圆柱壳在静水压力作

用下弹性屈曲的简化计算公式

中国科学院北京力学研究所十二室

圆柱壳在静水压力作用下发生弹性屈曲时,它的临界压力的计算公式最早是米赛斯 (Von Mises)^[1]提出的。文献[2]曾将此公式进行了简化,建议了简化计算公式。文献 [3]将二者进行了比较,表明在壳体较短或较厚时,文献[2]的公式与米赛斯公式结果 有较大的误差。为了缩小简化计算公式的误差,本文建议了一个新的简化计算公式,通 过对一系列的壳体几何参数的计算表明,我们所建议的公式误差较小,可以代替以前的 公式。

1.圆柱壳弹性屈曲的基本方程 圆柱壳屈曲时的应力一位渗关系为:

$$N_{x} = \frac{Eh}{1 - \mu^{2}} \left[\frac{\partial u}{\partial x} + \mu \left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) \right]$$

$$N_{y} = \frac{Eh}{1 - \mu^{2}} \left[\left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) + \mu \frac{\partial u}{\partial x} \right]$$

$$N_{xy} = \frac{Eh}{2(1 + \mu)} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$M_{xy} = \frac{Eh}{2(1 + \mu)} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$M_{yz} = \frac{Eh}{2(1 + \mu)} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$M_{y} = -D \left(\frac{\partial^{2} w}{\partial y^{2}} + \mu \frac{\partial^{2} w}{\partial x^{2}} \right)$$

$$M_{xy} = -D \left(1 - \mu \right) \frac{\partial^{2} w}{\partial x \partial y}$$
(2)

壳体单元体的屈曲平衡方程为:

- 2

$$\frac{\partial N_{x}}{\partial x} + \frac{\partial N_{xv}}{\partial y} = 0, \qquad \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{y}}{\partial y} = 0$$

$$\frac{\partial^{2} M_{x}}{\partial x^{2}} + 2 \frac{\partial^{2} M_{xy}}{\partial x \partial y} + \frac{\partial^{2} M_{y}}{\partial y^{2}} + \frac{N_{y}}{R} + P_{x} \frac{\partial^{2} w}{\partial x^{2}}$$

$$+ 2 P_{xy} \frac{\partial^{2} w}{\partial x \partial y} + P_{y} \frac{\partial^{2} w}{\partial y^{2}} = 0$$
(3)

其中 P_x, P_{xy}, P_y为屈曲前的中面力, 以拉为正。引入应力函数

$$N_x = \frac{\partial^2 \Phi}{\partial y^2}$$
, $N_y = \frac{\partial^2 \Phi}{\partial x^2}$, $N_{xy} = -\frac{\partial^2 \Phi}{\partial x \partial y}$ (4)

则前两个平衡方程满足,代入式(1),有

$$\frac{\partial^2 \Phi}{\partial y^2} = \frac{Eh}{1 - \mu^2} \left[\frac{\partial u}{\partial x} + \mu \left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) \right]$$
$$\frac{\partial^2 \Phi}{\partial x^2} = \frac{Eh}{1 - \mu^2} \left[\left(\frac{\partial v}{\partial y} - \frac{w}{R} \right) + \mu \frac{\partial u}{\partial x} \right]$$
$$\frac{\partial^2 \Phi}{\partial x \partial y} = -\frac{Eh}{2(1 + \mu)} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

式(5)中消去 u, v, 即得协调方程

$$\nabla^2 \nabla^2 \Phi = -\frac{Eh}{R} - \frac{\partial^2 w}{\partial x^2}$$

将式(2)及(4)代入第三个平衡方程,可得

$$D\nabla^{2}\nabla^{2}w = \frac{1}{R} \frac{\partial^{2}\Phi}{\partial x^{2}} + P_{x} \frac{\partial^{2}w}{\partial x^{2}} + 2P_{xy} \frac{\partial^{2}w}{\partial x\partial y} + P_{y} \frac{\partial^{2}w}{\partial y^{2}}$$
(7)

