network modelling of two-phase flow in porous rock: The effect of correlated heterogeneity. Adv. Water Res., 2001, 24(3-4):257-277 98 Ghassemzadeh J, Hashemi M, Sartor L, et al. Pore network simulation of imbibition into paper during coating: I. Model development. AIChE J., 2001, 47(3): 519-535 99 Ghassemzadeh J, Sahimi M. Pore network simulation of fluid imbibition into paper during coating: II. Characterization of paper’s morphology and computation of its effective permeability tensor. Chem. Eng. Sci., 2004,59(11): 2265-2280 100 Martic G, Gentner F, Seveno D, et al. A molecular dynamics simulation of capillary imbibition. Langmuir,2002, 18(21): 7971-7976 101 Supple S, Quirke N. Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett., 2003, 90(21): 214501 102 Dimitrov D I, Milchev A, Binder K. Capillary rise in nanopores: Molecular dynamics evidence for the lucaswashburn equation. Phys. Rev. Lett., 2007, 99(5): 054501 103 Li K W, Firoozabadi A. Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Res. Eval. Eng., 2000, 3(2): 139-149 104 Li K W, Chow K, Horne N. Influence of initial water saturation on recovery by spontaneous imbibition in gas/water/rock systems and the calculation of relative permeability. SPEREE, 2006, 9(4): 295-301 105 朱维耀, 鞠岩, 赵明, 等. 低渗透裂缝性砂岩油藏多孔介质渗 吸机理研究. 石油学报, 2002, 23(6): 56-59. 106 游利军, 康毅力, 陈一健. 致密砂岩含水饱和度建立新方法 —- 毛管自吸法. 西南石油学院学报, 2005, 27(1): 28-31 107 Blair P M. Calculation of oil displacement by countercurrent water imbibition. SPEJ., 1964, 4(3): 195-202 108 Zhou X, Morrow N R, Ma S. Interrelationship of wettability, initial water saturation, Aging time and oil recovery by spontaneous imbibition and waterflooding. SPEJ., 2000,5(2): 199-207 109 Cil M, Reis J C, Miller M A, et al. An examination of countercurrent capillary imbibition recovery from single matrix blocks and recovery predictions by analytical matrix/ fracture transfer functions. SPE 49005, 1998 110 Li K W, Chow K, Horne R N. Effect of initial water saturation on spontaneous water imbibition. SPE 76727, 2002 111 游利军, 康毅力. 油气储层岩石毛细管自吸研究进展. 西南 石油大学学报, 2009, 31(4): 112-116 112 Wang X H, Liu Z F, Wu Q S, et al. Statistical properties for two-dimensional fluid flow in percolation porous media. Physica A, 2002, 311(3-4): 320-326 113 Schechter D S, Zhou D, Orr F M. Low IFT drainage and imbibition. J. Pet. Sci. Eng., 1994, 11(4): 283-300 114 Standnes D C, Austad T. Wettability alteration in carbonates: Low-cost ammonium surfactants based on bioderivatives from the coconut palm as active chemicals to change the wettability form oil-wet to water-wet conditions. Colloids Surf. A: Physicochem. Eng. Aspects,2003, 218(1-3): 161-173 115 Yu B M. Analysis of flow in fractal porous media. Appl. Mech. Rev., 2008, 61(5): 050801 116 Cai J C, Yu B M, Zou M Q, et al. Fractal analysis of invasion depth of extraneous fluids in porous media. Chem. Eng. Sci., 2010, 65(18): 5178-5186 117 杨建, 康毅力, 李前贵, 等. 致密砂岩气藏微观结构及渗流特 征. 力学进展, 2008, 28(2): 229-236 118 谢和平. 岩土介质的分形孔隙和分形粒子. 力学进展, 1993,23(2): 145-164 119 Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and formation. Phys. Rev. Lett.,1985, 54 (3): 1325-1328 120 Krohn C E. Fractal measurements of sandstones, shales, and carbonates. J. Geophys. Res., 1988, 93(B4): 3297-3305 121 Krohn C E. Sandstone fractal and Euclidean pore volume distributions. J. Geophys. Res., 1988, 93(B4): 3286-3296 122 Yu B M, Li J H. Some fractal characters of porous media. Fractals, 2001, 9(3): 365-372 123 Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol., 1990, 112: 205-216 124 Yu B M, Cheng P. A fractal permeability model for bidispersed porous media. Int. J. Heat Mass Transfer,2002, 45(14): 2983-2993 125 Roy A, Perfect E, Dunne W M, et al. Fractal characterization of fracture networks: An improved box-counting technique. J. Geophys. Res., 2007, 112: B12201 126 杨庆红, 谭吕, 蔡建超, 等. 