留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动接触线的物理力学研究

袁泉子 沈文豪 赵亚溥

袁泉子, 沈文豪, 赵亚溥. 移动接触线的物理力学研究[J]. 力学进展, 2016, 46(1): 201608. doi: 10.6052/1000-0992-16-006
引用本文: 袁泉子, 沈文豪, 赵亚溥. 移动接触线的物理力学研究[J]. 力学进展, 2016, 46(1): 201608. doi: 10.6052/1000-0992-16-006
Quanzi YUAN, Wenhao SHEN, Yapu ZHAO. Physical mechanics investigations of moving contact lines[J]. Advances in Mechanics, 2016, 46(1): 201608. doi: 10.6052/1000-0992-16-006
Citation: Quanzi YUAN, Wenhao SHEN, Yapu ZHAO. Physical mechanics investigations of moving contact lines[J]. Advances in Mechanics, 2016, 46(1): 201608. doi: 10.6052/1000-0992-16-006

移动接触线的物理力学研究

doi: 10.6052/1000-0992-16-006
基金项目: 国家自然科学基金(U1562105, 11372313, 11202213, 11611130019);中科院创新交叉团队;中国科学院重点部署(KJZD-EW-M01)资助项目.
详细信息
    通讯作者:

    赵亚溥, 1963年8月出生

  • 中图分类号: O369

Physical mechanics investigations of moving contact lines

More Information
    Corresponding author: Yapu ZHAO
  • 摘要: 移动接触线,指两种互不相溶的流体在固体表面形成移动的三相接触区域.移动接触区域跨越多个尺度,其中三相物质之间的相互作用影响着整个流场的动力学特征.由于在能源、航天、生物等领域中的重要应用和迅速发展,移动接触线在新的应用背景下发展了新的难题.标度分析是度量接触线自相似扩展的重要手段.本文以移动接触线的标度关系为主线,介绍了"力-电-热-化学"多场耦合环境下,亲水内角、微柱阵列、可溶解固体、水力压裂滞后区等复杂几何结构的刚性/柔性固体表面,采用物理力学方法对于移动接触线动力学属性研究的进展.通过跨尺度实验研究、大规模分子动力学模拟和分子动理论/水动力学理论相结合的方法,发现了类固体前驱膜、单分子前驱水链、锯齿形接触线等新现象.从原子尺度的界面结构到连续尺度的流动特性,讨论了移动接触线自相似扩展的标度关系,以及其驱动来源、能量耗散、边界条件等物理机制和规律,为多物理场中的"Huh-Scriven佯谬"探索了解答,为移动接触线的前景和应用提出了展望.

     

