Volume 46 Issue 1
May  2016
Turn off MathJax
Article Contents
SONG Hongwei, HUANG Chenguangy. Progress in thermal-mechantical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 201610. doi: 10.6052/1000-0992-15-025
Citation: SONG Hongwei, HUANG Chenguangy. Progress in thermal-mechantical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 201610. doi: 10.6052/1000-0992-15-025

Progress in thermal-mechantical effects induced by laser

doi: 10.6052/1000-0992-15-025
More Information
  • Corresponding author: HUANG Chenguangy
  • Received Date: 2015-05-29
  • Rev Recd Date: 2016-04-21
  • Publish Date: 2016-05-20
  • In this paper we review several recent progresses in laser-induced thermal-mechanical effects, including constitutive model under high temperature and high temperature rise rate, laser damage behaviors of typical structures like thin plate and cylinders, and laser damage behaviors of multi-layered materials. We describe analytical model and mechanism study on the laser damage behavior including phase transformation and ablation, numerical modeling on the thermal-fluid-structure coupling behavior, and the shock effect and damage behavior induced by short pulse laser.

     

  • loading
  • [1]
    陈博, 万红, 穆景阳, 白书欣. 2008. 重频激光作用下碳纤维/环氧树脂复合材料热损伤规律. 强激光与粒子束, 20: 547-551 (Chen B, Wan H, Mu J Y, Bai S X. 2008. Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser. High Power Laser and Particle Beams, 20: 547-551).
    [2]
    陈海韬, 夏生杰, 李旭昌, 韩金虎, 姜在英, 靳刚. 1992. 受拉铝板对连续波CO2 激光的热机械响应. 强激光与粒子束, 4: 141-147 (Chen H T, Xia S J, Li X C, Han J H, Jiang Z Y, Jin G. 1992. Themomechanical response of Al plates under tension to CW CO2 laser irradiation. High Power Laser and Particle Beams, 4: 141-147).
    [3]
    陈海韬, 夏生杰, 李旭昌, 姜在英, 韩金虎, 吴坚. 1993. 强激光照射受拉铝板的破坏过程. 力学学报, 25: 16-22 (Chen H T, Xia S J, Li X C, Jiang Z Y, Han J H, Wu J. 1993. The damage process of a tensile Aluminum plate under the intense laser radiation. Acta Mechnica Sinica, 25: 16-22).
    [4]
    陈敏孙, 江厚满. 2011. 切向空气气流对激光烧蚀碳纤维复合材料过程的影响. 光学精密工程, 19: 482- 486 (Chen M S, Jiang H M. 2011. Influence of tangential airflows on process of laser ablating carbon-fiber composites. Optics and Precision Engineering, 19: 482-486).
    [5]
    陈敏孙, 江厚满, 刘泽金. 2010. 切向气流对激光辐照树脂基复合材料的影响. 强激光与粒子束, 22: 2848-2852 (Chen M S, Jiang H M, Liu Z J. 2010. E®ect of tangential airflow on resin composite irradiated by laser. High Power Laser and Particle Beams, 22: 2848-2852).
    [6]
    陈敏孙, 江厚满, 刘泽金. 2011. 切向空气气流对激光辐照碳纤维复合材料的影响. 国防科技大学学报, 33: 23-27 (Chen M S, Jiang H M, Liu Z J. 2011. Influence of tangential airflow on laser irradiating carbon-fiber composite. Journal of National Univeristy of Defense Technology, 33: 23-27).
    [7]
    陈小伟, 陈裕泽, 余同希, 尹益辉. 1998. 热力联合作用弹性薄圆板的弯曲与屈曲. 强激光与粒子束, 10: 531-536 (Chen X W, Chen Y Z, Yu T X, Yin Y H. 1998. Non-linear bending, buckling and failure of elastic thin circular plates under combined thermal and force loading. High Power Laser and Particle Beams, 10: 531-536).
    [8]
    陈裕泽. 1996. 低功率密度激光辐照结构的热动力失效. 爆炸与冲击, 16: 149-157 (Chen Y Z. 1996. Thermodynamic failure of the structures irradiated by laser beam with low power density. Explosion and Shock Waves, 16: 149-157).
