环筋园柱壳静水压力作用下整体弹性屈曲

力学所十二室板壳组

一、引 言

环筋园柱壳在静水压力作用下弹性整体失稳问题 已有较多人进行了研究。一般以材料的正交各向异性 壳来处理,并采用扁壳假定,例如Bodner^[2]把环筋 壳折合为单层正交异性壳,即不能考虑环筋的偏心影 响,同时也不知道扁壳近似将带来多大的误差。Singer 等〔3〕〔4〕曾分析并计算了偏心效应,但仍 采用了扁壳近似。

本文采用Flügge^[1]将环筋固住壳当作一多层壳 处理的理论,考虑了环筋的偏心影响,推导出环筋圆 柱壳在静水压力作用下计算临界载荷的弹性整体失稳 方程,同时推导出扁薄壳、薄壳等简化情形的弹性整 体失稳临界载荷公式。本文还对 Meck^[5]的近似公 式作一偏心效应的修正,给出较简单的环筋园柱壳在 静水压力作用下考虑偏心影响的弹性整体失稳临界载 荷的简化公式。

本文在常用尺寸范围,作了大量计算,将各种简 化假定的计算结果与较精确的Flügge理论的结果进 行了比较和讨论。

计算结果表明在常用参数范围内简化公式 (5・ 2) 与较精确的Flugge理论结果比较在 10% 以内符 合,因此在工程计算中推荐用 (5・2) 的简化公式, 同时看到当周向波数n ≤ 8 时由扁壳假设产生的 误差 可达10%以上。关于偏心效应的计算结果表明在静水 压力作用下,内加环筋圆柱壳比外加环筋圆柱壳有**较** 高的临界压力。

	<u> </u>	
د	1寸	73

L 园柱壳长度

R 园柱壳中面半径

h 园柱壳厚度

A 环筋横截面积

Jo 环筋截面对其形心的惯性矩

t 环筋形心至壳中面距离

• 42 •

7

- 1 环筋中心间距
- Ic 环筋壳组合惯性矩Ic= $\frac{lh^{3}}{12}$ +I₀+At² $\frac{1}{1+\frac{A}{lh}}$

p 静水压力
u、v、w 壳中面的独向、周向、径向位移
x、θ、z 轴向、周向、径向座标
$$\varepsilon_1 = \frac{\partial u}{\partial x}$$
; X方向壳中面拉仲应变
 $\varepsilon_2 = \frac{1}{R} \left(\frac{\partial v}{\partial \theta} - w \right)$; θ 方向壳中面拉仲应变
 $\gamma = \frac{1}{R} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial x}$; 中面剪应变
 $\chi_1 = \frac{\partial w}{\partial x^2}$; X方向壳中面曲率变化
 $\chi_2 = \frac{1}{R^2} (w + \frac{\partial^2 w}{\partial \theta^2})$; θ 方向壳中面曲率变化

 $\chi_{12} = \frac{\partial^2 w}{R \partial \theta \partial x} - \frac{1}{2R^2} \frac{\partial u}{\partial \theta} + \frac{1}{2R} \frac{\partial v}{\partial x}; \quad \Phi \square \square$

曲率变化

ε_x、ε_θ、 γ_{xθ}: 売轴向、周向拉伸应变及 剪应变
 N_x、 N_θ、 N_{xθ}、 N_{θx}: 环筋园柱壳截面 每单位长
 度的力

 M_x、M₀、M_{x0}、M_{0x}, 环筋 园柱壳每 单位长度:

 截面的力矩

 Qe: 横剪力

 E、v: 材料场氏模量、泊桑比

 D: 壳抗拉刚度
 $D = \frac{Eh}{1-v^2}$

 K: 壳抗弯刚度
 $K = \frac{Eh^3}{12(1-v^3)}$

 m: 纵向半波数

 n: 周向波数

$$\overline{p} = \frac{pR}{Eh} (1 - v^2), \quad 载荷无量纲参数$$
p., 临界静水压力
$$D_8 = \frac{Eh}{1 - v^2} + \frac{EA}{l}$$

$$k = \frac{h^2}{12R^4}$$

$$A_1 = (1 - v^2) \frac{A}{lh} \frac{h}{R}$$

$$A_2 = (1 - v^2) (\frac{I_0}{lh^8} \frac{h^2}{R^2} + \frac{A}{lh} - \frac{t^2}{R^2})$$

$$M = \frac{m\pi R}{L}$$
应应付我关系

应变位移关系:

$$\begin{cases} \varepsilon_{x} = \varepsilon_{1} - z \chi_{1} = \frac{\partial u}{\partial x} - z \frac{\partial^{2} w}{\partial z^{2}} \\ \varepsilon_{0} = \frac{1}{R} - \frac{\partial v}{\partial \theta} - \frac{w}{R-z} - \frac{z}{R(R-z)} - \frac{\partial^{2} w}{\partial \theta^{2}} \\ \gamma_{x\theta} = \frac{1}{R-z} - \frac{\partial u}{\partial \theta} + \frac{R-z}{R} - \frac{\partial v}{\partial x} - \frac{\partial^{2} w}{\partial \theta \partial x} - \frac{z}{R} - \frac{z}{R-z} \end{pmatrix}$$