  • [1] 钱学森. 1962. 物理力学讲义. 北京, 科学出版社(Tsien H S. 1962. Lecture Notes on Physical Mechanics. Beijing:Science Press).
    [2] 赵亚溥. 2012. 表面与界面物理力学. 北京, 科学出版社(Zhao Y P. 2012. Physical Mechanics of Surfaces and Interfaces. Beijing:Science Press).
    [3] 赵亚溥. 2014. 纳米与介观力学. 北京, 科学出版社(Zhao Y P. 2014. Nano and Mesoscopic Mechanics. Beijing:Science Press).
    [4] Abraham D B, Collet P, De Coninck J, Dunlop F. 1990. Langevin dynamics of spreading and wetting. Physical Review Letters, 65:195.
    [5] Advani S H, Lee T S, Dean R H, Pak C K, Avasthi J M. 1997. Consequences of fluid lag in three-dimensional hydraulic fractures. International Journal for Numerical and Analytical Methods in Geomechanics, 21:229-240.
    [6] Algara-Siller G, Lehtinen O, Wang F, Nair R, Kaiser U, Wu H, Geim A, Grigorieva I. 2015. Square ice in graphene nanocapillaries. Nature, 519:443-445.
    [7] Anna S L. 2016. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 48:285-309.
    [8] Ausserré D, Picard A M, Léger L. 1986. Existence and role of the precursor film in the spreading of polymer liquids. Physical Review Letters, 57:2671.
    [9] Bain C D, Burnett-Hall G D, Montgomerie R R. 1994. Rapid motion of liquid drops. Nature, 372:414-415.
    [10] Barenblatt G, Beretta E, Bertsch M. 1997. The problem of the spreading of a liquid film along a solid surface:A new mathematical formulation. Proceedings of the National Academy of Sciences, 94:10024-10030.
    [11] Batchelor G K. 2000. An Introduction to Fluid Dynamics. New York:Cambridge University Press.
    [12] Berthier J. 2012. Micro-drops and Digital Microfluidics. England:William Andrew.
    [13] Bico J, Quéré D. 2002. Self-propelling slugs. Journal of Fluid Mechanics, 467:101-127.
    [14] Blake T D. 1993. Wettability. New York:Dekker.
    [15] Blake T D. 2006. The physics of moving wetting lines. Journal of Colloid and Interface Science, 299:1-13.
    [16] Blake T D, De Coninck J. 2002. The influence of solid-liquid interactions on dynamic wetting. Advances in Colloid and Interface Science, 96:21-36.
    [17] Blake T D, Haynes J M. 1969. Kinetics of liquid/liquid displacement. Journal of Colloid and Interface Science, 30:421-423.
    [18] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. 2009. Wetting and spreading. Reviews of Modern Physics, 81:739-805.
    [19] Bostwick J, Steen P. 2015. Stability of constrained capillary surfaces. Annual Review of Fluid Mechanics, 47:539-568.
    [20] Brochard-Wyart F, De Gennes P. 1992. Dynamics of partial wetting. Advances in Colloid and Interface Science, 39:1-11.
    [21] Bunger A P, Detournay E. 2008. Experimental validation of the tip asymptotics for a fluid-driven crack. Journal of the Mechanics and Physics of Solids, 56:3101-3115.
    [22] Bunger A P, Gordeliy E, Detournay E. 2013. Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. Journal of the Mechanics and Physics of Solids, 61:1636-1654.
    [23] Busse A, Sandham N D, McHale G, Newton M I. 2013. Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. Journal of Fluid Mechanics, 727:488-508.
    [24] Cermeño P, Falkowski P G, Romero O E, Schaller M F, Vallina S M. 2015. Continental erosion and the cenozoic rise of marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 112:4239-4244.
    [25] Chen J D, Wada N. 1989. Wetting dynamics of the edge of a spreading drop. Physical Review Letters, 62:3050.
    [26] Cho S K, Moon H, Kim C-J. 2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12:70-80.
    [27] Cira N, Benusiglio A, Prakash M. 2015. Vapour-mediated sensing and motility in two-component droplets. Nature, 519:446-450.
    [28] Concus P, Finn R. 1969. On the behavior of a capillary surface in a wedge. Proceedings of the National Academy of Sciences of the United States of America, 63:292-299.
    [29] Courbin L, Denieul E, Dressaire E, Roper M, Ajdari A, Stone H A. 2007. Imbibition by polygonal spreading on microdecorated surfaces. Nature Materials, 6:661-664.
    [30] Cox R. 1986. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics, 168:169-194.
    [31] Daccord G, Lenormand R. 1987. Fractal patterns from chemical dissolution. Nature, 325:41-43.
    [32] Daneshy A A. 1978. Hydraulic fracture propagation in layered formations. Society of Petroleum Engineers Journal, 18:33-41.
    [33] Daub C D, Bratko D, Leung K, Luzar A. 2007. Electrowetting at the nanoscale. Journal of Physical Chemistry C, 111:505-509.
    [34] De Gennes P-G. 1985. Wetting:Statics and dynamics. Reviews of Modern Physics, 57:827-863.
    [35] De Gennes P-G, Brochard-Wyart F, Quéré D. 2004. Capillarity and Wetting Phenomena:Drops, Bubbles, Pearls, Waves. Germany:Springer.
