环向离散加筋园柱曲板的侧压弹性稳定性

力学所十二室 板壳组

引

为便于分析加筋壳的总体稳定性, 经常可以把它 简化为按正交各向异性的连续弹性体处理。但这种近 似方法只能是在一定的条件下才能成立。通过分析局 边滑动简支。具有环向离散加筋园柱曲版在侧压下的 稳定性,在假设生稳前曲板为薄膜受力状态的前提下; 本文比较了在不同参数范围内。按正交各向异性曲板 计算与更精确地按环向离散加筋曲板计算的结果。从 面对按正交各向异性曲板计算的适用条件提出一些看

目前虽有一些分析加筋园柱壳在侧压或全压作用 下的稳定性的文章,例如参考文献[1]、[2]。但 有关曲板的还很少。参考文献[3]、[4]分析了 单层或正交各向异性曲板的稳定性。曲板的侧压弹性 稳定实验的数据及乎空白。因此,为推进航空等有关事 业的发展,加强曲板的实验与理论研究是极为必要的。

 $x_{\bullet} y_{\bullet} z$ 座标,

h, b, 1 壳壁几何尺寸,

C1 . C2 纵、环筋的截面重心到壳壁中面距离。

壳壁曲率半径,

 d_1, d_2 纵、环筋的间距。

织、环筋的截面面积, .Ax, Ay

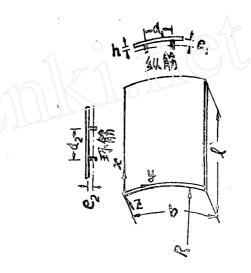
 I_{X} , I_{Y} 纵、环筋截面对壳壁中面的惯性矩,

u, v, w x、y、z 方向的位移。

 ϵ_x , ϵ_y , ϵ_z 应变。

 σ_{x} , σ_{y} , τ_{xy} , τ_{yx} 应力,

nx, ny, nxy, nyx 壳壁内平面法向力、剪力,


m, m, m, my 壳壁内弯矩、扭矩。

纵,环筋的法向力(广义),

 M_{\star} , M_{\star} 纵、环筋的弯矩(广义)。

 \widetilde{n}_{x} , \widetilde{n}_{y} , \widetilde{n}_{xy} , \widetilde{N}_{x} , \widetilde{N}_{y} ,

失稳前壳壁, 纵筋、环 筋内给定的平面力。

8

nx、ny、nxx、nyx、Nx、Ny、边界上已知的壳壁、纵筋、 环筋上的平面力,

 $\overline{m}_{r}, \overline{m}_{r}, \overline{M}_{r}, \overline{M}_{r}$

边界上已知的壳壁, 纵筋、

环筋上的弯矩,

 $\overline{\mathbf{v}}_{\mathbf{z}}, \overline{\mathbf{v}}_{\mathbf{z}}, \overline{\mathbf{V}}_{\mathbf{z}}, \overline{\mathbf{V}}_{\mathbf{z}},$

边界上已知的壳壁, 纵筋、 环筋上的等值剪力,

 \overline{R} 角点反力,P横向载荷,

广义函数(即Dirac函数)的和($\Delta = \Sigma \delta$ (x-

 x_i) 其中 δ 为广义函数, i为环筋的序, x_i 为各环筋的 座标位置),

变分符号,

E. v. E. v. E, v, 壳壁, 纵筋、环筋的 弹性模量及波桑系数,

D 壳壁弯曲刚度
$$\left(D = \frac{Eh^3}{12(1-v^2)}\right)$$
,

B 壳壁平面刚度
$$\left(B = \frac{Eh}{(1-v^2)}\right)$$
,

N 环筋的数量

$$\mu_1 = \frac{E_x A_x (1 - v^2)}{Ehd_1}, \quad \mu_2 = \frac{E_y A_y (1 - v^2)}{Ehd_2},$$

$$\chi_1 = \frac{E_x A_x (1 - v^2) e_1}{E h d_1 \pi} \sqrt{\frac{B}{D}},$$

$$\chi_2 = \frac{E_r A_r (1 - v^2) \epsilon_2}{E h d_2 \pi} \sqrt{\frac{B}{D}},$$

$$\eta_1 = \frac{E_x I_x}{Dd_1}, \quad \eta_2 = \frac{E_y I_y}{Dd_2},$$

j、m、n 序数 (其中m、n又可分别代表纵向、环 向波数),

$$\beta = \frac{b}{1}$$
 (宽长比),

$$K_r = \frac{b^2}{\pi^2 R} \sqrt{\frac{B}{D}}$$
 (此率参数),

$$K_p = \frac{pRb^3}{\pi_2 D}$$
 (临界线荷参数),

$$K_{A} = \frac{A_{y}}{hd_{2}} \quad .$$

(一) 基本方程

(1) 基本假设:

- ①壳、筋截面在变形前、后保持为平面,
- ②壳、筋截面内应力各为直线分布,
- ③平面剪力扭矩仅由壳壁承受,
- ④在纵筋内 $\sigma_y = 0$,在环筋内 $\sigma_z = 0$.在 壳、筋内的横向法应力 σ_z 均为0。

(2) 应力与广义力的关系

在壳内:

$$\sigma_{x} = \frac{n_{x}}{h} + \frac{m_{x}}{h^{3}/12}Z ,$$

$$\sigma_{y} = \frac{n_{y}}{h} + \frac{m_{y}}{h^{3}/12}Z ,$$

$$\tau_{xy} = \frac{n_{xy}}{h} - \frac{m_{xy}}{h^{3}/12}Z ,$$

$$\tau_{yx} = \frac{n_{yx}}{h} + \frac{m_{yx}}{h^{3}/12}Z ,$$

$$(1)$$

其中 $n_{xy} = n_{yx}$, $m_{xy} = -m_{yx}$ 。 在纵筋内:

$$\sigma_{x} = \left(\frac{1}{I_{x} - A_{x}e_{1}^{2}}\right) \left(\left(\frac{J_{x}}{A_{x}}N_{x} + M_{x}e_{1}\right) + \left(M_{x} - N_{x}e_{1}\right)Z\right), \qquad (2)$$

在环筋内:

$$\sigma_{r} = \left(\frac{1}{I_{r} - A_{r}e_{2}^{2}}\right) \left[\left(\frac{I_{r}}{A_{r}}N_{r} - M_{r}e_{2}\right) + \left(M_{r} - N_{r}e_{2}\right)Z\right]_{o}$$
(3)