    [9]
    董永香, 黄晨光, 段祝平. 2005. 多层介质对应力波传播特性影响分析. 高压物理学报, 19: 59-65 (Dong Y X, Huang C G, Duan Z P. 2005. Analysis on the influence of multi-layered media on stress wave propagation. Chinese Journal of High Pressure Physics, 19: 59-65).
    [10]
    段占元. 1997. 有限差分-有限元杂交算法及其应用. [博士论文]. 合肥: 中国科学技术大学(Duan Z Y. 1997. Algorithm and application of hybrid finite di®erence and finite element. [PhD Thesis]. Hefei: University of Science and Technology of China).
    [11]
    耿湘人, 张涵信, 沈清, 高树椿. 2002. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究. 空气动力学学报, 20: 422-427 (Geng X R, Zhang H X, Shen Q, Gao S C. 2002. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures. Acta Aerodynamica Sinica, 20: 422-427).
    [12]
    郭亚林, 梁国正, 丘哲明, 邓杰. 2006. 激光参数对碳纤维复合材料质量烧蚀率的影响. 复合材料学报, 23: 84-88 (Guo Y L, Liang G Z, Qiu Z M, Deng J. 2006. E®ect of laser parameters on mass ablative rate of carbon fiber reinforced composite. Acta Materiae Compositae Sinica, 23: 84-88).
    [13]
    胡鹏, 陈发良. 2011. 高速气流中激光加热平板数值模拟与分析. 强激光与粒子束, 23: 1935-1939 (Hu P, Chen F L. 2011. Numerical simulation of plane target in airflow under laser irradiation. High Power Laser and Particle Beams, 23: 1935-1939).
    [14]
    黄晨光, 陈思颖, 段祝平. 2003. 强激光诱导结构变形的量纲分析和相似准则. 爆炸与冲击, 23: 532-536 (Huang C G, Chen S Y, Duan Z P. 2003. Dimensionless analysis and similarity criterion of high power laser induced structrual deformation. Explosion and Shock Waves, 23: 532-536). 470 力学进展第46 卷: 201610
    [15]
    黄晨光, 陈思颖, 段祝平. 2004. 激光辐照下充压圆筒变形的相似律问题. 强激光与粒子束, 16: 962-966 (Huang C G, Chen S Y, Duan Z P. 2004. Similarity criterion about deformation and failure of pressurized cylinder subjected to laser irradiation. High Power Laser and Particle Beams, 16: 962-966).
    [16]
    黄晨光, 段祝平. 2002. 激光辐照下圆薄板的动态屈曲研究. 应用数学和力学, 23: 667-672 (Huang C G, Duan Z P. 2002. Studies on the dynamic buckling of circular plate irradiated by laser beam. Applied Mathematics and Mechanics, 23: 667-672).
    [17]
    黄晨光, 段祝平, 吴承康. 2002. 热喷涂构件中残余应力的理论分析. 工程力学, 19: 135-140 (Huang C G, Duan Z P, Wu C K. 2002. A new analytical model for residual stresses due to thermal surface coating. Engineering Mechanics, 19: 135-140).
    [18]
    黄亿辉. 2015. 强激光辐照典型目标多场耦合效应的实验与数值模拟研究. [博士论文] 北京: 中国科学院力学研究所(Huang Y H. 2015. Experimental and numerical studies on the multi-field coupling e®ect of typical target irradiated by high power laser. [PhD Thesis]. Beijing: Insitute of Mechanics, Chinese Academy of Sciences).
    [19]
    黄亿辉, 宋宏伟, 黄晨光. 2013. 超声速气流下强激光辐照靶体失效数值模拟. 强激光与粒子束, 25: 2229-2234 (Huang Y H, Song H W, Huang C G. 2013. Numerical siumulation of failure of target irradiated by high-power laser subjected to supersonic airflow. High Power Laser and Particle Beams, 25: 2229-2234).