储层微观非均质性定量表征的分 形模型. 地球物理学进展, 2012, 27(2): 603-609 127 Pfeifer P, Avnir D. Chemistry in nointegral dimensions between two and three. J. Chem. Phys., 1983, 79(7):3369-3558 128 Li K W. More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hy- drol., 2010, 111(1-4): 13-24 129 Li K W, Zhao H Y. Fractal prediction model of spontaneous imbibition rate. Transp. Porous Media, 2012,91(2): 363-376 130 Yu B M. Fractal character for tortuous streamtubes in porous media. Chin. Phys. Lett., 2005, 22(1): 158-160 131 Carman P C. Fluid flow through granular beds. Trans. Inst. Chem. Eng., 1937, 15: 150-167 132 Xu P, Yu B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour., 2008,31(1): 74-81 133 Li K W, Horne R N. Fractal modeling of capillary pressure curves for the Geysers rocks. Geothermics, 2006, 35(2):198-207 134 Deinert M R, Dathe A, Parlange J Y, et al. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions. Phys. Rev. E, 2008,77(2): 021203 135 Cai J C, Yu B M. Prediction of maximum pore size of porous media based on fractal geometry. Fractals, 2010,18(4): 417-423 136 Cai J C, Yu B M. A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media, 2011, 89(2): 251-263 137 Gruener S, Hofmann T, Wallacher D, et al. Capillary rise of water in hydrophilic nanopores. Phys. Rev. E, 2009,79(6): 067301 138 Laughlin R D, Davis J E. Some aspects of capillary absorption in fibrous textile wicking. Textile Res. J., 1961,31: 904-910 139 De Boer J J. The wettability of scoured and dried cotton fabrics. Textile Res. J., 1980, 50(10): 624-631 140 Zhuang Q, Harlock S C, Brook D B. Longitudinal wicking of weft knitted fabrics: Part II: Wicking mechanism of knitted fabrics used in undergarments for outdoor activities. J. Textile Inst., 2002, 93(1): 97-107 141 Horv′ath V K, Stanley H E. Temporal scaling of interfaces propagating in porous media. Phys. Rev. E, 1995, 52(5):5166-5169 142 Kwon T H, Hopkins A E, O’Donnell S E. Dynamic scaling behavior of a growing self-affine fractal interface in a paper-towel-wetting experiment. Phys. Rev. E, 1996,54(1): 685-690 143 Lam C H, Horv′ath V K. Pipe network model for scaling of dynamic interfaces in porous media. Phys. Rev. Lett.,2000, 85(6): 1238-1241 144 Balankin A S, Paredes R G, Susarrey O, et al. Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett., 2006, 96(5): 056101 145 Delker T, Pengra D B, Wong P Z. Interface pinning and the dynamics of capillary rise in porous Media. Phys. Rev. Lett., 1996, 76(16): 2902-2905 146 Br′u A, Pastor, J.M. Experimental characterization of hydration and pinning in bentonite clay, a swelling, heterogeneous, porous medium. Geoderma, 2006, 134(3-4): 295-305 147 Karoglou M, Moropoulou A, Giakoumaki A, et al. Capillary rise kinetics of some building materials. J. Colloid Interface Sci., 2005, 284(1): 260-264 148 Dub′e M, Rost M, Elder K R, et al. Liquid conservation and nonlocal interface dynamics in imbibition. Phys. Rev. Lett., 1999, 83(8): 1628-1631 149 Chen J D, Wilkinson D. Pore-scale viscous fingering in porous media. Phys. Rev. Lett., 1985, 55(18): 1892-1895 150 King P. The fractal nature of viscous fingering in porous media. J. Phys. A: Math. Gen., 1987, 20: L529 151 Liu Z F, Wang X H, Mao P, et al. Tracer dispersion between two lines in two-dimensional percolation porous media. Chin. Phys. Lett., 2003, 20(11): 1969-1972 152 Cai J C, Hu X Y, Standnes D C, et al. An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 414: 228-233
计量
- 文章访问数: 3895
- HTML全文浏览量: 740
- PDF下载量: 3515
- 被引次数: 0