留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器动力学模型试验验证技术研究进展

丁继锋 韩增尧 马兴瑞

丁继锋, 韩增尧, 马兴瑞. 航天器动力学模型试验验证技术研究进展[J]. 力学进展, 2012, 42(4): 395-405. doi: 10.6052/1000-0992-10-012
引用本文: 丁继锋, 韩增尧, 马兴瑞. 航天器动力学模型试验验证技术研究进展[J]. 力学进展, 2012, 42(4): 395-405. doi: 10.6052/1000-0992-10-012
DING Jifeng, HAN Zengyao, MA Xingrui. RESEARCH EVOLUTION ON THE TEST VERIFICATION OF SPACECRAFT DYNAMIC MODEL[J]. Advances in Mechanics, 2012, 42(4): 395-405. doi: 10.6052/1000-0992-10-012
Citation: DING Jifeng, HAN Zengyao, MA Xingrui. RESEARCH EVOLUTION ON THE TEST VERIFICATION OF SPACECRAFT DYNAMIC MODEL[J]. Advances in Mechanics, 2012, 42(4): 395-405. doi: 10.6052/1000-0992-10-012

航天器动力学模型试验验证技术研究进展

doi: 10.6052/1000-0992-10-012
详细信息
    通讯作者:

    韩增尧

RESEARCH EVOLUTION ON THE TEST VERIFICATION OF SPACECRAFT DYNAMIC MODEL

More Information
    Corresponding author: HAN Zengyao
  • 摘要: 耦合载荷分析是航天器研制过程中的一个重要环节, 能够为航天器结构设计, 地面验证试验条件制定以及批准型号发射提供重要依据, 而精确地得到试验验证的航天器动力学分析模型是开展耦合载荷分析的基础. 对于大型复杂航天器结构系统, 动力学模型的试验验证需要统筹安排初始建模、动力学试验、相关分析和模型修正等工作, 这是一项极具挑战的任务. 本文首先给出了结构动力学模型验证的基本流程, 然后重点讨论动力学试验, 相关分析与模型修正等关键技术, 最后结合工程实际的需求, 提出了今后航天器动力学模型试验验证技术研究的重点.

     