    [20]
    黄亿辉, 袁武, 宋宏伟, 黄晨光. 2014. CW 激光辐照薄板热力响应全场测量. 强激光与粒子束, 26: 111012-1-5 (Huang Y H, Yuan W, Song H W, Huang C G. 2014. Full-field measurement of thin plate irradiated by CW laser. High Power Laser and Particle Beams, 26: 111012-1-5).
    [21]
    李海燕, 李四新, 罗万清, 柳森. 2010. 高超声速飞行器高温流场对激光武器毁伤效应的影响. 强激光与粒子束, 22: 1192-1196 (Li H Y, Li S X, Luo W Q, Liu S. 2010. E®ects of high temperature flowfields around hypersonic air vehicles on laser lethality. High Power Laser and Particle Beams, 22: 1192-1196).
    [22]
    李清源. 2012. 强激光对飞行器的毁伤效应. 北京: 中国宇航出版社(Li Q Y. 2012. Damage E®ects of Vehicles Irradiated by Intense Lasers. Beijing: China Astronautic Publishing House).
    [23]
    李雅娣, 吴平, 马喜梅, 南宝江, 平丽. 2010. 碳纤维/环氧树脂复合材料层板连续激光烧蚀试验研究. 纤维复合材料, 21: 21-24 (Li Y D, Wu P, Ma X M, Nan B J, Ping L. 2010. The tests of carbonfiber/epoxy laminated composites under continuous laser irradiation. Fiber Composites, 21: 21-24).
    [24]
    凌晨, 宋宏伟, 黄晨光. 2014. 激光冲击下靶体厚度对其动态力学行为的影响. 第十届全国爆炸力学学术会议, 贵阳(Ling C, Song H W, Huang C G. 2014. The influence of the thickness of targets on the dynamic behavior of them under laser shock. 10th National Conference on Explosion, Guiyang).
    [25]
    刘淑英. 1999. YAG 连续激光对玻璃钢材料的破坏效应研究. 红外与激光工程, 28: 52-57 (Liu S Y. 1999. Research of destructive e®ect produced by YAG continuous laser acting on fiberglass material. Infrared and Laser Engineering, 28: 52-57).
    [26]
    漆海滨, 李文煜. 1999. 强激光束对运动物体的加热. 红外与激光工程, 28: 33-35 (Qi H B, Li W Y. 1999. High-power laser beam heating up the moving body. Infrared and Laser Engineering, 28: 33-35).
    [27]
    强希文. 2000. 强激光与靶材相互作用的力学效应研究. 激光与红外, 30: 141-144 (Qiang X W. 2000. Investigation on mechanical e®ects of laser-targets interaction. Laser and Infrared, 30: 141-144).
    [28]
    沈敏敬, 龙连春, 陈兴华, 阳志光. 2008. 激光辐照下圆柱壳结构的稳定性分析. 计算力学学报, 25sup: 124-128 (Shen M J, Long L C, Chen X H, Yang Z G. 2008. Buckling analysis of cylindrical shell under laser irradiation. Chinese Journal of Computational Mechanics, 25sup: 124-128).
    [29]
    石卫波, 李四新, 肖雨, 柳森. 2010. 气动加热对高超声速飞行器激光毁伤效应影响. 强激光与粒子束, 22: 1215-1218 (Shi W B, Li S X, Xiao Y, Liu S. 2010. Laser lethality of hypersonic vehicles under aero-heating. High Power Laser and Particle Beams, 22: 1215-1218).
    [30]
    孙承纬. 2002. 激光辐照效应. 北京: 国防工业出版社(Sun C W. 2002. Laser Irradiation E®ects. Beijing: National Defend Industry Press).
    [31]
    谭福利, 赵剑衡, 李永池. 2004. 激光辐照下充压柱壳热断裂的可能性分析. 强激光与粒子束, 16: 977- 980 (Tan F L, Zhao J H, Li Y C. 2004. Probability analysis on thermal fracture of the internally pressured cylinder shell irradiated by laser. High Power Laser and Particle Beams, 16: 977-980).
