Volume 52 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Wu B Z, Lu C, Liu Z. Nanofabrication through forming: Techniques and mechanics. Advances in Mechanics, 2022, 52(1): 153-179 doi: 10.6052/1000-0992-21-041
Citation: Wu B Z, Lu C, Liu Z. Nanofabrication through forming: Techniques and mechanics. Advances in Mechanics, 2022, 52(1): 153-179 doi: 10.6052/1000-0992-21-041

Nanofabrication through forming: Techniques and mechanics

doi: 10.6052/1000-0992-21-041
More Information
  • Corresponding author: ze.liu@whu.edu.cn
  • Received Date: 2021-09-02
  • Accepted Date: 2021-11-27
  • Available Online: 2021-11-29
  • Publish Date: 2022-03-21
  • Exploiting the plastic deformability of materials to manufacture components is widely applied in automobile, aerospace, consumer electronics, medical equipment, and other fields. With the development trend of device miniaturization, nanofabrication techniques plays a central role in the manufacturing industry. In recent years, extensive research and remarkable progress have been made in developing micro-/nanoforming techniques, and in-depth understanding of the underlying deformation behavior. This paper will review the latest research progress of micro-/nanoforming techniques, focusing on the deformation mechanism and size effect in the micro-/nanoforming of different material classes such as polymers, amorphous alloys/bulk metallic glass, and crystalline metals. Finally, the technical challenges and key mechanical problems of micro-/nanoforming of crystalline metals are prospected.

     

  • loading
  • [1]
    刘泽. 2018. 先进微制造力学. 固体力学学报, 39: 223-247
    [2]
    曲绍兴, 周昊飞. 2014. 新型纳米结构金属材料的力学性能及变形机制. 力学进展, 44: 201409 doi: 10.6052/1000-0992-14-046
    [3]
    吴艳青, 施惠基, 牛莉莎. 2005. 超塑性变形晶界效应研究综述. 力学进展, 35: 525-540 doi: 10.6052/1000-0992-2005-4-J2004-073
    [4]
    Ashby M F. 1972. A first report on deformation-mechanism maps. Acta Metallurgica, 20: 887-897. doi: 10.1016/0001-6160(72)90082-X
    [5]
    Bruinink C M, Péter M, Maury P A, de Boer M, Kuipers L, Huskens J, Reinhoudt D N. 2006. Capillary force lithography: Fabrication of functional polymer templates as versatile tools for nanolithography. Advanced Functional Materials, 16: 1555-1565. doi: 10.1002/adfm.200500629
    [6]
    Buzzi S, Robin F, Callegari V, Löffler J F. 2008. Metal direct nanoimprinting for photonics. Microelectronic Engineering, 85: 419-424. doi: 10.1016/j.mee.2007.08.001
    [7]
    Chantiwas R, Park S, Soper S A, Kim B C, Takayama S, Sunkara V, Hwang H, Cho Y K. 2011. Flexible fabrication and applications of polymer nanochannels and nanoslits. Chemical Society Reviews, 40: 3677-3702. doi: 10.1039/c0cs00138d
    [8]
    Chao C Y, Guo L J. 2004. Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators. Applied Physics Letters, 84: 2479-2481. doi: 10.1063/1.1691492
    [9]
    Chou S Y, Krauss P R. 1997. Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering, 35: 237-240. doi: 10.1016/S0167-9317(96)00097-4
    [10]
    Chou S Y, Krauss P R, Renstrom P J. 1995. Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 67: 3114-3116. doi: 10.1063/1.114851
    [11]
    Chou S Y, Krauss P R, Renstrom P J. 1996. Imprint lithography with 25-nanometer resolution. Science, 272: 85-87. doi: 10.1126/science.272.5258.85
    [12]
    Chou S Y, Xia Q. 2008. Improved nanofabrication through guided transient liquefaction. Nature Nanotechnology, 3: 295-300. doi: 10.1038/nnano.2008.95
    [13]
    Coble R L. 1963. A model for boundary diffusion controlled creep in polycrystalline materials. Journal of Applied Physics, 34: 1679-1682. doi: 10.1063/1.1702656
    [14]
    Cross, G L W. 2006. The production of nanostructures by mechanical forming. Journal of Physics D:Applied Physics, 39: R363-R386. doi: 10.1088/0022-3727/39/20/R01
    [15]
    Cross, G L W, Connell B O, Pethica J B, Oliver W. 2003. Mechanical aspects of nanoimprint patterning. 2003 Third IEEE Conference on Nanotechnology, IEEE-NANO, 492: 494-497.