应力应变关系:

$$\begin{aligned} \sigma_{z} &= \frac{E}{1 - v^{2}} (\varepsilon_{z} + v\varepsilon_{\phi}) \\ \sigma_{\theta} &= \frac{E}{1 - v^{2}} (\varepsilon_{\theta} + v\varepsilon_{z}) \\ \tau_{z\theta} &= \frac{E}{2 (1 + v)} \gamma_{z\theta} \end{aligned}$$
 (1.2)

内力、内力矩:

- 2

$$\begin{pmatrix}
N_{z} = \int_{-h/2}^{h/2} \sigma_{z} \left(1 - \frac{z}{R}\right) dz \\
N_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} dz + \frac{EA}{1} \varepsilon_{\theta} \\
N_{x\theta} = \int_{-h/2}^{h/2} \tau_{z\theta} \left(1 - \frac{z}{R}\right) dz \\
N_{\theta x} = \int_{-h/2}^{h/2} \tau_{\theta z} dz \\
N_{\theta z} = \int_{-h/2}^{h/2} \sigma_{\theta} z dz + \frac{E}{1} \int_{A} \varepsilon_{\theta} z dA$$
(1.3)

$$\overline{\chi_2} = \frac{1}{R^2} \frac{\partial^2 w}{\partial \theta^2}, \quad \overline{\chi_1} = \frac{\partial^2 w}{\partial x^2}$$
$$\overline{\chi_{12}} = \frac{1}{R} \frac{\partial^2 w}{\partial x \partial \theta}$$

三、临界载荷的确定

座标取在壳中面上,园柱壳轴向X、周向θ、径 向(向内为正)2。

1、从Flügge理论出发的方程推导 基本假定:

(1) 直法线假定

(2) σz «σx, σθ

- (3) 屈曲前壳体处于薄膜应力状态
- (4) 环筋与壳体作为多层壳体处理。
- (5) 忽略环筋扭转刚度

(1.1)

43 •

$$M_{\theta s} = \int \frac{h/2}{-h/2} \sigma_{\theta} (1 - \frac{z}{R}) z dz$$

$$M_{\theta s} = \int \frac{h/2}{-h/2} \tau_{\theta s} z dz$$

$$M_{\theta s} = \int \frac{h/2}{-h/2} \tau_{s \theta} z (1 - \frac{z}{R}) dz$$

得到: 环筋壳内力、内力矩

,

..

. •

园柱壳静水压力作用下平衡方程:

$$\begin{cases} R\frac{\partial N_{s}}{\partial x} + \frac{\partial N_{s}}{\partial \theta} - p \left(\frac{\partial^{2}u}{\partial \theta^{2}} + R\frac{\partial w}{\partial x}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}u}{\partial x^{2}} = 0 \\ R\frac{\partial N_{ss}}{\partial x} + \frac{\partial N_{s}}{\partial \theta} - \frac{1}{R} \left(\frac{\partial M_{s}}{\partial \theta} + R\frac{\partial M_{ss}}{\partial x}\right) - p \left(\frac{\partial^{2}v}{\partial \theta^{2}} - \frac{\partial w}{\partial \theta}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{R} \quad \frac{\partial^{2}M_{s}}{\partial \theta^{2}} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{s}}{\partial x^{2}} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{R} \frac{\partial^{2}M_{s}}{\partial \theta^{2}} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{s}}{\partial x^{2}} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{2} \frac{\partial^{2}M_{s}}{\partial \theta^{2}} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{s}}{\partial x^{2}} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{2} \frac{W_{s}}{\partial \theta^{2}} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{s}}{\partial x^{2}} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{2} \frac{W_{s}}{\partial \theta^{2}} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{s}}{\partial x^{2}} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{2} \frac{W_{s}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{ss}}{\partial x^{2}} + N_{s} + N_{s} + p \left(R\frac{\partial u}{\partial x} - \frac{\partial v}{\partial \theta} - \frac{\partial^{2}w}{\partial \theta^{2}}\right) - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0 \\ \frac{1}{2} \frac{W_{s}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x \partial \theta} + R \cdot \frac{\partial^{2}M_{ss}}{\partial x^{2}} + N_{s} + N_{s} + \frac{\partial^{2}M_{ss}}{\partial \theta} + \frac{\partial^{2}M_{ss}}{\partial \theta} + \frac{\partial^{2}M_{ss}}{\partial x^{2}} + \frac{\partial^{2}W_{ss}}{\partial \theta} + \frac{\partial^{2}W_{ss$$

+
$$\left(A_{2}-1-A_{1}\frac{R}{t}\right)n - \frac{8-v}{2}kM^{2}n + p^{-}n$$

= C_{13}

$$C_{31} = C_{13}$$

$$C_{32} = -\left(1 + A_1 \frac{R}{t}\right) n - \frac{3 - v}{2} kM^2 n + A_1 n^3 + \overline{p} n$$

$$C_{33} = -1 - A_1 \frac{R}{t} - k \left((M^2 + n^2)^2 - 2n^2 + 1 \right) - \left(A_2 + 3A_2 \frac{t}{R} - 2A_1 \frac{t^2}{R^2}\right) n^4$$

$$+ \left(2A_1 + A_1 \frac{t}{R} + A_2\right) n^2 - A_1 + \left(\frac{M^2}{2} + n^2\right) \overline{p}$$

45 •

.