(8) **应变与位移的关系** 在壳齿,

$$\epsilon_{x} = \frac{\partial u}{\partial x} - \frac{\partial^{2}w}{\partial x^{2}} Z,$$

$$\epsilon_{y} = \left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) - \frac{\partial^{2}w}{\partial y^{2}} Z,$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} - 2 \cdot \frac{\partial^{2}w}{\partial x \partial y} Z,$$
(4)

在纵筋内:

$$\epsilon_{x} = \frac{\partial u}{\partial x} - \frac{\partial^{2} w}{\partial x^{2}} Z, \qquad (5)$$

在环筋内:

$$\epsilon_{y} = \begin{pmatrix} \frac{\partial \mathbf{v}}{\partial y} - \frac{\mathbf{w}}{R} \end{pmatrix} - \frac{\partial^{2} \mathbf{w}}{\partial y^{2}} Z . \qquad (6)$$

(4) Reissner广义变分原理〔5〕

在小挠度变形的情况下,应用Reissner 的广义变分原理〔5〕可以推导出基本方程。变分原理的表达式是:

$$\delta \left[\int_{V} \int F dV - \int_{S_{\sigma}} \int \left(\overline{p_{\star}} u + \overline{p_{\star}} v + \overline{p_{\star}} w \right) dS_{\sigma} \right]$$

将纵筋按照应变能相等的原则折算到壳壁内, 经 过详细运算, 从(1)—(6)式代入(7)式后可 得到环向离散加筋园柱曲板的以下基本方程。

V为体积。

9 •

平衡方程。

$$\frac{\partial}{\partial x}\left(n_{x} + \frac{N_{x}}{d_{1}}\right) + \frac{\partial}{\partial y}n_{xy} = 0 ,$$

$$\frac{\partial}{\partial x}n_{xy} + \frac{\partial}{\partial y}\left(n_{y} + N_{y}\Delta\right) = 0 ,$$

$$\frac{\partial^{2}}{\partial x^{2}}\left(m_{x} + \frac{Mx}{d_{1}}\right) + \frac{\partial^{2}}{\partial y^{2}}\left(m_{y} + M_{y}\Delta\right) - \frac{\partial^{2}}{\partial x \partial y}m_{xy} + \frac{\partial^{2}}{\partial x \partial y}m_{yx} + \frac{1}{R}\left(n_{y} + N_{y}\Delta\right) + \left(\widetilde{n}_{x} + \frac{\widetilde{N}_{x}}{d_{1}}\right) \frac{\partial^{2}w}{\partial x^{2}} + \left(\widetilde{n}_{y} + \widetilde{N}_{y}\Delta\right) - \frac{\partial^{2}w}{\partial y^{2}} + 2\widetilde{n}_{xy} \frac{\partial^{2}w}{\partial x \partial y} + P = 0$$

$$(8)$$

(9)

(10)

广义力与广义位移的关系:

$$n_{x} = B \left(\frac{\partial u}{\partial x} + \nu \left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) \right),$$

$$\frac{N_{x}}{dt} = \frac{E_{x} A_{x}}{dt} \left(\frac{\partial u}{\partial x} - \frac{\partial^{2} w}{\partial x^{2}} e_{1} \right),$$

$$d_1 \quad d_1 \quad \left(\frac{\partial x}{\partial x} \quad \frac{\partial x^2}{\partial x^2} \right)$$

$$n_y = B \left[\left(\frac{\partial y}{\partial y} - \frac{w}{R} \right) + \frac{\partial u}{\partial x} \right],$$

$$N_{r} = E_{y}A_{r} \left[\left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) - \frac{\partial^{2}w}{\partial y^{2}} \epsilon_{2} \right], \quad ,$$

$$n_{xy} = \frac{B(1-v)}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) ,$$

$$m_x = -D\left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right) ,$$

$$\frac{M_x}{d_1} = \frac{E_x I_x}{d_1} \left(-\frac{\partial^2 w}{\partial x^2} + \frac{A_x e_1}{I_x} \frac{\partial u}{\partial x} \right) ,$$

$$m_y = -D\left(\frac{\partial^2 w}{\partial y^2} + \nu - \frac{\partial^2 w}{\partial x^2}\right) ,$$

$$M_{y} = E_{y}I_{y} \left[-\frac{\partial^{2}w}{\partial y^{2}} + \frac{A_{y}e_{2}}{I_{y}} \left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) \right] ,$$

$$m_{xy} = -m_{yx} = D(1 - v) - \frac{\partial^2 w}{\partial x \partial y}$$

边界条件。

在曲边
$$n_x + \frac{N_x}{d_1} = \overline{n}_x + \frac{\overline{M}_x}{d_1}$$
 或 $u = 0$

$$n_{xy} = \overline{n}_{xy} \quad \overrightarrow{g}v = 0 \quad ,$$

$$m_y + \frac{M_x}{d_1} = \overline{m}_x + \frac{\overline{M}_x}{d_1} \overrightarrow{\otimes} \frac{\partial w}{\partial x} = 0$$

$$\frac{\partial}{\partial x} \left(m_x + \frac{M_x}{d_1} \right) + \frac{\partial m_{yx}}{\partial y} - \frac{\partial m_{xy}}{\partial y} + \left(\widetilde{n_x} + \frac{\widetilde{M}_x}{d_1} \right) \frac{\partial w}{\partial x} + \widetilde{n_{xy}} \frac{\partial w}{\partial y} = \left(\overline{v_x} + \frac{\overline{V}_x}{d_1} \right) \xrightarrow{\text{pl}} w = 0,$$

在直边
$$n_y + N_y \Delta = \overline{n_y} + \overline{N_y} \Delta$$
 或 $v = 0$

· 10 ·

$$\begin{split} & n_{xy} = \overrightarrow{n}_{xy} \quad \text{id} u = 0 \,, \\ & m_y + M_y \, \Delta = \overrightarrow{M}_y \Delta \quad \text{id} \frac{\partial w}{\partial y} = 0 \,, \\ & \frac{\partial}{\partial y} \left(m_y + M_y \Delta \right) \, - \frac{\partial m_{xy}}{\partial x} + \frac{\partial m_{yx}}{\partial x} + \left(\, \overrightarrow{n}_y + \overrightarrow{M}_y \Delta \, \, \right) \frac{\partial w}{\partial y} + \overrightarrow{n}_{xy} \frac{\partial w}{\partial x} = \left(\, \overrightarrow{v}_y + \overrightarrow{V}_y \Delta \right) \end{split}$$