    [36] De Gennes P G. 1985. Wetting:Statics and dynamics. Reviews of Modern Physics, 57:827-863.
    [37] De Ruijter M J, Blake T D, De Coninck J. 1999. Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir, 15:7836-7847.
    [38] Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov S K. 2015. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling. Nature, 528:392-395.
    [39] Derjaguin B V, Churaev N V. 1974. Structural component of disjoining pressure. Journal of Colloid and Interface Science, 49:249-255.
    [40] Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearson J, Thiercelin M, Cheng A. 1994. The crack tip region in hydraulic fracturing. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 447:39-48.
    [41] Detournay E. 2016. Mechanics of hydraulic fractures. Annual Review of Fluid Mechanics, 48:311-339.
    [42] Ding H, Gilani M N, Spelt P D. 2010. Sliding, pinch-off and detachment of a droplet on a wall in shear flow. Journal of Fluid Mechanics, 644:217-244.
    [43] Dokoumetzidis A, Macheras P. 2006. A century of dissolution research:From noyes and whitney to the biopharmaceutics classification system. International Journal of Pharmaceutics, 321:1-11.
    [44] Dos Santos F D, Ondarcuhu T. 1995. Free-running droplets. Physical Review Letters, 75:2972.
    [45] Dussan V E B. 1976. The moving contact line:The slip boundary condition. Journal of Fluid Mechanics, 77:665-684.
    [46] Fan S K, Huang P W, Wang T T, Peng Y H. 2008. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab on a Chip, 8:1325-1331.
    [47] Feng J T, Zhao Y P. 2008. Influence of different amount of au on the wetting behavior of pdms membrane. Biomedical Microdevices, 10:65-72.
    [48] Foreman B Z, Lai S Y, Komatsu Y, Paola C. 2015. Braiding of submarine channels controlled by aspect ratio similar to rivers. Nature Geoscience, 8:700-703.
    [49] Fox H, Zisman W. 1950. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. Journal of Colloid Science, 5:514-531.
    [50] Frenkel J. 1946. Kinetic Theory of Liquids. Oxford:Oxford University Press.
    [51] Garagash D, Detournay E. 2000. The tip region of a fluid-driven fracture in an elastic medium. Journal of Applied Mechanics, 67:183-192.
    [52] Geertsma J, De Klerk F. 1969. A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21:1571-1581.
    [53] Gladstone S, Laidler K, Eyring H. 1941. The Theory of Rate Processes. New York:McGraw-Hill.
    [54] Greenspan H. 1978. On the motion of a small viscous droplet that wets a surface. Journal of Fluid Mechanics, 84:125-143.
    [55] Grouchko M, Roitman P, Zhu X, Popov I, Kamyshny A, Su H, Magdassi S. 2014. Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nature Communications, 5:2994.
    [56] Hardy W B. 1919. The spreading of fluids on glass. Philosophical Magazine, 38:49-55.
    [57] Heiranian M, Farimani A B, Aluru N R 2015. Water desalination with a single-layer mos2 nanopore. Nature Communications, 6:8616.
    [58] Herbertson D L, Evans C R, Shirtcliffe N J, McHale G, Newton M I. 2006. Electrowetting on superhydrophobic su-8 patterned surfaces. Sensors and Actuators A:Physical, 130:189-193.
    [59] Hocking L. 1976. A moving fluid interface on a rough surface. Journal of Fluid Mechanics, 76:801-817.
    [60] Hu W, Zhao J, Long M, Zhang X, Liu Q, Hou M, Kang Q, Wang Y, Xu S, Kong W. 2014. Space program sj-10 of microgravity research. Microgravity Science and Technology, 26:159-169.
    [61] Huang J M, Moore M N J, Ristroph L. 2015. Shape dynamics and scaling laws for a body dissolving in fluid flow. Journal of Fluid Mechanics, 765:R3.
    [62] Huang K, Szlufarska I. 2015. Effect of interfaces on the nearby brownian motion. Nature Communications, 6:8558.
    [63] Huh C, Scriven L. 1971. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 35:85-101.
    [64] Jones T B. 2002. On the relationship of dielectrophoresis and electrowetting. Langmuir, 18:4437-4443.
    [65] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. 2014.
    [66] Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343:752-754.
    [67] Josserand C, Thoroddsen S T. 2016. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48:365-391.
    [68] Kavehpour H P, Ovryn B, McKinley G H. 2003. Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Physical Review Letters, 91:196104.
    [69] Khristianovic S A, Zheltov Y P. 1955. Formation of vertical fractures by means of highly viscous fluids//Proceedings of 4th World Petroleum Congress:579-586.