2

由其系数行列式等于零便导出临界载荷方程:

|Cij| = 0

(1.8) 是 p 的三次方程,其最小根 p_{or} 即为临界载荷参数,对应的m,n即为失稳时轴向半波数和周向 波数。

(1.8)

(2.3)

3

2、扁薄亮近似下临界载荷公式

基本假定:除前一节所作基本假定外,还假设:

(1) 在(1·1)和(1·8)中, 2/2 相对1可以忽略,这同时反映了扁壳与薄壳的假设

(2) 在平衡方程(1·5) 第二式中忽略反映橫剪力Q₀的第三项,即忽略 $\frac{\partial M_0}{\partial \theta}$ + R $\frac{\partial M_{x0}}{\partial x}$ 项,这也反 映了扁壳假设

(8) 假定 \overline{p} 《1, $\frac{h^2}{R^2}$ 《1

由以上假设可得到环筋园柱壳内力、内力矩为:

$$\begin{pmatrix} N_{x} = D \left(\frac{\partial u}{\partial x} + v \left(\frac{1}{R} \frac{\partial v}{\partial \theta} - \frac{w}{R} \right) \right) = D \left(\varepsilon_{1} + v \varepsilon_{2} \right)$$

$$N_{\theta} = D_{\theta} \left(\frac{1}{R} \frac{\partial v}{\partial \theta} - \frac{w}{R} \right) + v D \frac{\partial u}{\partial x} - \frac{EAt}{1} \frac{1}{R^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} = D_{\theta} \varepsilon_{2} + v D \varepsilon_{1} - \frac{EAt}{1} \frac{1}{\chi^{2}}$$

$$N_{x\theta} = N_{\theta}x = \frac{1 \cdot v}{2} D \left(\frac{1}{R} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial x} \right) = \frac{1 - v}{2} D \gamma$$

$$M_{x} = -K \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{1}{R^{2}} - \frac{\partial^{2} w}{\partial \theta^{2}} \right) = -K \left(\chi_{1} + v \chi_{2} \right)$$

$$M_{\theta} = -K \left(\frac{\partial^{2} w}{R^{2} \partial \theta^{2}} + v \frac{\partial^{2} w}{\partial x^{2}} \right) + \frac{EAt}{1} \left(\frac{1}{R} - \frac{\partial v}{\partial \theta} - \frac{w}{R} \right) - \frac{E}{1} \left(I_{0} + t^{2}A \right) \frac{\partial^{2} w}{R^{2} \partial \theta^{2}}$$

$$= -k \left(\overline{\chi}_{2} - \chi v_{1} \right) + \frac{EAt}{1} \varepsilon_{2} - \frac{E}{1} \left(I_{0} + t^{2}A \right) \overline{\chi}_{2}$$

$$M_{x\theta} = M_{\theta}x = - (1 - v) K \frac{1}{R} - \frac{\partial^{2} w}{\partial x \partial \theta} = - (1 - v) K \overline{\chi}_{12}$$

$$\overline{D} dt \overline{z} \overline{B} k \times E \hbar t R \overline{P} Donnell \Psi \overline{B} \hbar \mathcal{B}$$

$$\frac{\partial x}{\partial x} = \frac{\partial \theta}{\partial x}$$

$$R \frac{\partial N_{x_{\theta}}}{\partial x^{2}} + \frac{\partial N_{\theta}}{\partial \theta} = 0$$

$$(2.2)$$

$$R \frac{\partial^{2} M_{x}}{\partial x^{2}} + \frac{\partial^{2} M_{\theta x}}{\partial x \partial \theta} + \frac{\partial^{2} M_{x_{\theta}}}{\partial x \partial \theta} + \frac{1}{R} = \frac{\partial^{2} M_{\theta}}{\partial \theta^{2}} + N_{\theta} - p \frac{\partial^{2} w}{\partial \theta^{2}} - \frac{p R^{2}}{2} = \frac{\partial^{2} w}{\partial x^{2}} = 0$$

选择满足简支边条件的挠度函数(1.6),代入(2.1)(2.2)同样可求得临界载荷公式,以p⁽²⁾表示 扁薄壳近似下载荷无量纲参数,得到临界载荷公式为

$$\overline{p}^{(2)} = \frac{1}{\frac{M^2}{2} + n^2} \left(C'_1 + \frac{C'_2}{C_3'} \right)$$

•. 46 •.

- 7

其中

$$C_1' = k (M^2 + n^2)^2 + 1 + A_2 n^4 - 2 A_1 n^2 + A_1 \frac{R}{t}$$

$$C'_{2} = -\frac{1-v}{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) + S_{1}'$$

$$C_{3}' = \frac{1-v}{2} (M^{2} + n^{2})^{2} + (M^{2} + \frac{1-v}{2}n^{2}) n^{2} A_{1} \frac{R}{t}$$

$$S_{1}' = (M^{2} + \frac{1-v}{2}n^{2}) n^{2} \left(-A_{1} \frac{R}{t} \left(2 + A_{1} \frac{R}{t} \right) + 2 A_{1} \left(1 + A_{1} \frac{R}{t} \right) n^{2}$$