  • 1 Zang C, Chen G, Ewins D J. A Review of Advances in Developments in FE Model Validation, Proc. The IMACXXIV (24): A Conference & Exposition on Structural Dynamics St.Louis, Missouri, USA 2006, p. 1778-1789.
    2 Ewins D J. Modal Testing II—Theory, Practice and Application. Baldock, Hertfordshire, England: Research Studies Press, Ltd., 2000.
    3 俞云书. 结构模态试验分析. 北京: 宇航出版社, 2000
    4 Ewins D J. Virtual modal testing. The Asia-Pacific Vibration Conference, Orchard Hotel,Singapore, 1999
    5 Tinker M L. Modal Vibration Test Facilities and Methods for Space Station Modules. AIAA-95-1295,1995
    6 Tinker M L. Free-suspension residual flexibility testing of space station pathfinder: comparison to fixed-base results, AIAA 1998-1791, 1998
    7 Tinker M L. Hybrid residual flexibility/mass-additive method for structural dynamic testing, NASA/TM 2003-212343, 2003
    8 Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control and Dynamics, 1991, 14(9): 251-259
    9 Kammer D C. Effects of noise on sensor placement for onorbit modal identification of large space structures. Jour- nal of Dynamic Systems, Measurement and Control, 1992,114: 436-443
    10 Papadopoulos M, Garcia E. Sensor placement methodologies for dynamic testing. AIAA Journal, 1998, 36(2): 256-263
    11 Reynier M, Hisham A K. Sensor locations for updating problems. Mechanical Systems and Signal Processing,1999, 13(2): 297-314
    12 Wijker J (ed.), Mechanical Vibrations in Spacecraft Design. Berlin: Springer, 2004
    13 Allemang R, Brown D. A correlation coefficient for modal vector analysis. In: 1st International Modal Analysis Conference, Orlando, USA., 1982
    14 Lieven N A, Ewins D J. Spatial correlation of mode shapes, the coordinatemodal assurance criterion (COMAC). In: 6th International Modal AnalysisConference, Kissimmee, USA., 1988
    15 Payload Verification Requirements, NSTS 14046 Rev. E, Lyndon B. Johnson Space Center, Huston Texas; March2000
    16 Coleman M, Peng C Y, Smith K S. Test verification of the cassini spacecraft dynamic model, 0-7803-3741-7/97IEEE,1997
    17 Modal Survery Assessment, Ecss-E-30-11, Draft 1, Noordwijk, The Netherlands. 2003
    18 Heylen W, Avitabile P. Correlation considerations —Part5, In: Proc. IMAC, 1998
    19 Heylen W, Lammens S. FRAC: a consistent way of comparing frequency response functions. In: Proc. Identication in Engineering Systems, Proceedings of the Conference held at Swansea., 1996
    20 Nefske D J, Sung S H. Correlation of a coarse-mesh FE model using structural system identification and a frequency response assurance criterion. In: Proc. IMAC,597-602, 1996
    21 Pascual R, Razeto C G J M. A frequency domain correlation technique for model correlation and updating. In: Proc. IMAC, 1997 587-592
    22 Grafe H. Model updating of large structural dynamics models using measured response functions. London: University of London, 1998
    23 Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Canada: Kluer Academic Publishers, 1995
    24 张德文, 魏阜旋. 模型修正与破损诊断, 第一版. 北京: 科学 出版社, 1999
    25 Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound and Vibra- tion, 1993, 163(2): 347-375
    26 Mottershead J E, Friswell M I. Model updting. Special Issue: Mech. Syst. Signal Process, 1998, 12(1)
    27 Imregun M, Visser W J. A review of model updating tchniques. The Shock and Vibration Digest, 1991, 13: 9-20
    28 Hemez F M. Can model updating tell the truth? In: Proc. the 16th SEM International Modal Analysis Conference Santa Barbara, California, 1998. 1-7
    29 Natke H G. Problem of model updating procedures: a perspective resumption. Mechanical Systems and Signal Processing, 1998, 12(1): 65-74
    30 李辉, 丁桦. 结构动力模型修正方法研究进展. 力学进展,2005, 35(2): 170-180
    31 Baruch M. Optimization procedure to correct stiffness and flexiblity matrices using vibration data. AIAA Journal,1978, 16(11): 1208-1210
    32 Baruch M. Method of reference basis for identification of linear dynamic strucutres. In: 23rd Structures, Structural Dynamics and Materials Conference,Part 2, New Orleans, Louisiana, 1982
    33 Berman A. Comment on optimal weighted orthogonalization of measured modes. AIAA Journal, 1979, 17(8): 927-928.
    34 Berman A. Mass matrix correction using an imcomplete set of measured modes. AIAA Journal, 1979, 17(10)
    35 Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21(8): 1168-1173
    36 zhang D W, Zhang L. The matrix transform method for modification of structural dynamic analytic model. AIAA Journal, 1992, 30(5)
    37 Kabe A M. Stiffness matrix adjustment using for structure model. AIAA Journal, 1985, 23(9): 1431-1436
    38 Smith S W, Beattie C A. Secant-method adjustment for structural models. AIAA Journal, 1991, 29(1): 538-543
    39 Kenigsbuch R, Halevi Y. Model updating in structural dynamics: a generalized reference basis approach. Me- chanical Systems and Signal Processing, 1998, 12: 75-90
    40 Halevi Y, Bucher I. Model updating via weighted reference basis with connectivity constraints. Journal of Sound and Vibration, 2003, 265(3): 561-581
    41 Caesar B. Updating and identification of dynamic mathematical models. In: Proc. 4th International Modal Analysis Conference Los Angeles, 1986, 453-459
    42 Caesar B. Updating system matrices using modal test data. In: Proc. 5th International Modal Analysis Conference London, 1987. 453-459
    43 Link M,Weiland M, Barragan J M. Direct physical matrix identification as compared to phase resonance testing: an assessment based on practical application. In: Proc. 5th International Modal Analysis Conference London, England,1987
    44 Minas C, Inman D J. Correcting finite element models with measured modal results using eigenstructure assignment meods. In: Proc. 6th International Modal Analysis Conference Orlando, Florida, 1988. 583-587
    45 Minas C, Inman D J. Matching finite element models to modal data. Journal of Vibration and Acoustics, 1990,112(1): 84-92