    [70] Klajn R. 2014. Spiropyran-based dynamic materials. Chemical Society Reviews, 43:148-184.
    [71] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. 2009. Coexistence and transition between cassie and wenzel state on pillared hydrophobic surface. Proceedings of the National Academy of Sciences of the United States of America, 106:8435.
    [72] Krupenkin T, Taylor J A. 2011. Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications, 2:448.
    [73] Leger L, Erman M, Guinet-Picard A M, Ausserre D, Strazielle C. 1988. Precursor film profiles of spreading liquid drops. Physical Review Letters, 60:2390-2393.
    [74] Lippmann G. 1875. Relations entre les phénomènes électriques et capillaires. Annales De Chimie et de Physique, 5:494-549.
    [75] Lü C, Clanet C, Quéré D. 2015. Retraction of large liquid strips. Journal of Fluid Mechanics, 778:R6.
    [76] Ma M, Grey F, Shen L, Urbakh M, Wu S, Liu J Z, Liu Y, Zheng Q 2015. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nature Nanotechnology, 10:692-695.
    [77] Manukyan G, Oh J, Van Den Ende D, Lammertink R, Mugele F. 2011. Electrical switching of wetting states on superhydrophobic surfaces:A route towards reversible cassie-to-wenzel transitions. Physical Review Letters, 106:014501.
    [78] Martinez A W, Phillips S T, Whitesides G M. 2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences of the United States of America, 105:19606-19611.
    [79] McHale G. 2007. Surface wetting:Liquids shape up nicely. Nature Materials, 6:627-628.
    [80] McHale G, Shirtcliffe N, Aqil S, Perry C, Newton M. 2004. Topography driven spreading. Physical Review Letters, 93:36102.
    [81] Medlin W L, Masse L. 1984. Laboratory experiments in fracture propagation. Society of Petroleum Engineers Journal, 24:256-268.
    [82] Mugele F, Baret J C. 2005. Electrowetting:From basics to applications. Journal of Physics-Condensed Matter, 17:R705-R774.
    [83] Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450:1235-1239.
    [84] Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt H-J. 2013. How superhydrophobicity breaks down. Proceedings of the National academy of Sciences of the United States of America, 110:3254-3258.
    [85] Papanastasiou P, Thiercelin M. 1983. Influence of preexisting discontinuities on the hydraulic fracturing propagation process. Hydraulic racturing and geothermal energy. Germany:Springer, 413-430.
    [86] Parker A R, Lawrence C R. 2001. Water capture by a desert beetle. Nature, 414:33-34.
    [87] Parker G, Izumi N. 2000. Purely erosional cyclic and solitary steps created by flow over a cohesive bed. Journal of Fluid Mechanics, 419:203-238.
    [88] Petrov P, Petrov I. 1992. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir, 8:1762-1767.
    [89] Philip J. 1977. Adsorption and geometry:The boundary layer approximation. Journal of Chemical Physics, 67:1732-1741.
    [90] Pollack M G, Fair R B, Shenderov A D. 2000. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77:1725-1726.
    [91] Psaltis D, Quake S R, Yang C. 2006. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442:381-386.
    [92] Quéré D. 2008. Wetting and roughness. Annual Review of Materials Research, 38:71-99.
    [93] Quilliet C, Berge B. 2001. Electrowetting:A recent outbreak. Current Opinion in Colloid and Interface Science, 6:34-39.
    [94] Ren W, Hu D, Weinan E. 2010. Continuum models for the contact line problem. Physics of Fluids, 22:102103.
    [95] Ricci M, Spijker P, Vötchovsky K. 2014. Water-induced correlation between single ions imaged at the solid-liquid interface. Nature Communications, 5:4400.
    [96] Rice J R. 1968. Mathematical analysis in the mechanics of fracture//Liebowitz H. ed. Fracture:An Advanced Treatise. New York:Academic Press. 191-311.
    [97] Ristroph L, Moore M N, Childress S, Shelley M J, Zhang J. 2012. Sculpting of an erodible body by flowing water. Proceedings of the National Academy of Sciences of the United States of America, 109:19606-19609.
    [98] Savitski A A, Detournay E. 2002. Propagation of a penny-shaped fluid-driven fracture in an impermeable rock:Asymptotic solutions. International Journal of Solids and Structures, 39:6311-6337.
    [99] Siepmann J, Peppas N. 2012. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Advanced Drug Delivery Reviews, 64:163-174.
    [100] Sinaiski E G, Lapiga E J. 2015. Coalescence of drops. Annual Review of Fluid Mechanics, 47:245-268.
    [101] Su S, Yin L, Sun Y, Murray B T, Singler T J 2009. Modeling dissolution and spreading of bi-sn alloy drops on a bi substrate. Acta Materialia, 57:3110-3122.