    [16]
    Csikor F F, Motz C, Weygand D, Zaiser M, Zapperi S. 2007. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science, 318: 251-254. doi: 10.1126/science.1143719
    [17]
    Cui B, Keimel C, Chou S Y. 2009. Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting. Nanotechnology, 21: 045303.
    [18]
    Debenedetti P G, Stillinger F H. 2001. Supercooled liquids and the glass transition. Nature, 410: 259-267. doi: 10.1038/35065704
    [19]
    Ding S, Liu Y, Li Y, Liu Z, Sohn S, Walker F J, Schroers J. 2014. Combinatorial development of bulk metallic glasses. Nature Materials, 13: 494-500. doi: 10.1038/nmat3939
    [20]
    Ding Y, Ro H W, Douglas J F, Jones R L, Hine D R, Karim A, Soles C L. 2007. Polymer viscoelasticity and residual stress effects on nanoimprint lithography. Advanced Materials, 19: 1377-1382. doi: 10.1002/adma.200601998
    [21]
    Engel U, Eckstein R. 2002. Microforming—from basic research to its realization. Journal of Materials Processing Technology, 9: 35-44.
    [22]
    Frost H J, Ashby M F. 1982. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Oxford, UK: Pergamon Press
    [23]
    Fu M W, Chan W L. 2013. A review on the state-of-the-art microforming technologies. The International Journal of Advanced Manufacturing Technology, 67: 2411-2437. doi: 10.1007/s00170-012-4661-7
    [24]
    Gao H, Hu Y, Xuan Y, Li J, Yang Y, Martinez R V, Li C, Luo J, Qi M, Cheng G J. 2014. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science, 346: 1352-1356. doi: 10.1126/science.1260139
    [25]
    Ge J, Ding B, Hou S, Luo M, Nam D, Duan H, Gao H, Lam, Y C, Li H. 2021. Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 12: 3146. doi: 10.1038/s41467-021-23427-y
    [26]
    Greer J R, De Hosson J T M. 2011. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 56: 654-724. doi: 10.1016/j.pmatsci.2011.01.005
    [27]
    Guo L J. 2004. Recent progress in nanoimprint technology and its applications. Journal of Physics D:Applied Physics, 37: R123-R141. doi: 10.1088/0022-3727/37/11/R01
    [28]
    Han Q, Yi X. 2021. A unified mechanistic model for Hall–Petch and inverse Hall–Petch relations of nanocrystalline metals based on intragranular dislocation storage. Journal of the Mechanics and Physics of Solids, 154: 104530. doi: 10.1016/j.jmps.2021.104530
    [29]
    Herring C. 1950. Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics, 21: 437-445. doi: 10.1063/1.1699681
    [30]
    Heyderman L J, Schift H, David C, Gobrecht J, Schweizer T. 2000. Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Engineering, 54: 229-245. doi: 10.1016/S0167-9317(00)00414-7
    [31]
    Hirai Y, Fujiwara M, Okuno T, Tanaka Y, Endo M, Irie S, Nakagawa K, Sasago M. 2001. Study of the resist deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 19: 2811-2815.
    [32]
    Hirai Y, Konishi T, Yoshikawa T, Yoshida S. 2004. Simulation and experimental study of polymer deformation in nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22: 3288-3293.
    [33]
    Hou C, Li Z, Huang M, Ouyang C. 2009. Cyclic hardening behavior of polycrystals with penetrable grain boundaries: Two-dimensional discrete dislocation dynamics simulation. Acta Mechanica Solida Sinica, 22: 295-306. doi: 10.1016/S0894-9166(09)60278-0
    [34]
    Hsu Q C, Wu C D, Fang T H. 2005. Studies on nanoimprint process parameters of copper by molecular dynamics analysis. Computational Materials Science, 34: 314-322. doi: 10.1016/j.commatsci.2005.01.004
    [35]
    Huang Y J, Shen J, Sun J F. 2007. Bulk metallic glasses: Smaller is softer. Applied Physics Letters, 90: 081919. doi: 10.1063/1.2696502
    [36]
    Jeong J H., Choi Y S, Shin Y J, Lee J J, Park K T, Lee E S, Lee S R. 2002. Flow behavior at the embossing stage of nanoimprint lithography. Fibers and Polymers, 3: 113. doi: 10.1007/BF02892627
    [37]
    Jones R L, Hu T, Soles C L, Lin E K, Reano R M, Pang S W, Casa D M. 2006. Real-time shape evolution of nanoimprinted polymer structures during thermal annealing. Nano Letters, 6: 1723-1728. doi: 10.1021/nl061086i
    [38]
    Juang Y J, Lee L J, Koelling K W. 2002. Hot embossing in microfabrication. Part II: Rheological characterization and process analysis. Polymer Engineering & Science, 42: 551-566.