或w= 0;

在角点 mxy-myx=R 或w=0。

以上(9)式与文献[1]中的有关结果相类同。

(二) 微分方程及其解法

假定失稳前曲板为薄膜受力状态, 在受侧压时, 曲板内的给定平面力可有以下两种写法 (1) 当横向载荷P为均分布时:

$$\widetilde{\mathbf{n}}_{x} + \frac{\widetilde{\mathbf{N}}_{x}}{\mathbf{d}_{1}} = \widetilde{\mathbf{n}}_{xy} = 0,$$

$$\widetilde{\mathbf{n}}_{y} + \widetilde{\mathbf{N}}_{y} \Delta = -PR,$$
(11)

这也就表明, 壳壁内的平面法向力口,是不连续的, 在附有环筋处, 壳壁内口,的绝对值突然变小。为消除此突变, 保持薄膜受力状态, 则需在有环筋处附加环向线分布载荷, 以使环筋内的予加应力与壳壁内的相同。

(2)
$$\stackrel{\text{def}}{=} P = \overline{P} + \frac{\overline{P}A_{y}}{h} \Delta \overline{B}_{z}$$

$$\widetilde{n_{x}} + \frac{\widetilde{N}_{x}}{d_{1}} = \widetilde{n_{xy}} = 0 ,$$

$$\widetilde{n_{y}} + \widetilde{N}_{y} \Delta = -\overline{P}R \left(1 + \frac{A_{y}}{h} \Delta \right) .$$
(12)

以下将简称(11)、(12)式所代表的情况为情况(1)、情况(2)。显见情况(1)是情况(2)的特殊情况。当线分布载荷趋于零时,情况(2)即趋于情况(1)。为此,以下将以情况(2)为出发点推导微分方程。

将(9)式代入(8)式中的前三个,按照通常的作法[6]。在假定失稳前曲板为薄膜受力状态时,可以得到计算环向离散加筋园柱曲板的侧压稳定性的微分方程。

$$\left((1 + \mu_1) \frac{\partial^2}{\partial x^2} + \frac{1 - \nu}{2} \frac{\partial^2}{\partial y^2} \right) u + \left(\frac{1 + \nu}{2} \frac{\partial^2}{\partial x \partial y} \right) v - \left(\frac{\nu}{R} \frac{\partial}{\partial x} + \frac{\chi_1 \pi}{\sqrt{B/D}} \frac{\partial^3}{\partial x^3} \right) w = 0 , \quad (i3)$$

$$\left(\frac{1 - \nu}{2} \frac{\partial^2}{\partial x \partial y} \right) u + \left(\frac{1 - \nu}{2} \frac{\partial^2}{\partial x^2} + \left(1 + \frac{E_y A_y (1 - \nu^2)}{Eh} \Delta \right) \frac{\partial^2}{\partial y^2} \right) v - \left(\frac{1}{R} \left(1 + \frac{E_y A_y (1 - \nu^2)}{Eh} \Delta \right) \right)$$

$$\frac{\partial}{\partial y} + \frac{E_y A_y (1 - \nu^2) e_2}{Eh} \Delta \frac{\partial^3}{\partial y^3} w = 0 , \quad (14)$$

$$\left(\frac{\nu}{R} \frac{\partial}{\partial x} + \frac{\chi_1 \pi}{\sqrt{B/D}} \frac{\partial^3}{\partial x^3} \right) u + \left(\frac{1}{R} \left(1 + \frac{E_y A_y (1 - \nu^2)}{Eh} \Delta \right) \frac{\partial}{\partial y} + \frac{E_y A_y (1 - \nu^2) e_2}{Eh} \Delta \right) \frac{\partial^3}{\partial y^3} v -$$

$$- \frac{D}{B} \left((1 + \eta_1) \frac{\partial^4}{\partial x^4} + 2 \frac{\partial^4}{\partial x^2 \partial y^2} + \left(1 + \frac{E_v I_y}{D} \Delta \right) \frac{\partial^4}{\partial y^4} + \left(\frac{\overline{p}R}{iD} \left(1 + \frac{Ay}{h} \Delta \right) + \right)$$

$$+\frac{2 E_{y} A_{y} e_{2}}{RD} \Delta \left(\frac{\partial^{2}}{\partial y^{2}} + \frac{B}{R^{2}D} \left(1 + \frac{E_{y} A_{y} (1 - v^{2})}{Eh} \Delta \right) \right) w = 0.$$
 (15)

Ŷ

$$u = \sum_{m,n} a_{mn} u_{mn} ,$$

$$v = \sum_{m,n} b_{mn} v_{mn} ,$$

$$w = \sum_{m,n} c_{mn} w_{mn} ;$$

$$m,n$$
(16)

其中uma、vma、vma为满足所有边界条件的位移函数。于是由伽辽金法可以对应(13)。(14)、(15)各式得到

$$\int \int \left\{ \cdots \cdots \right\} u_{mn} dx dy = 0 , \qquad (13)'$$

$$\int \int \left\langle \cdots \right\rangle v_{nn} dx dy = 0, \qquad (14)^{r}$$

$$\int \int \left\{ \dots \right\} w_{mn} dx dy = 0 . \tag{15}$$

(三) 滑动简支条件下的稳定方程及其化简

此时,在曲边上:
$$N_x=0$$
, $v=0$,
$$M_z=0$$
, $w=0$,
$$Cab = 0$$
,

令

$$u = \sum_{m,n} a_{mn} \cos \frac{m\pi x}{1} \sin \frac{n\pi y}{b},$$

$$v = \sum_{m,n} b_{mn} \sin \frac{m\pi x}{1} \cos \frac{n\pi y}{b},$$

$$w = \sum_{m,n} c_{mn} \sin \frac{m\pi x}{1} \sin \frac{n\pi y}{b}.$$
(18)