    [32]
    唐志平. 2001. 激光辐照下充压柱壳失效的三维离散元模拟. 爆炸与冲击, 21: 1-7 (Tang Z P. 2001. 3D Discrete meso-element simulation of failure processes for cylindrical shells subjected to inner pressure and surface laser irradiation. Explosion and Shock Waves, 21: 1-7).
    [33]
    童慧峰, 唐志平. 2008. 激光与固体靶面烧蚀等离子体的能量耦合计算. 高压物理学报, 26: 142-148 (Tong H F, Tang Z P. 2008. Simulation of energy coupling of laser and ablated plasma at target surface. Chinese Journal of High Pressure Physics, 26: 142-148).
    [34]
    万红, 胡凯为, 穆景阳, 白书欣. 2008. 树脂基复合材料在连续激光作用下的损伤. 强激光与粒子束, 20: 6-10 (Wan H, Hu K W, Mu J Y, Bai S X. 2008. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser. High Power Laser and Particle Beams, 20: 6-10).
    [35]
    汪学锋, 李锋, 周炜, 冷文浩, 汤家力. 2009. 流固耦合网格插值方法研究. 船舶力学, 13: 571-578 (Wang X F, Li F, Zhou W, Leng W H, Tang J L. 2009. Research on grid interpolation method of fluid-structure coupling. Journal of Ship Mechanics, 13: 571-578).
    [36]
    王吉, 王肖钧, 王峰, 赵凯. 2005. 强激光辐照下预载柱壳热屈曲失效的数值分析. 高压物理学报, 19: 151-158 (Wang J, Wang X J, Wang F, Zhao K. 2005. Numerical simulations on buckling failure of preloaded cylindrical shell irradiated by high power laser beam. Chinese Journal of High Pressure Physics, 19: 151-158).
    [37]
    王立君, 刘泽金, 姜宗福, 赵伊君, 唐荣奇. 1996. 3.8 m 激光对玻璃钢的碳化破坏研究- 玻璃钢的激光碳化破坏研究之二. 红外与激光工程, 25: 21-25 (Wang L J, Liu Z J, Jiang Z F, ZhaoY J, Tang R Q. 1996. Experimental study on 3.8 m laser caused fiberglass epoxy carbonization-The second report on laser damage to fiberglass epoxy. Infrared and Laser Engineering, 25: 21-25).
    [38]
    王立君, 漆海滨, 刘泽金, 姜宗福, 赵伊君, 唐荣奇. 1996. 玻璃钢的二氧化碳激光碳化实验研究-玻璃钢的激光碳化破破坏研究之一. 红外与激光工程, 25: 48-52 (Wang L J, Qi H B, Liu Z J, Jiang Z F, ZhaoY J, Tang R Q. 1996. Experimental study on CO2 laser caused fiberglass epoxy carbonization-Thefirst report on laser damage to fiberglass epoxy. Infrared and Laser Engineering, 25: 48-52).
    [39]
    王伟平, 唐小松, 桂元珍, 赵龙, 廉敬阳. 2001. 激光对旋转金属壳的加热研究. 应用激光, 21: 319-321 (Wang W P, Tang X S, Gui Y Z, Zhao L, Lian J Y. 2001. Laser thermal e®ects on rotating metal shell. Applied Laser, 21: 319-321).
    [40]
    王岩. 1994. 计算流体力学中有限元的强间断处理. 空气动力学学报, 12: 22-29 (Wang Y. 1994. The computation of FEM with strong diseontinuity in CFD. Acta Aerodynimica Sinica, 12: 22-29).
    [41]
    王以忠. 2007. 激光对碳纤维增强环氧树脂基复合材料的辐照效应. [硕士论文]. 长沙: 国防科学技术大学(Wang Y Z. 2007. E®cts pf Laser Irradiation to Carbon Fiber Reinforced Epoxy Resin Composites.[Master Thesis]. Changsha: National Univeristy of Defense Technology).
    [42]
    吴承康. 1995. 等离子体材料加工. 航空制造技术, (S1): 11-12 (Wu C K. 1995. Material processing by plasma. Aeronautical Manufacturing Technology, (S1): 11-12).