    [39]
    Kawamura Y, Kato H, Inoue A, Masumoto T. 1995. Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state. Applied Physics Letters, 67: 2008-2010. doi: 10.1063/1.114769
    [40]
    Kim D, Lu W. 2006. Creep flow, diffusion, and electromigration in small scale interconnects. Journal of the Mechanics and Physics of Solids, 54: 2554-2568. doi: 10.1016/j.jmps.2006.06.001
    [41]
    Kumar G, Desai A, Schroers J. 2011. Bulk metallic glass: The smaller the better. Advanced Materials, 23: 461-476. doi: 10.1002/adma.201002148
    [42]
    Kumar G, Schroers J. 2008. Write and erase mechanisms for bulk metallic glass. Applied Physics Letters, 92: 031901. doi: 10.1063/1.2834712
    [43]
    Kumar G, Staffier P A, Blawzdziewicz J, Schwarz U D, Schroers J. 2010. Atomically smooth surfaces through thermoplastic forming of metallic glass. Applied Physics Letters, 97: 101907. doi: 10.1063/1.3485298
    [44]
    Kumar G, Tang H X, Schroers J, 2009. Nanomoulding with amorphous metals. Nature, 457: 868-872.
    [45]
    Langdon T G. 1970. Grain boundary sliding as a deformation mechanism during creep. The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics, 22: 689-700. doi: 10.1080/14786437008220939
    [46]
    Li N, Chen Y, Jiang M Q, Li D J, He J J, Wu Y, Liu L. 2013. A thermoplastic forming map of a Zr-based bulk metallic glass. Acta Materialia, 61: 1921-1931. doi: 10.1016/j.actamat.2012.12.013
    [47]
    Li Z, Huang Z, Sun F, Li X, Ma J. 2020. Forming of metallic glasses: Mechanisms and processes. Materials Today Advances, 7: 100077. doi: 10.1016/j.mtadv.2020.100077
    [48]
    Liu N, Xie Y, Liu G, Sohn S, Raj A, Han G, Wu B, Cha J J, Liu Z, Schroers J. 2020. General nanomolding of ordered phases. Physical Review Letters, 124: 036102. doi: 10.1103/PhysRevLett.124.036102
    [49]
    Liu Z. 2017. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 8.
    [50]
    Liu Z. 2019. Investigation of temperature and feature size effects on deformation of metals by superplastic nanomolding. Physical Review Letters, 122: 016101. doi: 10.1103/PhysRevLett.122.016101
    [51]
    Liu Z, Han G, Sohn S, Liu N, Schroers J. 2019. Nanomolding of crystalline metals: The smaller the easier. Physical Review Letters, 122: 036101. doi: 10.1103/PhysRevLett.122.036101
    [52]
    Liu Z, Schroers J. 2015. General nanomoulding with bulk metallic glasses. Nanotechnology, 26: 145301. doi: 10.1088/0957-4484/26/14/145301
    [53]
    Ma J, Liang X, Wu X, Liu Z, Gong F. 2015. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating. Scientific Reports, 5: 17844. doi: 10.1038/srep17844
    [54]
    Martinez R, Kumar, G, Schroers J. 2008. Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Materialia, 59: 187-190. doi: 10.1016/j.scriptamat.2008.03.008
    [55]
    Mukherjee A K, Bird J E, Dorn J E. 1969. Experimental correlations for high-temperature creep. Trans. American Society for Metals 62: 155-179.
    [56]
    Nishiyama N, Inoue A. 1999. Glass transition behavior and viscous flow working of Pd40Cu30Ni10P20 amorphous alloy. Materials Transactions, JIM, 40: 64-71. doi: 10.2320/matertrans1989.40.64
    [57]
    Packard C E, Schroers J, Schuh C A. 2009. In situ measurements of surface tension-driven shape recovery in a metallic glass. Scripta Materialia, 60: 1145-1148. doi: 10.1016/j.scriptamat.2009.02.056
    [58]
    Patterson J P, Jones D R H. 1978. Moulding of a metallic glass. Materials Research Bulletin, 13: 583-585. doi: 10.1016/0025-5408(78)90182-4
    [59]
    Pei Q X, Lu C, Liu Z S, Lam K Y, 2007. Molecular dynamics study on the nanoimprint of copper. Journal of Physics D: Applied Physics, 40: 4928-4935.