为便于计算。取环向加筋为等间距的情况,则将 (18)代入 (13)′、 (14)′、 (15)′,即得计算稳定性的代数方程组。

$$\left(1 + \frac{1 - \nu}{2} \frac{m^2 \beta^2}{n^2} - \frac{\left(\frac{1 + \nu}{2}\right)^2 m^2 \beta^2}{(1 + \mu_1) m^2 \beta^2 + \frac{1 - \nu}{2} n^2}\right) b_{ma}' + \mu_2 \sum_{j} \delta_{mj} b_{jn}' + \frac{1}{n} \left(K_t + \frac{1}{n}\right)^2 m^2 \beta^2 + \frac{1 - \nu}{2} n^2$$

· 12 ·

$$+\frac{\left(\frac{1+\nu}{2} m^{2}\beta^{2}\right)\left(\pi\chi_{1}m^{2}\beta^{2}-\nu K_{*}\right)}{(1+\mu_{1}) m^{2}\beta^{2}+\left(\frac{1-\nu}{2}\right)n^{2}} c_{mn}+\frac{1}{n}(\mu_{2}K_{r}-\pi\chi_{2}n^{2}) \sum_{j}\delta_{mj}c_{jn}=0, \quad (19)$$

$$\frac{1}{n}\left(K_{r}+\frac{\left(\frac{1+\nu}{2} m^{2}\beta^{2}\right)\left(\pi\chi_{1}m^{2}\beta^{2}-\nu K_{r}\right)}{(1+\mu_{1}) m^{2}\beta^{2}+\left(\frac{1-\nu}{2}\right)n^{2}}\right)b_{mn}'+\frac{1}{n}(\mu_{2}K_{r}-\pi\chi_{2}n^{2}) \sum_{j}\delta_{mj}b_{jn}'+\frac{1}{n^{2}}\left((1+\eta_{1}) m^{4}\beta^{4}+2m^{2}n^{2}\beta^{2}+n^{4}+K_{r}^{2}-\frac{m^{2}\beta^{2}(\pi\chi_{1}m^{2}\beta^{2}-\nu K_{r})^{2}}{(1+\mu_{1}) m^{2}\beta^{2}+\frac{1-\nu}{2}n^{2}}\right)c_{mn}+\left(\eta_{2}n^{2}-2\pi\chi_{2}K_{r}+\frac{1}{n^{2}}\mu_{2}K_{r}^{2}\right)$$

$$\sum_{j}\delta_{mj}c_{jn}-\left(\frac{1}{1+\frac{N}{N+1}K_{A}}K_{P}c_{mn}-\left(\frac{K_{A}}{1+\frac{N}{N-1}K_{A}}K_{P}\sum_{j}\delta_{mj}c_{jn}=0,\right)$$
(20)

其中
$$b_{mn}' = \frac{b}{\pi} \sqrt{\frac{B}{D}} b_{mn}$$
,
$$\delta_{mj} = \begin{cases} 1 & \text{if } (j-m) = 2k \ (N+1) \text{ if } k = 0, 1, 2 \dots \\ -1 & \text{if } (j+m) = 2k \ (N+1) \text{ if } k = 1, 2, 3 \dots \\ 0 & \text{if } i \end{cases}$$

在(20) 武中已考虑了使前节中情况(1),情况(2)的总载荷量相等,以便于计算比较(此时

$$\overline{P} = \left(\frac{1}{1 + \frac{N}{N+1}}\right) P$$
), 如令 $K_A = 0$ 即为情况(1), 否则为情况(2)。

以上(10)、(20)式可缩写为矩阵向量型式。

$$(V_{1}) = (W_{1}) = 0,$$

$$(V_{2}) = (W_{2}) = K_{P}(P) = 0,$$
(21)

其中

$$\overline{V} = \begin{pmatrix} b_{1n} \\ b_{2n} \\ b_{3n} \\ \vdots \end{pmatrix}, \quad \overline{w} = \begin{pmatrix} c_{1n} \\ c_{2n} \\ c_{3n} \\ \dots \end{pmatrix};$$

又〔 V_1 〕、〔 V_2 〕、〔 W_1 〕、〔 W_2 〕、〔P〕为(19)、(20)式中有关的系数所组成的矩阵。于是可归并为:

$$(P)^{-1} \{ (W_2) - (V_2)(V_1)^{-1}(W_1) \} w = K_P w_o$$
(22)

以下的问题就是求解 (22)式的最小特征值Kp及相应的特征向量w。

在参考文献〔6〕中给出了使类似于(22)式中的矩阵阵价的办法,最后可简化为计算(N+1)个子矩阵问题,从中可以即刻得到

-(1) 加筋曲板按正交各向异性理论计算的总体失稳的公式为:

$$K_{P} = \frac{1}{n^{2}} \left\{ \left[(1 + \eta_{1}) m^{4}\beta^{4} + 2 m^{2}n^{2}\beta^{2} + (1 + \eta_{2})n^{4} \right] - \right.$$

$$-\frac{\pi^{2}}{\frac{11-\nu}{2}\left(1+\mu_{1}\right)m^{4}\beta^{4}+\left((1+\mu_{1})(1+\mu_{2})-\nu\right)m^{2}n^{2}\beta^{2}+\frac{1-\nu}{2}\left(1+\mu_{2}\right)n^{4}}\left[\frac{1-\nu}{2}\chi_{1}^{2}m^{8}\beta^{8}+\frac{1-\nu}{2}(1+\mu_{2})m^{4}\beta^{4}+\left((1+\mu_{1})(1+\mu_{2})-\nu\right)m^{2}n^{2}\beta^{2}+\frac{1-\nu}{2}(1+\mu_{2})n^{4}\right]$$