    [43]
    吴小翠, 王一伟, 程欣欣, 黄晨光, 吴臣武. 2014. 超声速流场条件下激光辐照耦合效应数值模拟. 强激光与粒子束, 26: 091010-1-7 (Wu X C, Wang Y W, Cheng X X, Huang C G, Wu C W. 2014. Numerical simulation on coupling e®ect of laser irradaition in supersonic flow. High Power Laser and Particle Beams, 26: 091010-1-7). 472 力学进展第46 卷: 201610
    [44]
    袁红, 谭福利, 王伟平, 孙承纬. 2006. 连续和重复频率激光对旋转壳体加热效率的数值模拟. 强激光与粒子束, 18: 1975-1978 (Yuan H, Tan F L, Wang W P, Sun C W. 2006. Numerical simulation of heating e±ciency comparison of CW laser and repeated frequency laser irradiating rotational shells. High Power Laser and Particle Beams, 18: 1975-1978).
    [45]
    袁红, 赵剑衡, 谭福利, 孙承纬. 2005. 激光辐照下旋转柱壳温度场的数值模拟. 强激光与粒子束, 17: 681-684 (Yuan H, Zhao J H, Tan F L, Sun C W. 2005. Numerical simulation of the temperature distribution on a rotational cylindrical shell under laser irradiation. High Power Laser and Particle Beams, 17: 681-684).
    [46]
    张阿漫, 戴绍仕. 2011. 流固耦合动力学. 北京: 国防工业出版社(Zhang A M, Dai S S. 2011. Dynamics of Fluid-Structure Coupling. Beijing: National Defend Industry Press).
    [47]
    张家雷, 谭福利, 仝延锦. 2010. 激光辐照下充压柱壳的破坏能量阈值数值模拟. 强激光与粒子束, 22: 991-995 (Zhang J L, Tan F L, Tong Y J. 2010. Numerical simulation of failure energy threshold of internally pressured cyl indrical shell under laser irradiation. High Power Laser and Particle Beams, 22: 991-995).
    [48]
    张健, 黄晨光. 2007. 外部流场对激光加热运动目标影响的数值模拟. 强激光与粒子束, 19: 1817-1821 (Zhang J, Huang C G. 2007. Numerical simulation of airflow e®ect on moving body under laser irradiation. High Power Laser and Particle Beams, 19: 1817-1821).
    [49]
    张黎, 贺佳, 谭福利. 2011. 激光加热金属板流固耦合数值模拟. 强激光与粒子束, 23: 866-870 (Zhang L, He J, Tan F L. 2011. Numerical simulation of metal plates under laser irradiation based on fluid-sol id coupling. High Power Laser and Particle Beams , 23: 866-870).
    [50]
    张树林, 王洪斌, 张联合2013. 热障涂层隔热效果试验研究. 航空发动机, 39: 61-64 (Zhang S L, Wang H B, Zhang L H. 2013. Experimental Study of Insulating E®ectiveness for Thermal Barnier Coating. Aeroengine, 39: 61-64).
    [51]
    赵剑衡, 孙承纬, 袁永华, 王春彦, 李思忠. 1998. 激光辐照下充压圆柱壳爆裂规律的实验研究. 应用激光, 18: 196-200 (Zhao J H, Sun C W, Yuan Y H, Wang C Y, Li S Z. Experimental study on the rupture regulation of inner-pressurized cylindrical shells under laser beam loading. 1998. Applied Laser, 18: 196-200).
    [52]
    赵伟娜, 黄亿辉, 宋宏伟, 黄晨光. 2013. 激光辐照下轴压薄壁圆柱壳屈曲行为研究. 2013 中国力学大会, 陕西西安(Zhao W N, Huang Y H, Song H W, Huang C G. 2013. Buckling behavior of thin-walled circular shell under laser irradiation. National Conference on Mechanics 2013, Xi'an, Shaanxi).