$$-A_{1}^{2}n^{4} + vA_{1} \frac{R}{t} M^{2}n^{2} - vA_{1} (1 + v) M^{2}n^{4}$$

在没有环筋的情形下, (2·3) 化为 Mises 公式

8、薄壳近似下临界载荷公式

基本假定:在前一节(第2节)的基础上,保留平衡方程(1·5)式第二式中反映横剪力 Q_θ的第三 项,并保留由挠度w所引起的θ方向曲率变化 ^W/_{R²},这两项是通常扁壳假定所忽略的项。于是环筋圆 柱 壳内 力、内力矩为

$$\begin{split} N_{\mathbf{x}} &= D \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{v} \left(\frac{1}{R} \quad \frac{\partial \mathbf{v}}{\partial \theta} - \frac{\mathbf{w}}{R} \right) \right) = D \left(\varepsilon_{1} + v \varepsilon_{2} \right) \\ N_{\theta} &= D_{\theta} \left(\frac{1}{R} \quad \frac{\partial \mathbf{v}}{\partial \theta} - \frac{\mathbf{w}}{R} \right) + \mathbf{v} D \frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \frac{EAt}{1} \left(\frac{\mathbf{w}}{R^{2}} + \frac{1}{R^{2}} \quad \frac{\partial^{2} \mathbf{w}}{\partial \theta^{2}} \right) \\ &= D_{\theta} \varepsilon_{2} + \mathbf{v} D \varepsilon_{1} - \frac{EAt}{1} \chi_{2} \end{split}$$
(3.1)
$$N_{\mathbf{x}\theta} = N_{\theta \mathbf{x}} = \frac{1 - \mathbf{v}}{2} D \left(\frac{1}{R} \quad \frac{\partial \mathbf{u}}{\partial \theta} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \right) = \frac{1 - \mathbf{v}}{2} D \gamma \\ M_{\mathbf{x}} = -K \left(\frac{\partial^{2} \mathbf{w}}{\partial \mathbf{x}^{2}} + \mathbf{v} \left(\frac{\mathbf{w}}{R^{2}} + \frac{1}{R^{2}} \quad \frac{\partial^{2} \mathbf{w}}{\partial \theta^{2}} \right) \right) = -K \left(\chi_{1} + \mathbf{v} \chi_{2} \right) \\ M_{\theta} = -K \left(\frac{1}{R^{2}} \left(\mathbf{w} + \frac{\partial^{2} \mathbf{w}}{\partial \theta^{2}} \right) + \mathbf{v} - \frac{\partial^{2} \mathbf{w}}{\partial \mathbf{x}^{2}} \right) + \frac{EAt}{1} \left(\frac{1}{R} \quad \frac{\partial \mathbf{v}}{\partial \theta} - \frac{\mathbf{w}}{R} \right) \\ - \frac{E \left(I_{0} + t^{2} A \right)}{IR^{2}} \left(\mathbf{w} + \frac{\partial^{2} \mathbf{w}}{\partial \theta^{2}} \right) \\ = -K \left(\chi_{2} + \mathbf{v} \chi_{1} \right) + \frac{EAt}{R} \frac{1}{2} \varepsilon_{2} - \frac{E}{1} \left(I_{0} + t^{2} A \right) \chi_{2} \end{split}$$

平衡方程

2

$$R \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{\theta x}}{\partial \theta} = 0$$

$$R \frac{\partial N_{x\theta}}{\partial x} + \frac{\partial N_{\theta}}{\partial \theta} - \frac{1}{R} \left(\frac{\partial M_{\theta}}{\partial \theta} + R \frac{\partial M_{x\theta}}{\partial x} \right) = 0$$

$$R \frac{\partial^{2} M_{x\theta}}{\partial x^{2}} + 2 \frac{\partial^{2} M_{x\theta}}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^{2} M_{\theta}}{\partial \theta^{2}} + N_{\theta} - p \left(\frac{\partial^{2} w}{\partial \theta^{2}} + w \right) - \frac{p R^{2}}{2} \frac{\partial^{2} w}{\partial x^{2}} = 0$$
(3.2)

47 •

同样,选择挠度函数(1·6),以p⁽³⁾表示此种近似下载荷无量纲参数,临界载荷近似公式为

$$\vec{p}^{(3)} = \frac{1}{\frac{M^2}{2} + n^2 - 1} \left(C_1 + \frac{C_2}{C_3} \right)$$
(3.3)

其中

$$\begin{split} C_{1} &= k \left(M^{2} + n^{2} \right)^{2} + 1 - k \left(\nu M^{2} + n^{2} \right)^{2} + A_{2}n^{4} - 2A_{1}n^{2} + A_{1} \frac{R}{t} - A_{2}n^{2} + A_{1} \\ C_{2} &= -\frac{1 - \nu}{2} \left(M^{2} + n^{2} \right)^{2} - (1 - \nu^{2}) M^{4} \right) - \frac{1 - \nu}{2} k n^{2} \left((1 + \nu) M^{2} (M^{2} + n^{2}) + (M^{2} + n^{2})^{2} \right) + S_{1} \\ C_{3} &= \frac{1 - \nu}{2} (M^{2} + n^{2})^{2} + \left(M^{2} + \frac{1 - \nu}{2} n^{2} \right) n^{2} A_{1} \left(\frac{R}{t} - 1 \right) \\ S_{1} &= \left(M^{2} + \frac{1 - \nu}{2} n^{2} \right) n^{2} \left\{ \left[\left(1 + A_{1} \frac{R}{t} \right) (A_{2} - A_{1} \frac{R}{t} \right] - A_{1} \frac{R}{t} \right] \\ &+ \left[\left(1 + A_{1} \frac{R}{t} \right) (2A_{1} - A_{2}) - A_{1} A_{2} \right] n^{2} + A_{1} (A_{2} - A_{1}) n^{4} + kA_{1} (M^{2} + n^{2}) \right] \\ (n^{2} - \frac{R}{t}) \\ &+ \left(\nu A_{1} \frac{R}{t} + \nu^{2} A_{1} - \frac{\nu + \nu^{2}}{2} A_{2} \right) M^{2} n^{2} + \frac{\nu + \nu^{2}}{2} (A_{2} - 2A_{1}) M^{2} n^{4} \end{split}$$