由方程(6), (7)消去 Φ,得出用 w 表示的屈曲方程

$$D\nabla^{2}\nabla^{2}\nabla^{2}\nabla^{2}w + \frac{Eh}{R} \frac{\partial^{4}w}{\partial x^{4}} \approx \nabla^{2}\nabla^{2} \left(P_{x} \frac{\partial^{2}w}{\partial x^{2}} + 2P_{xy} \frac{\partial^{2}w}{\partial x \partial y} + P_{y} \frac{\partial^{2}w}{\partial y^{2}}\right)$$
(8)

2. 屈曲压力的计算公式及其简化 在静水压力作用下,则有

$$P_x = -\frac{PR}{2}$$
, $P_y = -PR$, $P_{xy} = 0$

(9)

(5)

(6)

其中 P 为静水压力。

方程(8)化为

$$D\nabla^{2}\nabla^{2}\nabla^{2}\nabla^{2}w = -\frac{Eh}{R}\frac{\partial^{4}w}{\partial x^{4}} + PR\left[\frac{1}{2}\frac{\partial^{2}}{\partial x^{2}}(\nabla^{4}w) + \frac{\partial^{2}}{\partial y^{2}}(\nabla^{4}w)\right]$$
(10)

20

-7

在简支边界条件下,可设

$$w = \sum_{m=1}^{\infty} \sum_{n=2}^{\infty} w_{mu} \operatorname{Sin} \frac{m\pi x}{L} \operatorname{Sin} \frac{ny}{R}$$
(11)

代入方程(10)以后并化简,可得

$$P = \frac{E(h/R)}{\left(\frac{1}{2}\left(\frac{m\pi R}{L}\right)^{2} + n^{2}\right)} \left\{ \frac{h^{2}}{12(1-\mu^{2})R^{2}} \left(\left(\frac{m\pi R}{L}\right)^{2} + n^{2}\right)^{2} + \frac{\left(\frac{m\pi R}{L}\right)^{4}}{\left(\left(\frac{m\pi R}{L}\right)^{2} + n^{2}\right)^{2}} \right\}$$
(12)

这就是熟知的米赛斯第二公式。在实际计算临界压力 P 时,需计算不同的波数m, n,从中选取最小的 P 值,即为临界压力 P_i,为了便临界压力的计算简化,下面我们从 式(12)出发,推导简化计算公式。

引入记号

$$\varepsilon^{2} = \frac{h^{2}}{12(1-\mu^{2})R^{2}}, \quad \alpha = \frac{m\pi R}{L}, \quad \beta = \frac{\left[\left(\frac{m\pi R}{L}\right)^{2} + n^{2}\right]}{\frac{m\pi R}{L}}$$
 (13)

代入式(12)后可得

$$P = E(\frac{h}{R}) \frac{\alpha}{\beta - \alpha/2} (\epsilon^2 \beta^2 + \frac{1}{\beta^2})$$
(14)

临界压力 P_{er} 相应于式(14) 对 α , β 取极小值。因 $\frac{\partial P}{\partial \beta} = 0$, 故有

$$\varepsilon^2 \beta^4 = 3 + \frac{2\alpha}{\beta - \alpha} \tag{15}$$

作为第一步近似解,可以认为 $\epsilon^2\beta^4 \approx 3$,故

$$\beta = \frac{\sqrt[4]{3}}{\sqrt{\epsilon}}$$
 (16)

将式(16)代入式(14)后并化简,即得

$$P_{cr} = \frac{(4/\sqrt{3})\varepsilon}{\sqrt[4]{3}/\alpha\sqrt{\varepsilon} - \frac{1}{2}} E(\frac{h}{R})$$
(17)

将此式再对 α 求偏微商,可得 $\frac{\partial P}{\partial \alpha}$ >0,所以,P的极小值相应于 α 取最小值, 即 m = 1, $\alpha = \frac{\pi R}{L}$ 。将此 α 代入式(17),并利用式(13)中的 ε 表达式,可以得出 第一步简化计算公式

$$P_{er} = \frac{\frac{2\pi}{3\sqrt{6}} (1-\mu^2)^{-3/4}}{L/R (R/h)^{1/2} - \frac{\pi}{2\sqrt{6}} (1-\mu^2)^{-1/4}} E(\frac{h}{R})^2$$
(18)

若取μ=0.3,上式化为

$$P_{\rm cr} = \frac{0.918}{L/\sqrt{Rh} - 0.657} E(\frac{R}{h})^2$$
(19)