    [53]
    郑艳丽, 杜太焦, 束庆邦, 王建国. 2010. 不同气流环境下激光辐照金属材料温升的数值模拟. 强激光与粒子束, 22: 2531-2534 (Zheng Y L, Du T J, Shu Q B, Wang J G. 2010. Numerical simulation of thermal e®ect on metal irradiated by high-power laser beam in di®erent airflow. High Power Laser and Particle Beams, 22: 2531-2534).
    [54]
    周益春, 段祝平, 解伯民, 黄晨光, 杨治星. 1995. 激光破坏机理研究的一个新进展. 力学学报, 27: 277-293 (Zhou Y C, Duan Z P, Xie B M, Huang C G, Yang Z X. 1995. A new progress on laser damage mechanism. Chinese Journal of Theoretical and Applied Mechanics, 27: 277-293).
    [55]
    Abbott R P, Boley C D, Fochs S N, Nattrass L A, Parker J M, Rubenchik A M, Smith J A. 2006. High-power solid-state laser: lethality testing and modeling, DTIC Document.
    [56]
    Adachi J, Anastasi R F, Beatty J F. 1978. Laser-produced strength degradation of plates in tension and tubes in torsion, DTIC Document.
    [57]
    Anisimov S. 1968. Vaporization of metal absorbing laser radiation. Sov. Phys. JETP, 27: 182-183.
    [58]
    Anisimov S, Kapeliovich B, Perelman T L.1974. Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP, 39: 375-378.
    [59]
    Aukje D B, Hester B, Alexander V Z. 2005. Comparing di®erent methods for the coupling of non-matching meshes in Fluid-Structure Interaction computations. AIAA CFD Conference, Toronto.
    [60]
    Bakhvalov N, Panasenko G. 1989. Homogenisation: Averaging processes in periodic media//Mathematical Problems in the Mechanics of Composite Materials, Mathematics and Its Applications, vol. 36. Dordrecht: Kluwer Academic Publishers.
    [61]
    Bamford C, Crank J, Malan D. 1946. The Combustion of Wood. Part I.//Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge: Cambridge Univ. Press.
    [62]
    Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E. 1997. Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82: 2826-2832.
    [63]
    Blades E L, Newman III J C. 2007. Computational Aeroelastic Analysis of an Unmanned Aerial Vehicle using U2NCLE//Proc. of the AIAA Dynamics Specialists Conf.
    [64]
    Boardman A, Cresswell B, Anderson J. 1996. An analytical model for the laser ablation of materials. Appli. Surf. Sci., 96-98: 55-60.
    [65]
    Boley C, Fochs S, Rubenchik A. 2007. Lethality e®ects of a high-power solid-state laser//Proc. of 4th High Energy Laser Lethality Conference.
    [66]
    Cebral J R, Löner R. 2005. On the loose coupling of implicit time-marching codes. AIAA Paper, 1093: 2005.
    [67]
    Chan C, Mazumder J. 1987. One-dismensional steady-state model for damage by vaporization and liquid expulsion due to laser material interaction. J. Appl. Phys., 62: 4579-4586.
    [68]
    Chen S Y, Huang C G, Wang C K, Duan Z P. 2008. Mechanical properties and constitutive relationships of 30CrMnSiA steel heated at high rate. Materials Science & Engineering A, 483-484: 105-108.
    [69]
    Chen Y, Li S. 1993. Buckling failure of the axially pre-compressed cylindrical shell irradiated by CW CO2 laser beam. Plasmadynamics & Laser Conference: AlAA 93-3231.
    [70]
    Chen Z, Bogaerts A. 2005. Laser ablation of Cu and plume expansion into 1 atm ambient gas. J. Appl.
    [71]
    Phys., 97: 063305.
    [72]
    Cheng X X, Wu C W. 2013. Film residual stress assessment method via temporarily thermal relaxation. Experimental and Applied Mechanics, 4: 267-276.
    [73]
    Clarke D R, Oechsner M, Padture, N P. 2012. Thermal-barrier coatings for more e±cient gas-turbine engines. MRS Bulletin, 37: 891-898.
    [74]
    Clarke D R, Phillpot S R. 2005. Thermal barrier coating materials. Materials Today, 8: 22-29.