    [60]
    Raj S V, Langdon T G. 1989. Creep behavior of copper at intermediate temperatures—I. Mechanical characteristics. Acta Metallurgica, 37: 843-852. doi: 10.1016/0001-6160(89)90011-4
    [61]
    Rowland H D, King W P. 2004. Polymer deformation and filling modes during microembossing. Journal of Micromechanics and Microengineering, 14: 1625-1632. doi: 10.1088/0960-1317/14/12/005
    [62]
    Rowland H D, King W P, Pethica J B, Cross G L W. 2008. Molecular confinement accelerates deformation of entangled polymers during squeeze flow. Science, 322: 720-724. doi: 10.1126/science.1157945
    [63]
    Rowland H D, Sun A C, Schunk P R, King W P. 2005. Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography. Journal of Micromechanics and Microengineering, 15: 2414-2425. doi: 10.1088/0960-1317/15/12/025
    [64]
    Saotome Y, Zhang T, Inoue A. 1998. Microforming of mems parts with amorphous alloys. MRS Proceedings, 554: 385. doi: 10.1557/PROC-554-385
    [65]
    Schall P, Cohen I, Weitz D A, Spaepen F. 2006. Visualizing dislocation nucleation by indenting colloidal crystals. Nature, 440: 319-323. doi: 10.1038/nature04557
    [66]
    Scheer H C, Schulz H. 2001. A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectronic Engineering, 56: 311-332. doi: 10.1016/S0167-9317(01)00569-X
    [67]
    Schroers J. 2005. The superplastic forming of bulk metallic glasses. JOM, 57: 35-39.
    [68]
    Schroers J. 2008. On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia, 56: 471-478. doi: 10.1016/j.actamat.2007.10.008
    [69]
    Schroers J. 2010. Processing of bulk metallic glass. Advanced Materials, 22: 1566-1597. doi: 10.1002/adma.200902776
    [70]
    Schroers J, Hodges T M, Kumar G, Raman H, Barnes A J, Pham Q, Waniuk T A. 2011. Thermoplastic blow molding of metals. Materials Today, 14: 14-19. doi: 10.1016/S1369-7021(11)70018-9
    [71]
    Schroers J, Lohwongwatana B, Johnson W L, Peker A. 2007a. Precious bulk metallic glasses for jewelry applications. Materials Science and Engineering:A, 449-451: 235-238. doi: 10.1016/j.msea.2006.02.301
    [72]
    Schroers J, Paton N. 2006. Amorphous metalalloys. Advanced Materials & Processes, 164: 61-63.
    [73]
    Schroers J, Pham Q, Desai A. 2007b. Thermoplastic forming of bulk metallic glass—A technology for MEMS and microstructure fabrication. Journal of Microelectromechanical Systems, 16: 240-247. doi: 10.1109/JMEMS.0007.892889
    [74]
    Schroers J, Pham Q, Peker A, Paton N, Curtis R V. 2007c. Blow molding of bulk metallic glass. Scripta Materialia, 57: 341-344. doi: 10.1016/j.scriptamat.2007.04.033
    [75]
    Schroers J, Veazey C, Demetriou M D, Johnson W L. 2004. Synthesis method for amorphous metallic foam. Journal of Applied Physics, 96: 7723-7730. doi: 10.1063/1.1818355
    [76]
    Schulz, H, Wissen M, Bogdanski N, Scheer H C, Mattes K, Friedrich C. 2006. Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography. Microelectronic Engineering 83: 259-280.