此公式与文献〔2〕中的简化公式基本相同,只是分母中第二项的数值文献〔2〕中为 0.637,而这里是0.657。

由于此公式在壳体较短和较厚时,与式(12)所计算的结果误差较大,所以再将此 公式进行修正。为此,只要设方程(15)中β的解为

$$\beta = \frac{\sqrt[4]{3}}{\sqrt{\varepsilon}} (1 + \delta)$$
(20)

其中 δ 为修正的小量,由方程(15)来确定。将式(20)代入式(15),并取(1+ δ)⁴ \approx 1+4 δ ,可得

$$\delta \approx \frac{\alpha}{6 \frac{\sqrt[4]{3}}{\sqrt{\epsilon}}} = \frac{\alpha}{6} \frac{\sqrt{\epsilon}}{4\sqrt{3}}$$
(21)

将式(20)代入式(14),得

$$P = E\left(\frac{h}{R}\right) \frac{\alpha}{\frac{\sqrt[4]{3}}{\sqrt{\epsilon}}(1+\delta) - \frac{1}{2}\alpha} \left[\epsilon^{2} \frac{\sqrt{3}}{\epsilon}(1+\delta) + \frac{\epsilon}{\sqrt{3}(1+\delta)^{3}}\right]$$

$$= \frac{\frac{4}{\sqrt{3}} \varepsilon \cdot E(\frac{h}{R})}{\frac{\sqrt{3}}{\sqrt{\varepsilon\alpha}} - \frac{1}{2} + \frac{1}{2}\delta}$$
(22)

再将式(21)代入,仍取 $\alpha = \frac{\pi R}{L}$, $\mu = 0.3$,得到

$$P_{\rm cr} = \frac{0.918 E (h/R)^2}{L/\sqrt{Rh} - 0.657 + 0.144 \sqrt{Rh}/L}$$
(23)

此式即为最后的简化计算公式,与式(19)相比可见,仅在分母中增加了第三项。 文献[4]介绍过与米赛斯公式(12)稍有不同的临界压力计算公式,如

为了比较公式(24)与米赛斯公式(12)及简化计算公式(19),(23)之间的误差,我们在较广的壳体几何参数范围 L/R = 0.1,0.15,…,4.5和R/h = 80,90,…,800 内进行了计算,选择了典型的结果列于表1和表2,表中的数值为无量纲屈曲

压力参数值 $\frac{P_{cr}}{E}$ ($\frac{R}{h}$)²。从我们的计算结果的比较表明,公式(24),(12),(23)

在所计算的几何参数范围内,结果相差甚小,最大误差不超过5%,在很多情况下,误 差只有1-2%,而公式(19),在壳体较短时,例如 L/R=0.1时误差较大(参见 表1)。顺便指出,在壳体很长时,L/R≫1,这时屈曲波数 n为2或3,扁壳理论不 再适用,采用米赛斯公式将导致较大的误差,应当用公式(24)进行计算。然而,两个 简化计算公式却与公式(24)的结果仍然很相近。一般而言,我们认为用简化计算公式 (23)来计算临界压力所产生的误差在工程上是允许的,计算上是方便的。 表1 临界压力系数 $\frac{P_{er}}{E} (\frac{R}{h})^2$ 的数值表

第一行为文中公式(24)的结果(括号内为屈曲时的周向波数) 第二行为文中公式(12)的结果(Von Mises公式) 第三行为文中公式(19)的结果(简化计算公式1) 第四行为文中公式(23)的结果(简化计算公式2)