    [75]
    Dimitrienko Y. 1997. Modelling of the mechanical properties of composite materials at high temperatures: Part 1. Matrix and fibers. Applied Composite Materials, 4: 219-237.
    [76]
    Dimitrienko Y. 1998. Thermomechanics of Composites under High Temperatures. Springer Science & Business Media.
    [77]
    Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. 2001. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science, 46: 505-553.
    [78]
    Fabbro R, Peyre P, Berthe L, Scherpereel X. 1998. Physics and applications of laser-shock processing. Journal of Laser Applications, 10: 265-279.
    [79]
    Fairand B P, Clauer A H, Jung R G, Wilcox B A. 1974. Quantitative assessment of laser-induced stress waves generated at confined surfaces. Applied Physics Letters, 25: 431.
    [80]
    Geubelle P H, Baylor J S. 1998. Impact-induced delamination of composites: A 2D simulation. Composites Part B: Engineering, 29: 589-602.
    [81]
    Gri±s C, Masumura R, Chang C. 1981. Thermal response of graphite epoxy composite subjected to rapid heating. Journal of Composite Materials, 15: 427-442.
    [82]
    Huang C G, Chen S Y, Wang C K. 2007. E®ects of heating rate and temperature holding time on mechanical behaviors of aluminum alloys. Key Engineering Materials, 345-346: 33-36.
    [83]
    Huang C G, Chen S Y, Duan Z P. 2003. FEM simulations and optimization about residual stresses in coating structures with functionally graded materials layer. Materials Science Forum, 423-425: 659-664.
    [84]
    HuangY H, Song H W, Huang C G. 2016. Heat transfer and mode transition for laser ablation subjected to supersonic airflow. Chin. Phys. Lett., 33: 014201.
    [85]
    Hurka J, Ballmann J. 2001. Elastic panels in transonic flow. AIAA 2001-2722.
    [86]
    Keshun D, Zheng J, Davies A, Williams F W. 2000. Thermal buckling of axially precompressed cylindrical shells irradiated by laser beam. AIAA Journal, 38: 1789-1794.
    [87]
    Kibler K, Carter H, Eisenmann J. 1977. Response of graphite composites to laser radiation, DTIC Document.
    [88]
    Li S Z, Chen Y Z, Zhang G J, Li Z M. 1994. The failure of shells subjected to internal pressure and irradiated by CW CO2 laser beam. AIAA, Plasmadynamics and Lasers Conference, 25th, Colorado Springs, CO.
    [89]
    Lions J. 1979. Remarks on non local phenomena in composite materials and in perforated materials//Proc. of the IUTAM Symp. Northwestern University. Amsterdam: Noth-Holland.
    [90]
    Loehner R, Yang C, Cebral J, Baum J D, Luo H, Pelessone D, Charman C. 1998. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids//Proc., 29th AIAA Fluid Dynamics Conference.
    [91]
    Mi Y, Crisfield M A, Davies G, Hellweg H B. 1998. Progressive delamination using interface elements. Journal of Composite Materials, 32: 1246-1272.
    [92]
    Moskal G. 2009. Thermal barrier coatings: characteristics of microstructure and properties, generation and directions of development of bond. Journal of Achievements in Materials and Manufacturing Engineering, 37: 323-331.
    [93]
    Munson T R, Spindler R J. 1961. Transient thermal behavior of decomposing materials. Part 1. General theory and application to convective heating, DTIC Document.
    [94]
    Najmi A H, Sadowsky J. 1997. The continuous wavelet transform and variable resolution time-frequency analysis. Johns Hopkins Apl Technical Digest, 18: 134-140.
    [95]
    Pelletier D, Borggaard J, Hetíu J. 2000. A continuous sensitivity equation method for conduction and phase change problems//38th AIAA Aerospace Sciences Meeting and Exhibit.
    [96]
    Pering G, Farrell P V, Springer G. 1980. Degradation of tensile and shear properties of composites exposed to fire or high temperature. Journal of Composite Materials, 14: 54-68.
    [97]
    Pobedrya B. 1981. Numerical Methods in the Theory of Elasticity and Plasticity. Izd. Mosk. Univ., Moscow.