· 13 ·

$$+ (1 + \mu_{2})\chi_{1}^{2}m^{6}n^{2}\beta^{6} - v(1 - v) \frac{\chi_{1}K_{r}}{\pi}m^{6}\beta^{6} - (1 + v)\chi_{1}\chi_{2}m^{4}n^{4}\beta^{4} + (1 - v) \frac{K_{r}}{\pi}\left((1 + \mu_{1})\chi_{2} + (1 + \mu_{2})\chi_{1}\right)m^{4}n^{2}\beta^{4} - \frac{1 - v}{2}\left((1 + \mu_{1})(1 + \mu_{2}) - v^{2}\right)\frac{K_{r}^{2}}{\pi^{2}}m^{4}\beta^{4} - v(1 - v) \frac{\chi_{2}K_{r}}{\pi}m^{2}n^{4}\beta^{2} + (1 + \mu_{1})\chi_{2}^{2}m^{2}n^{6}\beta^{2} + \frac{1 - v}{2}\chi_{2}^{2}n^{8}\right)$$

$$+ (1 + \mu_{1})\chi_{2}^{2}m^{2}n^{6}\beta^{2} + \frac{1 - v}{2}\chi_{2}^{2}n^{8})$$

$$(23)$$

(2) 在环筋之间的局部失稳的公式为:

$$\begin{split} K_P &= \frac{1}{n^2} \left\{ \left[(1 + \eta_1) \, m^4 \beta^4 + 2 \, m^2 n^2 \beta^2 + n^4 \right] - \right. \\ &- \frac{\pi^2}{\left(\frac{1 - \nu}{2} \right) (1 + \mu_1) \, m^4 \beta^4 + (1 + \mu_1 - \nu) \, m^2 n^2 \beta^2 + \frac{1 - \nu}{2} \, n^4} \left[\frac{1 - \nu}{2} \, \chi_1^2 m^8 \beta^8 + \chi_1^2 m^6 n^2 \beta^6 - \nu (1 - \nu) \, \frac{\chi_1}{\pi} K_r m^6 \beta^6 + (1 - \nu) \, \frac{\chi_1 K_r}{\pi} \, m^4 n^2 \beta^4 - \frac{1 - \nu}{2} \, (1 + \mu_1 - \nu^2) \right] \end{split}$$

$$\frac{K_r^2}{\pi^2} m^4 \beta^4$$

(四) 计算结果与分析

下面以周边滑动简支、受均布侧压为例,分析具有环向离散加筋圆柱曲板的弹性稳定性。经过计算环筋之间壳壁的局部失稳载荷,并将按环向离散方法与按正交各向异性方法总体失稳载荷作了比较之后,在 所给参数范围内,可以得出以下看法。

使离散方法计算的总体失稳载荷也提高 $\left(1 + \frac{N}{N+1}K_A\right)$

倍。为简便起见,以下均按情况(1)作比较分析。

- (2)考虑环筋法向力的作用对计算总体失稳的 影响极微。比较《表1》、《表3》可见, 其差别仅 为1%左右。
- (3)由《表4》、《表5》可见,一般地说, 环筋在曲板的内侧 (X2 为正) 较在外侧 (X2 为负) 为佳。
- (4)比较《表4》、《表6》、《表7》、《表8》可说,曲率参数的影响较大。K.愈大,承载能力愈高。
- (5)综合以上各表,可归纳出以下一点,即局部失稳的载荷可作为按正交各向异性方法与按离散方法计算总体失稳的分界限。在此之前二者是一致的。
- (6)加纵筋后,对提高总体失稳载荷的作用虽不大但由于它提高了局部失稳的载荷,从而扩大了按正交各向异性方法处理问题的适用范围。(见《表8》、《表10》)。
- (7) 随着宽长比β的增大, Kp值也不断提高。 (见表 (11))

以上各条看法中,第5条是最主要的。也就回答 了本文一开始所提出的问题。

《表1》K_e=1.5×10² β= 1

η ₂ N	1	2	8	4	5	. ∞
1 ·	36.20(1)(4)	37.46(1)(4)	37.83(1)(4)	38.02(1)(4)	38.14(1)(4)	38,36(1)(4)
2	46,48(1)(4)	50.66(1)(3)	50.86(1)(3)	50.98(1)(3)	51.06(1)(3)	51,26(1)(3)
5	55.02(1,)(6)	74.87(1)(3)	76.05(1)(3)	76.75(1)(3)	77.22(1)(3)	78.22(1)(3)
10	55,53(1,)(6)	82.68(2,)(7)	$114.5 \binom{3}{5}(7)$	117.4 (1)(3)	119.2 (1)(3)	123,22(1)(3)
20	55.79(1,)(6)	83,01(2,)(7)	$115.3 \binom{3}{5} (7)$	152.3 (4,)(8)	196.1 (5,)(9)	213,2(1)(3)
50	55.95(1,)(6)	83,20(2,)(7)	115.8 $\binom{3}{5}$ (7)	152.7 (4,)(8)	196.5 (57)(9)	405,2(1)(2)
100	56.00(1,)(6)	83.27(2,)(7)	116.0 (³ ,)(7)	152.8 (4,)(8)	196.6 (⁵ ,)(9)	605,2(1)(2)
200	56.03(1,)(6)	83.20 (2.)(7)	$116.0 {3, (7) \choose 5}$	$152.9 {\binom{4}{6}} (8)$	196.7 (5,)(9)	1005 (1)(2)
400	56.04(1,)(6)	83.32 (21)(7)	$116.1 {3 \choose 5} (7)$	152.9 (4,)(8)	196.7 (5,)(9)	1805 (1)(2)
1000	56.05(1/g)(6)	83.33 (2,)(7)	116,1 (3,)(7)	152.9 (4,)(8)	$196.7 {5, 09}$	4205 (1)(2)
W	48.78(2)(5)	78.36 (3)(6)	110.8 (4)(7)	148.2 (5)(8)	192.2 (6)(9)	

《表2》 $K_r = 1.5 \times 10^2$ $\beta = 1$ $K_A = 0.45$

η ₂ N	1	2	3	4	5
1	32,27(1)(4)	34.33(1)(4),	35,35(1)(4)	35.95(1)(4)	36,35(1)(4)
2	43,32(1)(3)	46.02(1)(3)	47,34(1)(3)	48,18(1)(3)	48.71(1)(3)
5	64.63(1)(3)	69,45(1)(3)	71,70(1)(3)	73,05(1)(3)	73,96(1)(3)
10	67.78(1,)(6)	106,3 (1)(3)	110.9 (1)(3)	113,7 (1)(3)	115,5(1)(3)
20	68.33(1,)(6)	107.8 (2,)(3)	154.2 (3,)(7)	190.9 (1)(3)	195,5(1)(3)
50	68,53(¹ ,)(6)	108.1 (2,)(7)	154.8 (3,)(7)	207.6 (4,)(8)	270,1(⁵ ,)(9)
100	68.60(1,)(6)	108.2 (2,)(7)	155.1 (3,)(7)	207.9 (4,)(8)	270.4(5,)(9)
200	68.63(¹ ,)(6)	108.2 (2,)(7)	155,1 (3,)(7)	207.9 (4,)(8)	270.4(5,)(9)
400	68,64(1,)(6)	108,3 (2,)(7)	155,2 (3,)(7)	207.9 (4,)(8)	270.4(5,)(9)
1000	68.66(1,)(6)	108.3 (2,)(7)	155.2 (3,)(7)	207.9 (4,)(8)	270.4(5,)(9)