    46 Zimmerman D C, Widengren M. Correcting finite models using a symmetric eigenstructure assignment technique. AIAA Journal, 1990, 28(9): 1670-1676
    47 丁继锋, 韩增尧, 马兴瑞. 大型复杂航天器结构有限元模型 的验证策略研究. 宇航学报, 2010, 31(2): 547-555
    48 Fox F L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 1968, 6(12): 2426-2429
    49 Kuo C P, Wada B K. Nonlinear sensitivity coeficients and corrections in system identification, AIAA Journal, 1987,25(11): 1463-1468
    50 Gordis J H. Artificial boundary conditions for model updating and damage detection. Mechanical Systems and Signal Processing, 1999, 13(3): 437-448
    51 DeGregory C P. Finite elememnt model updating and damage detection using artificial boundary conditions. Monterey, California, Naval Postgruduate School, 1999
    52 Fernandez R S. Artificial boundary conditions in sensitivity based finite element model updating and structural damage detection. California, Naval Postgraduate School,2005
    53 D’Ambrogio W, Fregoient A. The use of antiresonances for robust model updating. Journal of Sound and Vibration,2000, 23(2): 227-242
    54 Jones K W. Finite element model updating using antiresonant frequencies. Ohio, Air Force Insitute of Technology,2000
    55 D’Ambrogio W, Fregolent A. Results obtained by minimising natural frequency and antiresonance errors of a beam model. Mechanical Systems and Signal Processing,2003, 17(1): 29-37
    56 Thonon C, Golinval J C. Results obtained by minimising natural frequency and mac-value errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1):65-72
    57 费庆国, 张令弥, 李爱群, 等. 基于不同残差的动态有限元模 型修正的比较研究. 振动与冲击, 2005, 24(4): 24-27
    58 Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures. AIAA Journal, 1974, 12(2):185-190
    59 Hemez F M, Doebling S. A validation of bayesian finite element model updating for linear dynamics. In: Proc. the17th International Model Analysis Conference Kissimmee, Florida, 1999
    60 Hua H. On a stctistical optimization method used in finite element model updating. Journal of Sound and Vibration,2000, 231(4): 1071-1078
    61 华宏星, 傅志方. 有限元模型修正中的Bayes 方法的几点讨 论. 振动工程学报, 1998, 11(1): 110-115
    62 Lin R M, Ewins D J. Model updating using FRF data. In: Proc. 15th International Seminar on Modal Analysis,1990
    63 Lin R M, Ewins D J. Analytical model improvement using frequency reponse functions. Mechanical Systems and Signal Processing, 1994, 8(4): 437-458
    64 Imregun M, Visser W J, Ewins D J. Finite element model updating using frequency response function data-1. theory and initial investigation. Mechanical Systems and Sig- nal Processing, 1995, 9: 187-202
    65 Visser W J, Imregun M. A Technique to update finite element models using frequency response data. In: Proc. the9th International Modal Analysis Conference Florence,1991-09-10-12. Kissimmee: Union College, 1991. 462-468
    66 Imregun M, Visser W J, Ewing M S. Finite element model updating using frequency response function data-2 case study on a medium-size finite element model. Mechanical Systems and Signal Processing, 1995, 9(2): 203-213
    67 Frizten C P, Zhu S. Updating of finite element models bu means of measured information. Computers and Struc- tures, 1991, 40(2): 475-486
    68 Link M, Zhang L. Experience with different procedures for updating structural parameters of analytical models using test data. In: Proc. the 10th Internatinal Modal analysis Conference Sandiego,California, 730-738, 1992
    69 Hemez F M, Browm G W. Improving structural dynamics models by correlation simulated to measured frequency response functions, A98-25080, 1998
    70 Chang K J, Park Y P. Substructure Model Updating Techniques Using Component Receptance Sensitivity (CRS).
    71 Kwon K S, Lin R M. Frequency selection method for FRFbased model updating. Journal of Sound and Vibration,2004, 278(1-2): 285-306
    72 Modak S V, Kundra T K, Nakra B C. Comparative study of model updating methods using simulated experimental data. Computers and Structures, 2002, 80: 437-447
    73 Kodiyalam S, Kao P J, Wang G. Analysis and test correlation of spacecraft strucutres using dynamic parameter sensitivities. AIAA 1994-24025, 1994
    74 Beliveau J G, Vigneron, Soucy, et al. Modal parameter estimation from base excitation. Journal of Sound and Vibration, 1986, 107: 435-449
    75 Sinapius J M. Tuning of normal modes by multi-axial base excitation. Mechanical Systems and Signal Processing,1999, 13(6): 911-924
    76 Thomas G C, David R M, Arlo R N. A comparison of fixed-base and driven-base modal testing of an electronics package. In: Proc. the 7th International Modal Analysis conference (IMAC), 672-679, 1989
    77 Mark D. Correlation of FE models of base excitation tests. In: Proc. the 16th International Modal Analysis Conference,959-964, 1998
    78 Lin R M, Zhu J. Finite element model updating using vibration test data under base excitation, Journal of Sound and Vibration, 2007, 303: 596-613
    79 Mares C, Mottershead J E, Friswell M I. On the development of a stochastic approach for the validation of spacecraft structural dynamic models. In: Proc. the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, France, 2002
    80 Mares C, Mottershead J E, Friswell M I. Stochastic model updating: part 1——theory and simulated example. Me- chanical Systems and Signal Processing, 2006, 20: 1674-1695
    81 Mottershead J E, Mares C, James S, et al. Stochastic model updating: part II——theory and simulated example. Mechanical Systems and Signal Processing, 2006, 20:2171-2185
    82 Calvi A. Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Computers and Structures, 2005, 83: 1103-1112
    83 邱吉宝, 王建民. 用测量模态参数修改数学模型和复杂结构 动力学建模技术. 见: 全国模态分析与试验会议论文集, 1991
    84 邱吉宝, 王建民, 捆绑式运载火箭动力学分析. 见: 柔性结构 的振动控制学术讨论会论文集. 北京, 1994: 173-178
    85 邱吉宝, 王建民. 用试验识别模态修改数学模型方法与复杂 结构建模技术. 振动与冲击, 1994, 3: 8-14
    86 邱吉宝, 张正平, 向树红. 计算结构动力学. 合肥: 中国科技 大学出版社, 2009
  • 加载中
计量
  • 文章访问数:  2044
  • HTML全文浏览量:  191
  • PDF下载量:  1412
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-04-08
  • 刊出日期:  2012-07-25

目录

    /

    返回文章
    返回