4、考虑了横剪力 Q。但忽略 $\frac{w}{R^2}$ 的临界载荷近似公式

基本假定:在第2节的基础上,对平衡方程考虑了横剪力 Q₆。环筋园柱壳内力和力矩仍采用 (2·1) 式。

平衡方程:

$$R \frac{\partial N_{x}}{\partial x} + \frac{\partial N_{\theta}}{\partial \theta} = 0$$

$$R \frac{\partial N_{x\theta}}{\partial x} + \frac{\partial N_{\theta}}{\partial \theta} - \frac{\partial M_{x\theta}}{\partial x} - \frac{1}{R} \quad \frac{\partial M_{\theta}}{\partial \theta} = 0$$

$$(4.1)$$

$$R \frac{\partial^{2}M_{x}}{\partial x^{2}} + 2 \frac{\partial^{2}M_{x\theta}}{\partial x \partial \theta} + \frac{1}{R} \quad \frac{\partial^{2}M_{\theta}}{\partial \theta^{2}} + N_{\theta} - p \frac{\partial^{2}w}{\partial \theta^{2}} - \frac{pR^{2}}{2} \quad \frac{\partial^{2}w}{\partial x^{2}} = 0$$

同样选择挠度函数 (1·6), 求得临界载荷公式, 以 p (4) 表示这种近似下载荷无量纲参数

$$\overline{p}^{(4)} = \frac{1}{\frac{M^2}{2} + n^2} (C_1'' + \frac{C_2''}{C_3''})$$
(4.2)

其中

- 7

$$C_{1}'' = k (M^{2} + n^{2})^{2} + 1 + A_{2}n^{4} - 2 A_{1}n^{2} + A_{1}\frac{R}{t}$$

$$C_{2}'' = -\frac{1 - v}{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2})^{2} - (1 - v^{2}) M^{4} \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right) - \frac{1 - v}{2} k n^{2} \left((M^{2} + n^{2}) \right)$$

本文采用从 Flügge 理论出发的较精 确的 方程 (1·8)和近似公式(2·8)、(3·3)、(4·2)、 (5·2)对常用参数范围作了大量计算, (L 取 2 到 5 间的值, $\frac{h}{R}$ 取0.007到0.01间的值, 偏心距参数

$$\left|\frac{t}{h}\right| \leq 5.5, \frac{A}{lh} \leq 0.5, \frac{I_0}{lh^3} \leq 4.2$$
) 并计算了

析讨论。

取近似公式(2・3)、(3・3)、(4・2)、 (5·2)的计算结果 p., (1)与较精确的方程 (1·8) 的结果 p_{or} 相比的相对误差为 $Ei_o(Ei = \frac{p_{or}}{p_{or}} (i) - p_{or}$ i=2, 3, 4, 5,)

计算表明在常用参数范围内,当轴向半波数 m为 1时,求得环筋园柱壳均匀静水压力作用下的最低临 界压力,并有以下结论:

1、计算表明一般对外环筋环壳, Es>0, 即 (5·2)式的结果 per (5)与精确结果per比较偏大, 对内环筋一般E₅<0,即(5·2)的结果 与精确结 果p...相比较偏小,当环筋很弱时(例如环筋壳组合

49 .

$$C_{s''} = \frac{1 - v}{2} (M^{2} + n^{2})^{2} + (M^{2} + \frac{1 - v}{2} n^{2}) n^{2} A_{1} (\frac{R}{t} - 1)$$

$$S_{1''} = (M^{2} + \frac{1 - v}{2} n^{2}) n^{2} \left\{ \left((1 + A_{1}\frac{R}{t}) (A_{1} - A_{1}\frac{R}{t}) - A_{1}\frac{R}{t} \right) + \left((1 + A_{1}\frac{R}{t}) (2A_{1} - A_{2}) - A_{1}^{2} \right) n^{2} + A_{1} (A_{2} - A_{1}) n^{4} + kA_{1} (M^{2} + n^{2}) (n^{2} - \frac{R}{t}) \right\} + \left(vA_{1}\frac{R}{t} + v^{2}\frac{A_{1}}{2} - \frac{vA_{1}}{2} \right)$$

$$M^{2}n^{2} + \frac{v + v^{2}}{2} (A_{2} - 2A_{1}) M^{2}n^{4}$$

5、简化公式

Meck[6]给出的环筋园柱壳在静水压力作用下弹性整体失稳的临界载荷, 由园柱壳 拉伸刚 度和环 弯曲刚 度来表示,即

$$p = (n^{2} - 1) \frac{EI}{R^{3}I} + E \frac{h}{R} \frac{M^{4}}{(n^{2} - 1 + \frac{M^{2}}{2})(M^{2} + n^{2})^{2}}$$
(5.1)