n ₂ N	1	2	, 3	4	5	∞
1	36.53(1)(4)	37.83(1)(4)	38.15(1)(4)	38,28(1)(4)	38,35(1)(4)	38.47(1)(4)
2	47,21(1)(4)	51,30(1)(3)	51.43(1))3)	51,48(1)(3)	51.51(1)(3)	51.56(1)(3)
5	55,08(1,)(6)	76,69(1)(3)	77.51(1)(3)	77.89(1)(3)	78,11(1)(3)	78,56(1)(3)
10	55,59(1,)(6)	82.82(2,)(7)	115.0(3,)(7)	120,1(1)(3)	121,-2(1)(3)	123,5 (1)(3)
20	55,85(1,)(6)	83,15(2,)(7)	115.8(3,)(7)	152,6(4,)(8)	196.3(5,)(9)	213,5 (1)(3)
50	56.01(1,)(6)	83.84(2,)(7)	116.2(3,)(7)	153.0(4,)(8)	198,7(5,)(9)	405,6 (1)(2)
100	56.06(1,)(6)	83,41(2,)(7)	116,3(3,)(7)	153.1(4,)(8)	196.8(5,)(9)	605.6 (1)(2)
200	56.09(1,)(6)	83.41(2,)(7)	116,5(3,)(7)	153.2(4,)(8)	196.9(5,)(9)	1005 (1)(2)
400	56.10(1,)(9)	83.46(2,)(7)	116.5(3.)(7)	153.2(4,)(8)	196.9(5,)(9)	1805 (1)(2)
1000	56.11(1,)(8)	83.47(2,)(7)	116:6(3,)(7)	153.2(4,)(8)	197.0(3,)(9)	4205 (1)(2)
局部失稳	48.78(4)(5)	78.36(3)(6)	110.8(4)(7)	148.2(5)(8)	192.2(6)(9)	

η_2 N	1	2	3	4	5	∞ c
2	28.69(1)(2)	30.58(1)(4)	52.54(1)(4)	34.41(1)(4)	36.14(1)(4)	44.44(1)(4)
5	54.81(1,)(5)	68.59(1)(3)	69.84(1)(3)	70.78(1)(3)	71.61(1)(3)	75,33(1)(3)
10	55,59(1,)(6)	82.83(2,)(7)	115,2 (3,)(7)	117.1 (1)(3)	117.9 (1)(3)	120.3 (1)(3)
20	55,87(1,)(6)	83,20(2,)(7)	115.9 (3,)(7)	152.7 (4,)(8)	196.4 (5,)(9)	210.3 (1)(3)
50	56.02(1,)(6)	83,37(2,)(7)	116.3 (3,)(7)	153.1 (4,)(8)	196.8 $\binom{5}{7}$ (9)	405.1 (1)(2)
100	56.07(1,)(6)	83.42(2,)(7)	116,5 (3,)(7)	153.2 (4,)(8)	196.3 (5,)(9)	605.1 (1)(2)
200	56.09(1,)(6)	83,45(2,)(7)	116.5 (3,)(7)	153.2 (4,)(8)	196.9 (5,)(9)	1005.1 (1)(2)
400	56.10(1,)(6)	83,46(2,)(7)	$116.5 \binom{3}{5}(7)$	153.3 (4,)(8)	197.0 (⁵ ,)(9)	1805 (1)(2)
1000	56.11(¹ ,)(6)	83.47(2,)(7)	116.6 (3,)(7)	153.3 (4,)(8)	197.0 (5,)(9)	4205 (1))2)
局部失稳	48.78(2)(5)	78,35(3)(6)	110.8 (4)(7)	148.2 (5)(8)	192.2 (6)(9)	

η ₂ Ν	1	2	3	4 ′	5	~
2	24.59(1)(4)	25.55(1)(4)	26.83(1)(4)	28,21(1)(4)	29.65(1)(4)	37.80(1)(4)
5	52,18(1)(5)	57.86(1)(3)	59.09(1)(3)	60.25(1)(3)	61,40(1)(3)	66.51(1)(3)
- 10	55,37(1,)(6)	82.48(2,)(7)	97.49(1)(3)	100.0 (1)(3)	102.3 (1)(3)	111.5 (1)(3
20	55,77(1,)(6)	$\epsilon 3.02(\frac{2.1}{4})(7)$	115.4 (3,)(7)	152,3 (4,)(8)	180.2 (1)(3)	201.5 (1)(3
50	55,98(1,)(6)	83,30(2,)(7)	116.1 (3,)(7)	152.9 (4,)(8)	196.6 (5,)(9)	399.0 (1)(3)
100	56,05(1,)(6)	83,39(2,)(7)	116.4 (3,)(7)	153,1 (4,)(8)	196.8 $\binom{5}{7}$ (9)	599.0 (1)(2
200	56.08(1,)(6)	83,43(2,)(7)	116.5 (3,)(7)	$153,2 {4, \choose 6}(8)$	196.5 (5,)(9)	999.0 (1)(2)
400	56,10(1,)(6)	$83.46(\frac{2}{4})(7)$	116.5 (3,)(7)	153.2 (4,))8)	196.9 (5,)(9)	1799 (1)(2)
1000	$56.11(\frac{1}{3})(3)$	83,47(2,)(7)	116.6 (3,)(7)	153.3 (4,)(8)	197.0 (5,)(9)	4199 (1)(2)
局部失稳	48.78(2)(5)	78,36(3)(6)	110.8 (4)(7)	148,2 (5)(8)	192.2 (6)(9)	