    [102] Sui Y, Ding H, Spelt P D. 2014. Numerical simulations of flows with moving contact lines. Annual Review of Fluid Mechanics, 46:97-119.
    [103] Tanner L. 1979. The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D-Applied Physics, 12:1473-1484.
    [104] Taylor B. 1712. Concerning the ascent of water between two glass planes. Philosophical Transactions of the Royal Society of London, 27:538.
    [105] Tersoff J, Jesson D E, Tang W-X. 2009. Running droplets of gallium from evaporation of gallium arsenide. Science, 324:236-238.
    [106] Thompson P A, Troian S M. 1997. A general boundary condition for liquid flow at solid surfaces. Nature, 389:360-362.
    [107] Vallade M V M, Berge B. 1999. Limiting phenomena for the spreading of water on polymer films by electrowetting. European Physical Journal B, 11:583-591.
    [108] Villanueva W, Boettinger W J, McFadden G B, Warren J A. 2012. A diffuse-interface model of reactive wetting with intermetallic formation. Acta Materialia, 60:3799-3814.
    [109] Voinov O. 1976. Hydrodynamics of wetting. Fluid Dynamics, 11:714-721.
    [110] Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J, Fang H P. 2009. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Physical Review Letters, 103:137801.
    [111] Wang C, Zhou B, Xiu P, Fang H P. 2011. Effect of surface morphology on the ordered water layer at room temperature. Journal of Physical Chemistry C, 115:3018-3024.
    [112] Wang C X, Xu S H, Sun Z W, Hu W R. 2010. A study of the influence of initial liquid volume on the capillary flow in an interior corner under microgravity. International Journal of Heat and Mass Transfer, 53:1801-1807.
    [113] Wang F, Wu H. 2015. Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 5:17521.
    [114] Wang Y, Zhao Y P. 2012. Electrowetting on curved surfaces. Soft Matter, 8:2599-2606.
    [115] Warren J A, Boettinger W, Roosen A 1998. Modeling reactive wetting. Acta Materialia, 46:3247-3264.
    [116] Webb E B, Grest G S, Heine D R. 2003. Precursor film controlled wetting of pb on cu. Physical Review Letters, 91:236102.
    [117] Weislogel M, Lichter S. 1998. Capillary flow in an interior corner. Journal of Fluid Mechanics, 373:349-378.
    [118] Welters W J, Fokkink L G.1998. Fast electrically switchable capillary effects. Langmuir, 14:1535-1538.
    [119] Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477:443-447.
    [120] Yang F Q, Zhao Y P. 2016. The effect of a capillary bridge on the crack opening of a penny crack. Soft Matter, 12:1586-1592.
    [121] Yang J-X, Koplik J, Banavar J R. 1991. Molecular dynamics of drop spreading on a solid surface. Physical Review Letters, 67:3539.
    [122] Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. 2014. Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 9:378-383.
    [123] Yin J, Zhang Z, Li X, Yu J, Zhou J, Chen Y, Guo W. 2014. Waving potential in graphene. Nature Communications, 5:3582.
    [124] Young T. 1805. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95:65-87.
    [125] Yuan Q Z, Huang X F, Zhao Y P. 2014. Dynamic spreading on pillar-arrayed surfaces:Viscous resistance versus molecular friction. Physics of Fluids, 26:092104.
    [126] Yuan Q Z, Zhao Y P. 2009. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. Journal of the American Chemical Society, 131:6374-6376.
    [127] Yuan Q Z, Zhao Y P. 2010. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters, 104:246101.
    [128] Yuan Q Z, Zhao Y P. 2012. Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 468:310-322.
    [129] Yuan Q Z, Zhao Y P. 2013. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. Journal of Fluid Mechanics, 716:171-188.
    [130] Yuan Q Z, Zhao Y P. 2013. Wetting on flexible hydrophilic pillar-arrays. Scientific Reports, 3:1944.
    [131] Yuan Q Z, Zhao Y P. 2015. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale. Nanoscale, 7:2561-2567.
    [132] Yue P, Feng J J, Liu C, Shen J. 2004. A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 515:293-317.
    [133] Zhao Y P. 2014. Moving contact line problem:Advances and perspectives. Theoretical and Applied Mechanics Letters, 4:034002.
    [134] Zhu X Y, Yuan Q Z, Zhao Y P. 2012. Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity. Scientific Reports, 2:927.
    [135] Zhu X Y, Zhao Y P. 2014. Atomic mechanisms and equation of state of methane adsorption in carbon nanopores. Journal of Physical Chemistry C, 118:17737-17744.
  • 加载中
计量
  • 文章访问数:  3292
  • HTML全文浏览量:  275
  • PDF下载量:  1739
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-03-18
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回