式中未能反映环筋钓偏心效应。

这里,我们对环弯曲刚度项稍作修正,(5.1)式中I取环筋壳的组合惯性矩Ic, 并以环筋 形心到圆柱 一壳中心轴的距离 R_{1} (这里 R_{1} =R-t) 代替该项中 R_{2} ,得到

$$p = (n^{2} - 1) \frac{EIc}{(R-t)^{3}} + E\frac{h}{R} \frac{M^{4}}{(n^{2} - 1 + \frac{M^{2}}{m})(M^{2} + n^{2})^{2}}$$

以p (5)表示简化公式下载荷无纲参数,

+ $(1 + v) M^2 (M^2 + n^2)$

$$\overline{p}^{(5)} = (1 - v^2) (n^2 - 1) \frac{IcR}{(R - t)^{3}lh} + (1 - v^2) \frac{M^4}{(n^2 - 1 + \frac{M^2}{2}) (M^2 + n^2)^2}$$
(5.2)

惯性矩无量纲参数 $\frac{I_c}{R_{h^3}}$ <0.4), 不管是外环筋或是 内环筋情形, 通常per (5)均比per小,且在非常用范围 时 (例如 Ic <0.14) | E₆ | 会超过10%, 在没有, 环筋的极端情形下误差值 |E₅| 达到最 大值, 其值与 壳长、壳厚有关,壳越短越厚 [E5] 越大, 表四给出。 这些非常用参数范围极端情形的部分结果。例如 $\frac{L}{R}$ =

2, $\frac{h}{B}$ = 0.02的无环筋情形下, E_{5} = -16.15%。但 大量计算表明在常用参数范围内简化公式(5・2) 的 结 果 per (5)与较精确的方程(1.8)的结果per 相

比较在10%以内符合,因此在工程计算中推荐采用 (5・2)的简洁公式。

2、大量计算表明, 薄壳近似公式 (3・3) 计 算结果的相对误差一般小于5%,最大不超过8%, 因此(3·3)可代替较精确又较繁复的公式(1· 8)。

3、关于扁壳近似公式(2.3)的适用范围, 大量计算表明当周向波数1大于3时,由扁壳假设产 生的误差 E₂₈ $\left(E_{28} = \frac{\widetilde{p}_{er}(2) - \widetilde{p}_{er}(8)}{\widetilde{p}_{er}(3)} \right)$ 小于 5 % ,

表一给出一部分周向波数n≤3的结果,从表一看出 对n等于3和2时扁壳近似公式式 (2·3) 的误差 E23可达10%以上。同时大量计算表明,对于考虑横

剪力Q₀影响,而忽略曲率变花中的一W2项的近似公式

$\frac{L}{R}$	h R	t h	A Ih	I c lh ³	n	Per (2)	Per (3)	Per (4)	$\frac{p_{er}(2) - p_{er}(3)}{p_{er}(3)}$	por (4) - por (3) por (3) (%)	
	0.007	-2.5	0.3	0.4	3	0.0008726	0.0008038	0.0007882	8.56	- 1.94	
5	0.0085	-2.5	0.3	0.4	3	0.0012222	0.0011096	0.0010958	10.1	-1.24	
	0.01	-2.5	0.3	0.4	3	0.0016425	0.0014772	0.0014654	11.2	- 0.80	
	0.007	,- 4	0.3	1.225	3	0.0020475	0.0018313	3 0.0018210 7 0.0022470	11.8	-0.56	
	0.007	- 1	0.4	1.633	3	0.0025355	0.0022547		12.4	- 0.34	
	0.01	- 4.5	0.4	2.133	2	0.0042006	0.0039941	0.0035146	5.17	- 12.0	
	0.01	- 5	0.4	2.7	2	0.0048313	0.0044387	0.0039712	8.85	- 10.5	
,	0.0085	- 5.5	0.5	4.1667	2	0.0049471	0.0045125	0.0040495	9.63	- 10.3	
	0.01	- 5	0.5	3.375	2	0.0054206	0.0048448	0.0043911	11.9	- 9.36	
	0.01	5.5	0.5	4.1667	2	0.006261	0.0054356	0.0049971	16.5	- 8.07	
	0.007	-2.5	0.3	0.4	3	0.0010683	0.0010273	0.0009863	3.99	- 3.99	
	0.0085	-2.5	0.3	0.4	3	0.0014083	0.0013236	0.001285	6.4	- 2.92	
4	0.01	-2.5	0.3	0.4	3	0.0018182	0.001681	0.001645	8.16	-2.14	
	0.007	- 4	0.4	1.633	3	0.0026816	0.0024294	0.0023994	10.4	- 1.24	
	0.01	- 3.5	0.4	1.2	3	0.0040021	0.0035763	0.003539	11.9	-0.63	
	0.0085	5	0.4	2.7	3	0.0058534	0.0051812	0.0051682	13.0	- 0.25	

• 50 •

-7

(4·2)的误差E₄₃ $\left(E_{43} = \frac{\overline{p_{or}}(4) - \overline{p_{or}}(3)}{\overline{p_{or}}(3)}\right)$ 当 周向波数n≥3时均小于5%,只有当n=2时E₄₃才 会达到10%以上,这说明只有在 n=2 的情形,由 限 R2 引起的曲率变化项才不能忽略。