R/I L/R	80	90	100 .	110	120	130	140
0.10	2.390 (10)	2.149 (11)	1.957 (12)	1.800 (13)	1.670 (14)	1.560 (15)	1.466 (16)
	2.390	2.149	1.957	1.800	1.670	1.560	1.466
	3.866	3.147	2.676	2.343	2.094	1.900	1.745
	2.304	2.070	1.885	1.735	1.611	1.506	1.417
0.15	1.194 (12)	1.088 (13)	1.003 (14)	0.9330(15)	0.8741(15)	0.8238(16)	0.7811(17)
	1.194	1.088	1,903	0.9334	0.8744	0.8242	0.7814
	1.341	1.198	1.089	1.002	0.9309	0.8716	0.8212
	1.159	1.059	0.9776	0.9109	0.8549	0.8071	0.7657
0.20	0.7725(13)	0.7095(13)	0.6588(14)	0.6176(14)	0.5813(15)	0.5514(16)	0.524.(16)
	0.7730	0.7099	0.6593	0.6179	0.5817	0.5518	0.5247
	0.8111	0.7401	0.6835	0.6272	0.5985	0.5655	0.5370
	0.7572	0.6974	0.6488	0.6082	0.5739	0.5443	0.5186
0.25	0.5656(12)	0.5227(13)	0.4884(13)	0.4584(14)	0.4341(14)	0.4121(15)	0.3935(15)
	0.5661	0.5232	0.4888	0.4589	0.4345	0.4125	0.3939
	0.5814	0.5354	0.4981	0.4672	0.4410	0.4185	0.3990
	0.5586	0.5171	0.4830	0.4545	0.4301	0.4091	0.3967
0.30	0.4450(12)	0.4134(12)	0.3863(13)	0.3645(13)	0.3453(14)	0.3287(14)	0.3151(15)
	0.4456	0.4139	0.3869	0.3649	0.3458	0.3291	0.3055
	0.4530	0.4194	0.3918	0.3688	0.3491	0.3322	0.3174
	0.4414	0.4099	0.3839	0.3621	0.3434	0.3272	0.3130

24

© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表2(说明同表1)

R/b L/R	350	400	450	500	550	600	650
2.50	0.02017(7)	0.01860(8)	0.01739(8)	0.01652(8)	0.01588(8)	0.01529(9)	0.01455(9)
	0.02030	0.01878	0.01754	0.01663	0.01597	0.01541	0.01465
	0.01991	0.01860	0.01753	0.01662	0.01583	0.01515	0.01455
	0.01991	0.01860	0.01753	0.01662	0.01583	0.01515	0.01455
3.00	0.01645(7)	0.01532(7)	0.01455(7)	0.01403(7)	0.01322(8)	0.01255(8)	0.01201(8)
	0.01664	0.01546	0.01466	0.01411	0.01335	0.01266	0.01211
	0.01655	0.01547	0.01458	0.01382	0801317	0.01261	0.01211
	0.01655	0.01547	0.01457	0.01382	0.01317	0.01260	0.01211
3.50	0.01421(6)	0.01343(7)	0.01245(7)	0.01172(7)	0.01117(7)	0.01075(7)	0.01045(7)
	0.01434	0.01361	0.01260	0.01184	0.01127	0.01084	0.01052
	0.01416	0.01324	0.01242	0.01183	0.01127	0.01079	0.01036
	0.01416	0.01324	0.01247	0.01183	0.01127	0.01079	0.01036
	0.01221(6)	0.01144(6)	0.01093(6)	0.01056(7)	0.009906(6)	0.009387(7).	0.008972(7)
4. 00	0.01240	0.01158	0.01103	0.01067	0.01004	0.009501	0.009071
	0.01238	0.01157	0.01090	0.01034	0.009855	0.009432	0.009060
	0.01238	0.01157	0.01090	0.01034	0.009855	0.009432	0.009060
4.50	0.01112(6)	0.01021(6)	0.009550 (6)	0.009076 (6)	0.008734(6)	0.008491(6)	0.008173(7)
	0.01133	0.01038	0.009690	0.009189	0.008824	0.008560	0.008287
	0.01099	0.01208	0.009683	0.009183	0.008753	0.008378	0.008048
	0.01099	0.01028	0.009683	0.009183	0.008753	0.008378	0.008048
	1 · · ·	1.1.	1	1	1	1	1

参考文献

- Timoshenko, S., Theory of Elastic Stability, Second Edition, McGraw-Hill Book Co., N.Y. (1961), 498.
- Windenburg, D.F. and Trilling, C., Collapse by instability of thin cylindrical shells und erexternal pressure, Trans. ASME, 56 (1934).
- (3) Batdorf , S. B. , A simplified method of elastic stability analysis for thin cylinrical shells , NACA Report 874 (1947) .
- (4) Meck, H. R., A survey of methods of stability analysis of ring-stiffened cylinders under hydrostatic pressure, Trans. ASME, Ser. B. Journal of Engineering for Indusstry, 87, 3 (1965).

Ð