    [98]
    Rapp B. 2006. Coatings improve e±ciency. Materials Today, 9: 6.
    [99]
    Samarski A. 1976. Some questions from the general theory of di®erence schemes. Trans. Amer. Math. Soc, 105.
    [100]
    Semak V V, Miller T. 2006. Modeling of laser charring and material removal in fiberglass materials. J. Directed Energy, 2: 5.
    [101]
    Singh R, Narayan J. 1990. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B, 41: 8843.
    [102]
    Slifka A J, Filla B J, Phelps J M, Bancke G, Berndt C C. 1998. Thermal conductivity of a zirconia thermal barrier coating. Journal Of Thermal Spray Technology, 7: 43-46.
    [103]
    Song H W, Wu X Q, Huang C G, Wei Y P, Wang X. 2012. Measurement of fast-changing low velocities by photonic doppler velocimetry. Review of Scientific Instruments, 83: 073301.
    [104]
    Sun C W, Zhuang S M, Wang Y P. Dynamic fracture in metals at high strain rate. In: Davison L, Grady D E, et al. eds. High-Pressure Shock Compression of Solids, Vol. II, Springer, 1996.
    [105]
    Tollier L, Fabbro R. 1998. Study of the laser-driven spallation process by the VISAR interferometry tech- nique. II. Experiment and simulation of the spallation process. Journal of Applied Physics, 83: 1231-1237.
    [106]
    Tollier L, Fabbro R, Bartnicki E. 1998. Study of the laser-driven spallation process by the velocity inter- ferometer system for any reflector interferometry technique. I. Laser-shock characterization. Journal of Applied Physics, 83: 1224-1230.
    [107]
    Vaßen R, Jarligo M O, Steinke T, Mack D E, Stöer D. 2010. Overview on advanced thermal barrier coatings. Surface and Coatings Technology, 205: 938-942.
    [108]
    Vidal F, Lavillea S, Johnstona T. 2001. Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air. Spectrochimica Acta Part B, 56: 973-986.
    [109]
    Wieting A R, Dechaumphai P, Bey K S, Thornton E A, Morgan K. 1991. Application of integrated fluid- thermal-structural analysis methods. Thin-Walled Structures, 11: 1-23.
    [110]
    Wu C W, Huang C G, Chen G N, Wang M X. 2013. Laser heating induced plastic deformation in a pre-elastic-stretched titanium alloy strip. Optics and Laser Technology, 45: 558-564.
    [111]
    Wu C W, Wu X Q, Huang C G. 2015. Ablation behaviors of carbon reinforced polymer composites by laser of di®erent operation modes. Optics and Laser Technology, 73: 23-28.
    [112]
    Wu C W, Huang C G, Chen G N. 2010. Interface delamination of the thermal barrier coating subjected to local heating. Science China Technological Sciences, 53: 3168-3174.
    [113]
    Wu X Q, Duan Z P, Song H W, Wei Y P, Wang X, Huang C G. 2011. Shock pressure induced by glass- confined laser shock peening: Experiments, modeling and simulation. Journal of Applied Physics, 110: 053112.
    [114]
    Wu X Q, Wang X, Wei Y P, Song H W, Huang C G. 2012. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method. Acta Mechanica Sinica, 28: 825-837.
    [115]
    Zhang D M, Li L, Li Z H. 2005. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting. Physica B, 364: 285-293.
    [116]
    Zhang K X, Liu X F, Liu C L, Sun C W, Zhang N. 1996. CW/COIL induced laser thermal stress in aluminum alloy plane plate. 27th AIAA Plasmadynamics and Lasers Conference.
    [117]
    Zhang N, Liu C L, Sun C W. 1995. The thermocoupling e®ect of CW COIL beam on composites//Proc. of 26th AIAA Plasmadyanmics and Lasers Conference.
    [118]
    Zhao H B, Levi C G, Wadley H N G. 2009. Vapor deposited samarium zirconate thermal barrier coatings.
    [119]
    Surface and Coatings Technology, 203: 3157-3167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1985) PDF downloads(1403) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return