4、关于扇心效应,在我们所计算的大量常用参数范围内,在静水压力作用下,内加环筋园柱壳有较 高的临界压力。

(1) 偏心距 $\left|\frac{t}{h}\right|$ 的影响, 在 $\frac{L}{R}$ 、 $\frac{h}{R}$ 、 $\frac{A}{lh}$ 、 $\frac{I_0}{lh^3}$ 取值不变时,由表二知道,偏心距越大,临界载 荷越高,用p内和p外表示内加环筋园柱壳和外加环筋 园柱壳的临界载荷参数,偏心距越大,p内/p外越大; 在我们计算的参数范围内p内/p外可达1.3。同时看到 当 $\frac{t}{R} = 0$,即环筋形心在壳中面上时临界载荷谩低。

(2) 环筋惯性短 (I_0) 的影响,从表二看出, $\frac{L}{R}$ 、 $\frac{h}{R}$ 、 $\frac{A}{lh}$, $\left|\frac{t}{h}\right|$ 取值不变时,增加惯性矩 I_o 能提高临界载荷,但对内,外加环筋壳的临界载荷比 值pp/p外影响不大。

(8) 壳长度与壳半径比值^LR的影响:由表三石 出当^LR增大时临界载荷下降,但对偏心效应的影响不 大。

响不大。

5、与 Bodner^[2]计算结果的比较

表五列出对 Bodner 五种模型的计算结果,并 给出 Bodner 的计算结果p1和p3,以及 Singer⁽³⁾

对其中两种模型的计算结果。 从计算结果看出,由于 Bodner 的计算不考虑

环筋偏心效应,即外加环筋截面当作集中在中面上, 其计算结果均比(1·8)的计算结果per大(对其模型 A和B,甚至误差达20%),偏心距越大误差越大。 我们看到 Singer 在扁壳近似下对 其中 两种 模型的 计算结果与这里按薄扁壳近似公式(2·3)计算的

表二

偏心效应影响的计算结果

结果是完全一致的。

	1 ^I 0 1 ^{h3}	$\left \frac{t}{h}\right $	0	0.5	1.5	2	3	4
		_ p _内	0.0012345	0.0013161	0.0017358	0.0020745	0.0030206	0.0043361
R	1	P 外		0.0012333	0.0014716	0.0017083	0.0024041	0.0033877
$\frac{h}{R} = 0.01$		P内/P外		1.067	1.180	1.214	1.256	1.280
$\frac{A}{A} = 0.3$		 p _内	0.0019352	0.0020311	0.0024762	0.0028283	0.0037963	0.0051393
h1 - 0.0	2	P 外		0.0019242	0.0021366	0.0023593	0.0030303	0.0039903
n = 8		P内/P外		1.056	1.159	1.199	1.253	1.288
		 P内	0.0026401	0.0027441	0.003217	0.003579	0.0045808	0.0059473
	8	P 外		0.0026113	0.0027999	0.0030107	0.0036589	0.0045964
]	P内/P外		1.051	1.149	1.189	1.252	1.294
		P _内	0.0033413	0.0034608	0.0039555	0.0043361	0.0053587	
	4	P 外		0.0033007	0.0034668	0.0036669	0.0042816	
		p _内 /p _外	-	1.049	1.141	1.182	1.252	

• 51 •

<u>L</u>对偏心效应及临界载荷的影响

		, ,		$\frac{I_0}{1h^3} = 2$			$\frac{I_0}{1h^3} = 3$	3	
· · · ·	L/R	t	0	1.5	3	0	1.5	8	
$\frac{h}{h}$ = 0.01	3 .	P _内		0.0032634	0.004567		0.0039832	0.0053199	
R - 0.01		p gh	0.0027202	0.002891	0.003736	6 0.0034013	0.0035376	0.0043499	
A		P 内/P外	-	1.129	1.222		1.126	1.223	
111		p		0.0024762	0.003796	3	0.003217	0.0045808	
	4	P gh	0.0019352	0.0021366	0.003030	3 0.0026401	0.0027999	0.0036589	
		P内/P外		1.159	1.253		1.149	1.252	
表四	不	常用参数范围及:	无环筋情形	下〔简化公	፰ ℃ (3.2) i	吴善较大〕的	计算结象	post	
L R	$\frac{h}{R}$	t h	$\frac{A}{1h}$	In 123	<u>í.</u> <u>1h</u> 3	Per	n	E₅(%)	
	0.007	0	0	0	0.0833	0.0000984	4	- 8.03	
5	0.01	0	0	0	0.0833	0.0001645	4	-9.76	
	0.02 0	0	0	0.0833	0.0004821	3	-9.01		
	0.01	1	0.03	0.003	0.116	0.0002632	4	-7.2	
4		- 1	0.03	0.003	0.116	0.0002523	4	- 6.9	
		0	0	0	0.0833	0.0002145	4	-8.8	
	0.015	1	0.03	0.003	0.116	0.0004865	4	- 6.9	
		- 1	0.03	0.003	0.116	0.0004682	4	- 10	
		0	0	0	0.0833	0.0003801	4	- 11.1	
	0.02	1	0.03	0.003	0.116	0.0007985	4	- 5.9	
		- 1	0.03	0.003	0.116	0.0007702	4	- 12.2	
		0,	0	0	0.0833	0.0006122	4	- 12.3	
·	0.005	1	0.03	0.003	0.116	0.0001262	6	- 8.3	
3	,	- 1	0.03	0.003	0.116	0.0001218	6	- 7.3	
0	-	0	0	0	0.0833	0.0000988	6	- 10.2	
v	0.01	0.5	0.2	0.01667	0.1416	0.0004216	5	- 10	
		-0.5	0.2	0.01667	0.1416	0.0003887	5	-4.8	
		0	0	.0	0.0833	0.0002792	5	- 11.4	