《 表 6 》 $K_r = 0.75 \times 10^2$ $\beta = 1$ $\mu_2 = 0.5$ $\chi_2 = +0.35$

η_2 N	1	2	3	4	5	∝
2	21,20(1)(3)	22.78(1)(3)	24.20(1)(3)	25.43(1)(3)	26.11(1)(3)	29.28(1)(3)
5	40.33(1)(4)	50.48(1)(3)	52.50(1)(3)	53,53(1)(3)	54.19(1)(3)	56,28(1)(3)
10	41,39(1,)(5)	64.29(2,)(5)	91.81(3,)(6)	93.37(1)(2)	93.57(1)(2)	94.12(1)(2)
20	41,65(1,)(5)	65.13(2,)(5)	92,52(3,)(6)	127.5 (4,)(7)	133,4 (1)(2)	134.1 (1)(2)
50	$41.78(\frac{1}{3})(5)$	65,57(2,)(5)	92.89(3,)(6)	127.9 (4,)(7)	171.0 (5,)(8)	254.1 (1)(2)
100	41.82(1,)(5)	65,66(2,)(6)	93.01(3,)(6)	128.0 (4,)(7)	171.1 (5,)(8)	454.1 (1)(2)
200	41.84(1,)(5)	65.69(2,)(6)	93.06(3,)(6)	128.1 (4,)(7)	171.1 (⁵ ,)(8)	851.1 (1)(2)
400	41.85(1,)(5)	65,70(2,)(6)	93.09(3,)(6)	128.1 (4,)(7)	171.2 (5,)(8)	1654 (1)(2)
1000	41.86(1,)(5)	65.71(2,)(6)	93,11(3,)(6)	128.1 (4,)(7)	171.2 (5,)(8)	2279 (1)(1)
局部失稳	37,42(2)(5)	60.18(3)(5)	88.19(4)(6)	123,3 (5)(7)	165,6 (6)(7)	

η2 Ν	1	2	3	4	. 5	~
2	36.81(1)(4)	37.96(1)(4)	39,52(1)(4)	41,22(1)(4)	42,88(1)(4)	54.50(1)(4)
5	68.98(1,)(6)	88,98(1)(4)	91.68(1)(4)	93.34(1)(4)	94,62(1)(4)	102.5 (1)(4)
10	70.74(1,)(7)	102.1 (2,)(8)	139,3 (3,)(9)	157.9 (1)(3)	158.6 (1)(3)	163.1 (1)(3)
20	71.03(1,)(7)	102.5 (2,)(8)	139,7 (3,)(9)	181.8 (4,)(9)	228,2(5,)(10)	253,1(1)(3)
50	71.18(1,)(7)	102.6 (2,)(8)	139.9 (3,)(9)	182.2 (4,)(9)	228.6(5,)(10)	523,1(1)(3)
100 4	71.23(1,)(7)	102.7 (2,)(8)	139.9 (3,)(9)	182.4 (4,)(9)	228.7(5,)(10)	961,6(1)(2)
200	$71.25(\frac{1}{3})(7)$	$102.7 {\binom{2}{4}}(8)$	140.0 (3,)(9)	$182.4 \begin{pmatrix} 4 \\ 6 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix}$	228.7(5,)(10)	1361 (1)(2)
400	71,26(1,)(7)	102.7 (2,)(8)	140.0 (3,)(9)	182,4 (4.)(9)	228.7(5,)(10)	2161 (1)(2)
1000	$71.27(\frac{1}{8})(7)$	102.8 $\binom{2}{4}$ (3)	140.0 (3,)(9)	182.5 (4,)(9)	228.8(5,)(10)	4561 (1)(2)
局部失稳	59,79(2)(6)	95.81 (3)(7)	134.5 (4)(8)	176.6 (5)(9)	223.6(6)(10)	

《 表 8 》 $K_r = 5.0 \times 10^2$ $\beta = 1$ $\mu_2 = 0.5$ $\chi_2 = +0.35$

η2 Ν	1	2	3	4	5	co
2	49.70(1-)(5)	50.56 (1)(5)	51,70(1)(5)	53.28(1)(5)	55.11(1)(5)	77.92(1)(5)
5 -	95,37(1,)(8)	126.6 (1)(4)	127.8 (1)(4)	129.0 (1)(4)	130,2 (1)(4)	144.8 (1)(4)
10	96,96(1,)(8)	$138.2 {2, (2, (9))}$	185.5(3,)(10)	213.2 (1)(4)	214.4 (1)(4)	224.8 (1)(4)
20	97.56(1,)(8)	$139.0 \binom{2}{4}(9)$	185.7(3,)(10)	236.9(4,)(11)	292.3(⁵ ,)(12)	384.8 (1)(4)
50	97.87(1,)(8)	139.5(2,)(9)	186.1(3,)(10)	237.3(4,)(11)	292.6(5,)(12)	717.6 (1)(3)
100	97.97(1,)(8)	139,4(2,)(9)	186.3(3,)(10)	237.3(4,)(11)	292.7(⁵ ,)(12)	1167 (1)(3)
200	98,01(1,)(8)	139,6(2,)(9)	186,3(3,)(10)	237.4(4,)(11)	292.8(5,)(12)	2067 (1)(3)
400	98.04(1,)(8)	139.6(2,)(9)	186,4(3,)(10)	237.5(4,)(11)	292.8(5,)(12)	3828 (1)(2)
1000	$98.05(\frac{1}{3})(3)$	139.6(2,)(9)	186.4(3,)(10)	237.5(4,)(11)	292,8(5,)(12)	6228 (1)(2)
局部 失稳	83.02(2)(7)	127.2(3)(9)	176.6(4)(10)	229.7(5)(11)	286.4(6)(14)	

《最9》 $K_r = 1.5 \times 10^2$ $\beta = 1$ $\mu_2 = 0.5$ $\chi_2 = 0.35$ $\eta_1 = 1.00 \times 10^2$

T, 2 N	1	2	3	4	5	oc
· 2	37.58(1)(4)	40.26(1)(4)	42.65(1)(4)	44.58(1)(4)	46.04(1)(4)	51.50(1)(4)
5	81.60(1)(4)	85.06(1)(3)	86.58(1)(3)	87.84(1)(3)	88,37(1)(3)	90.61(1)(3)
10	124.9 (1)(3)	129.8 (1)(3)	131.6 (1)(3)	132.6 (1)(3)	133.4 (1)(3)	135.6(1)(3)
20	135,5 (1,)(8)	217.6 (1)(3)	221.0 (1)(3)	222.5 (1)(3)	223.3 (1)(3)	225,6(1)(3)
50	137.0 (1,)(8)	252.0(² ,)(11)	408.8(3,)(14)	457.8(1)(2)	458.0(1)(2)	458.5(1)(2)
100	137.4 (1,)(8)	252,6(2,)(11)	409.5(3,)(14)	609.5(4,)(17)	657.7(1)(2)	658.5(1)(2)
200	137.6 · (1,)(8)	252.8(2,)(11)	409.8(3,)(14)	609.9(4,)(17)	853,5(5,)(20)	1058 (1)(2)
400	137.7 (1,)(8)	253.0(2.)(11)	410.0(3;)(14)	610.0(4,)(17)	853.7(5,)(20)	1858 (1)(2)
1000	137.8 (2,)(8)	$253.0(\frac{2}{4})(11)$	410.1(3,)(14)	610.1(4,)(17)	853.8(5,)(20)	4258 (1)(2)
局部失稳	{2.88(2)(7)	201.5(3)(11)	355.0(4)(13)	553,3(5)(16)	796.1(6)(19)	