    [77]
    Shao Z, Gopinadhan M, Kumar G, Mukherjee S, Liu Y, O'Hern C S, Schroers J, Osuji C O. 2013. Size-dependent viscosity in the super-cooled liquid state of a bulk metallic glass. Applied Physics Letters, 102: 221901. doi: 10.1063/1.4808342
    [78]
    Soejima H, Nishiyama N, Takehisa H, Shimanuki M, Inoue A. 2005. Viscous flow forming of Zr-based bulk metallic glasses for industrial products. Journal of Metastable and Nanocrystalline Materials, 24-25: 531-534. doi: 10.4028/www.scientific.net/JMNM.24-25.531
    [79]
    Sordelet D J, Rozhkova E, Huang P, Wheelock P B, Besser M F, Kramer M J, Calvo-Dahlborg M, Dahlborg U. 2002. Synthesis of Cu47Ti34Zr11Ni8bulk metallic glass by warm extrusion of gas atomized powders. Journal of Materials Research, 17: 186-198. doi: 10.1557/JMR.2002.0028
    [80]
    Stoykovich M P, Cao H B, Yoshimoto K, Ocola L E, Nealey P F. 2003. Deformation of nanoscopic polymer structures in response to well-defined capillary forces. Advanced Materials, 15: 1180-1184. doi: 10.1002/adma.200305059
    [81]
    Suh K Y, Kim Y S, Lee H H. 2001. Capillary force lithography. Advanced Materials, 13: 1386-1389. doi: 10.1002/1521-4095(200109)13:18<1386::AID-ADMA1386>3.0.CO;2-X
    [82]
    Suh K Y, Lee H H. 2002. Capillary force lithography: Large-area patterning, self-organization, and anisotropic dewetting. Advanced Functional Materials, 12: 405-413. doi: 10.1002/1616-3028(20020618)12:6/7<405::AID-ADFM405>3.0.CO;2-1
    [83]
    Takagi H, Takahashi M, Maeda R, Onishi Y, Iriye Y, Iwasaki T, Hirai Y. 2008. Analysis of time dependent polymer deformation based on a viscoelastic model in thermal imprint process. Microelectronic Engineering, 85: 902-906. doi: 10.1016/j.mee.2008.01.018
    [84]
    Telford M. 2004. The case for bulk metallic glass. Materials today, 7: 36-43.
    [85]
    Uchic M D, Dimiduk D M, Florando J N, Nix W D. 2004. Sample dimensions influence strength and crystal plasticity. Science, 305: 986-989. doi: 10.1126/science.1098993
    [86]
    Vollertsen F, Hu Z, Schulze Niehoff H, Theiler C. 2004. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology, 151: 70-79. doi: 10.1016/j.jmatprotec.2004.04.266
    [87]
    Vollertsen F, Schulze Niehoff H, Hu Z. 2006. State of the art in micro forming. International Journal of Machine Tools and Manufacture, 46: 1172-1179. doi: 10.1016/j.ijmachtools.2006.01.033
    [88]
    Voronov R S, Papavassiliou D V, Lee L L. 2006. Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length. The Journal of Chemical Physics, 124: 204701. doi: 10.1063/1.2194019
    [89]
    Wei Y, Bower A F, Gao H. 2008. Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. Journal of the Mechanics and Physics of Solids, 56: 1460-1483. doi: 10.1016/j.jmps.2007.08.007
    [90]
    Williams M L, Landel R F, Ferry J D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 77: 3701-3707. doi: 10.1021/ja01619a008
    [91]
    Williams S S, Hampton M J, Gowrishankar V, Ding I K, Templeton J L, Samulski E T, DeSimone J M, McGehee M D. 2008. Nanostructured titania−polymer photovoltaic devices made using PFPE-based nanomolding techniques. Chemistry of Materials, 20: 5229-5234. doi: 10.1021/cm800729q
    [92]
    Wu X L, Liao X Z, Srinivasan S G, Zhou F, Lavernia E J, Valiev R Z, Zhu Y T. 2008. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Physical Review Letters, 100: 095701. doi: 10.1103/PhysRevLett.100.095701
    [93]
    Xu L, Shui L, Zhang Y, Peng Q, Xue L, Liu Z. 2020. Robust and reproducible fabrication of large area aluminum (Al) micro/nanorods arrays by superplastic nanomolding at room temperature. Applied Physics Express, 13: 036503. doi: 10.35848/1882-0786/ab75b3
    [94]
    Yamakov V, Wolf D, Salazar M, Phillpot S R, Gleiter H. 2001. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia, 49: 2713-2722. doi: 10.1016/S1359-6454(01)00167-7
    [95]
    Zhang Y, Wu B, Gao E, Shui L, Liu Z. 2021. Observation of speeding growth of metal nanowires by ultra-low frequency micro-vibration assisted superplastic nanomolding. Materials Letters, 283: 128890. doi: 10.1016/j.matlet.2020.128890
    [96]
    Zhao X M, Xia Y, Whitesides G M. 1997. Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, 7: 1069-1074. doi: 10.1039/a700145b
    [97]
    Zhu T, Gao H. 2012. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scripta Materialia, 66: 843-848. doi: 10.1016/j.scriptamat.2012.01.031
    [98]
    Zhu T, Li J, Samanta A, Leach A, Gall K. 2008. Temperature and strain-rate dependence of surface dislocation nucleation. Physical Review Letters, 100: 025502. doi: 10.1103/PhysRevLett.100.025502
    [99]
    Zhu Y T, Liao X Z, Wu X L, Narayan J. 2013. Grain size effect on deformation twinning and detwinning. Journal of Materials Science, 48: 4467-4475. doi: 10.1007/s10853-013-7140-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (1408) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return