• 52 •

表三

表四	(鑲)		• • •	·				
$\frac{L}{R}$	$\frac{h}{R}$	t h	A 1h	Is Ih ³	Ic Ih ³	Por	n	E ₅ (%)
8	0.02	1	0.03	0.003	0.116 0	.0009846	4	- 7.5
•		- 1	0.03	0.003	0.116 0	.0009469	4	- 11.8
		0	0	0	0.0833 0	.0007953	4	- 12.5
2	0.012	0.1	0.2	0.01	0.0950	0.0006258	6	- 13.6
		-0.1	0.2	0.01	0.0950	0.0006149	6	- 12.6
	0.005	0	0	0	0.0833	0.0001501	7	- 11.1
	0.007	0	0 .	0	0.0833	0.0002537	7	- 12.95
	0.01	. 0	. 0	0	0.0833	0.000426	6	- 13.4
	0.015	0	0	0	0.0833	0.0008111	5	- 13.63
	0.02	0	0	0	0.0833	0.0012153	5	- 16.15
L/	L/R		4.5384		538 4.5391		4.538	3.4733
.	1/D		1005	0.01004	0.01917		0.01024	0.01017
 			2 817	- 2 108	- 1 653	1 653	-1.071	- 2 031
A		0.20	2.011	0 2183	0.2183 0.14		0.0718	0 2439
I_	/11/8	0.5	275	0.2095 0.0		6516	0 00782	0 1905
n			3		3 3		4	3
Per		0.002503	0.0031367	0.0013898	0.000762	0,0009005	0.0004091	0.001730
	, (Б)	0.002594	0.0031168	0.0014491	0.0007888	0.0008538	0.0003862	0.0018363
	(2)	0.002938	60.0032673	0.0015688	0.0008127	0.0009218	0.0004334	0.0018334
Pi			-	0.001670	0.0008699		0.004449	0.001984
Ps				0.001489	0.0008026		0.0004179	0.001825
		0.002938	0.003270		0.0008125	0.0009222		
E _t	; (%)	3.64	- 0.64	4.27	3.51	-5.1	-5.59	6.1
$E_1 = \frac{\overline{p_1} - \overline{p_1}}{\overline{p_1}}$	<u>per</u> (%)	24.1		20.2	14.2		8.75	14.7
$E_s = \frac{p_s}{p_s}$	- per (%)	7.43		7.14	5.33		2.15	5.49

 Per

 • [2] 计算中取 Le = 1 的结果

**〔2〕中 Le 由该文章公式 (39) 计算

***取〔8〕Singer 计算结果

.

2

• 53 •

.

表六

与实验结果[6]的比较

L R	h R	t h	A 1h	$\frac{I_{o}}{1h^{3}}$	Ic 1h ³	n	Por	p _{or} (8)	pe	p., (5) pe
2.985	0.00663	- 2.3856	0.11314	0.13407	0.79581	4	0.0006724	0.0007007	0.000706	0.992
3.5154	0.01239	-1.5	0.06112	0.02051	0.23341	4	0.000619	0.0005961	0.0005738	1.04
2.9107	0.0185	-1.1024	0.04032	0.00484	0.13524	4	0.0009555	0.0008638	0.0007613	1.13
2.9123	0.01892	-1.0441	0.04066	0.00402	0.12991	4	0.000963	0.0008672	0.0008245	1.05
2.9064	0.01445	-1.5769	0.08957	0.03462	0.32234	4	0.0011527	0.0011292	0.001062	1.06
2.3362	0.01172	- 1.9951	0.07429	0.0555	0.41406	4	0.0013139	0.0013144	0.00111	1.18
2.2847	0.01263	- 1.9205	0.07597	0.05092	0.39464	4	0.0014445	0.0014372	0.001304	1.10

6、与实验的比较

表六给出七个模型装置^[6]的实验结果 与本 文计 算的结果, 绝大部分实验结果均比所有计算值低。

多考文狱

- (1) Wilhelm Flügge, Stress in Shells, 1960
- [2] Bodner S. R., General instability of a ring - stiffened, circular cylindrical shell under hydsostatic pressure, J. A. M., vol, 24, 1957.
- [3] Baruch & Singer, Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells

under hydrosiatic pressure, J. M. E. S., vol. 5, №1, 1963.

- [4] J. Singer, M.Baruch, O. Harari, Inversion of the eccentricity effect in stiffened cylindrical shells buckling under external pressure, J. M. E. S., vol. 8, №.4, 1966.
- [5] Meck, A Survey of methods of stability analysis of ring stiffened cylinders under hydrostatic pressure, Transactions of the ASME Series B, J. E. I., 87, 385, 1965.
- 〔6〕潜艇园柱耐压壳模型稳定性试验技术研究课题 总结,1965年12月,七院二所。

• 54 •