r, 2 N	1	2	3	4 .	5	œ
2	43.88(1)(4)	46.56(1)(4)	48.95(1)(4)	50.86(1)(4)	52.32(1)(4)	57.75 (1)(4)
5	87.57(1)(4)	94.43(1)(4)	96.99(1)(4)	98.77(1)(3)	99,49(1)(3)	101.7(1)(3)
10	137.2 (1)(3)	141.0(1)(3)	142,7(1)(3)	143.7(1)(3)	144.5(1)(3)	146.7(1)(3)
20	185.0(1,)(9)	229.8(1)(3)	232.4(1)(3)	233.7(1)(3)	234.4(1)(3)	236.7(1)(3)
50	187.5(1,)(9)	346.0(² ,)(13)	482,5(1)(2)	482.8(1)(2)	483.0(1)(2)	483.5(1)(2)
100	188,5(1,)(9)	346.8(² ,)(13)	562.7(³ ,)(16)	682.5(1)(2)	682,9(1)(2)	683.5(1)(2)
200	188.6(1,)(10)	347.1(² ,)(13)	563,3(³ ,)(16)	838.1(4,)(20)	1082 (1)(2)	1083 (1)(2)
400	188,8(1,)(10)	347.3(2,)(13)	563,5(³ ,)(16)	838.4(4,)(20)	$1174 \binom{5}{7}(23)$	1883 (1)(2)
1000	188.8(1,)(10)	347.4(² ,)(13)	563.7(3,)(16)	838.5(4,)(20)	1174 (5,)(23)	4283 (1)(2)
局部失稳	123.6(2)(8)	274.5(3)(1)	486.1(4)(15)	759.2(5)(19)	1093 (6)(23)	

《表11》 $K_r = 1.5 \times 10^2$ $\mu_2 = 0.5$

		$\beta = 0.5$	β = 1.5	$\beta = 2$.	0	
***	η2	$\chi_2 = -0.35$ $\chi_2 = +0.35$	$\chi_2 = -0.35 \ \chi_2 = +0.35$	$\chi_2 = -0.35$	$\chi_2 = +0.35$	
	1	11.00(1)(3) 14.58(1)(3	35.08(1)(5) 43.21(1)(5)	47.87(1)(5)	56.97(1)(5)	
	2	20.00(1)(3) 23.58(1)(3	53.64(1)(4) 62.82(1)(4)	72.87(1)(5)	81,97(1)(5)	
总	5	35.50(1)(2) 42.14(1)(3	101.6(1)(4) 110.8(1)(4)	137.8 (1)(4)	143.9 (1)(4)	
体	10	55,50(1)(2) 62,14(1)(2	181.6(1)(4) 187.8(1)(3)	217.8 (1)(4)	223.9 (1)(4)	
失	20	95.50(1)(2) 102.1 (1)(2	271.7(1)(3) 277.8(1)(3)	377.8 (1)(4)	383.9 (1)(4)	
稔	50	215.5 (1)(2) 222.1 (1)(2	541.7(1)(3) 547.8(1)(3)	675.3 (1)(3)	665,9 (1)(3)	
N = ∞	100	415.5 (1)(2) 422.1 (1)(2	991.7(1)(3) 997.8(1)(3)	1125 (1)(3)	1115 (1)(3)	
	200	815.5 (1)(2)822.1 (1)(2	1466 (1)(2) 1444 (1)(2)	2025 (1)(3)	2015 (1)(3)	
	400	1195 (1)(1)1201 (1)(1	2244 (1)(2) 2244 (1)(2)	2943 (1)(2)	2871 (1)(2)	
	1000	1795 (1)(1) 1801 (1)(1	4666 (1)(2) 4644 (1)(2)	5343 (1)(2)	5271 (1)(2)	
	N = 1	22.38(2)(4)	78.36(2)(6)	110.8(2)(7)	
。 局.	N = 2	35,12(3)(5)	128.8(3)(8)	192,2(3)(9)	
部失	N = 3	48.78(4)(5)	192,2(4)(9)	299,2(4)	299,2(4)(10)	
急	N = 4	61,68(5)(6)	269,9(5)(10)	436.6(5)	(12)	
	N = 5	78.36(6)(6)	363,6(6)(11)	604.6(6)	(13)	

表中给出Kp值。括弧中的数值是失稳时的 波型 (m)、(n)。(m)在前,(n)在后。(m)中 所给出的是失稳时的主要纵向波数。

参 考 文 献

- (1)M. Baruch, J. Singer. Effect of Eccentrcity of stiffeners on the general instability of stiffened Cylindrical Shells under Hydrostatic pressure, Jour. mech. Engng. Sci. 5, 1963, № 1,23-27.
- [2]J. Singer, M. Baruch, O. Harari. Inversion of the Eccentricity Effect in stiffened cylindrical Shells Buckling under External Pressure, Jour. mech. sci. 8, 1966, № 4, 363—373.
- (3) J. Singer, A Meer, M. Baruch, Buckli-

- ng of cylindrical Panels under Laterel pressure, The Aero, Jour, 73, 1969, 166-172.
- (4) G.J. Simitses, General instability of Eccentically cylindrical panels, Jour. of aircraft, 8, 1971, № 7, 569—575r.
- [5] E.Reissner, On the Variational Theorem in Elastcity, Jour math, phys.29, 1950,90-95.
- [6] S. Timoshenko, Theory of Elastic stability (fist Edition fifth impression), 445-447.
- (7) D.L. Block, Influence of Ring Stiffeners on instability of orthotropic cylinders in Axial compsression, NASA.T. N.D.-2482, 1964.