Volume 42 Issue 3
May  2012
Turn off MathJax
Article Contents
XIE Junyu, DING Guanghong. MECHANOSENSITIVE CHANNELS: INSIGHTS FROM MOLECULAR MODELING AND SIMULATIONS[J]. Advances in Mechanics, 2012, 42(3): 332-346. doi: 10.6052/1000-0992-11-129
Citation: XIE Junyu, DING Guanghong. MECHANOSENSITIVE CHANNELS: INSIGHTS FROM MOLECULAR MODELING AND SIMULATIONS[J]. Advances in Mechanics, 2012, 42(3): 332-346. doi: 10.6052/1000-0992-11-129

MECHANOSENSITIVE CHANNELS: INSIGHTS FROM MOLECULAR MODELING AND SIMULATIONS

doi: 10.6052/1000-0992-11-129
Funds:  The project was supported by the National Basic Research Program of China (2012CB518502), the National Natural Science Foundation of China (81102630), the Shanghai Leading Academic Discipline Project (S30304, B112), the Science Foundation of Shanghai Municipal Commission of Science and Technology (09DZ1976600, 09dZ1974303, 10DZ1975800) and the Fudan Science Foundation for Young (09FQ07).
More Information
  • Corresponding author: DING Guanghong
  • Received Date: 2010-09-14
  • Rev Recd Date: 2012-01-10
  • Publish Date: 2012-05-25
  • Mechanosensitive channels play an important role in various physiological processes. The research on Mechanosensitive channels has been conducted more than two decades by now. In the experimental aspect, the determination of crystal structures of mechanosensitive channels of large and small conductance makes it possible to develop molecular modeling and simulation investigations on MS channels, which gives us a significantly deeper insight into mechanism of mechanosensitive channels. During theoretical studies on ion channels, different simulation methods and calculation skills display their superiorities as well as specific performances, which offer us different viewpoints to analyze membrane channels; however, they also have their own limitations. Particularly, among many ion channel analysis technologies, molecular dynamic simulation plays an outstanding role. The emergence of molecular dynamic simulation presents a more comprehensive and detailed description of the structural and functional relationship and dynamic mechanism of MS channels, which we can not achieve via many other technologies. On the other hand, molecular dynamic simulation consists of several methods, and different methods offer us different paths to study MS channels. That’s why in this review, we focus on the computational aspect of mechanosensitive channels analysis, with particular emphasis laid on molecular dynamic simulations. In the context of molecular dynamic simulation, we discuss the dynamic mechanism of MS channels, including structure, lipid environment, mechanical stimulation, voltage dependence and gating configuration. Meanwhile comparisons of the advantages and disadvantages of different simulation technologies will provide us better tools of research in the future. Finally, we also sum up the domestic breakthrough and great achievements in ion channels research, and all of these will definitely provide us new thoughts and inspirations to study MS channels.

     

  • loading
  • 1 Katz B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol, 1950,111: 261-282
    2 Loewenstein W R. The generation of electric activity in a nerve ending. Ann. NY Acad. Sci, 1959, 81: 367-387
    3 Detweiler P B. Sensory transduction. In: Patton H D, Fuchs A F, Hille B, et al, eds. Textbook of Physiology, Excitable Cells and Neurophysiology. Philadelphia: Saunders Company, 1989. 98-129
    4 Garcia-Añovernos J, Corey D P. The molecules of mechanosensation. Annu. Rev. Neurosci, 1997, 20: 567-594
    5 Sachs F, Morris C E. Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol,1998, 132: 1-77
    6 Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol. Rev, 2001, 81: 685-740
    7 Gillespie P G, Walker R G. Molecular basis of mechanotransduction. Nature, 2001, 413: 194-202
    8 Corey D. Sensory transduction in the ear. J. Cell Sci,2003a, 116: 1-3
    9 Corey D P. New TRP channels in hearing and mechanosensation. Neuron, 2003b, 39: 585-588
    10 Sachs F. Mechanical transduction in biological systems. Crit. Rev. Biomed. Eng, 1988, 16: 141-169
    11 Morris C E. Mechanosensitive ion channels. J. Membr. Biol, 1990, 113: 93-107
    12 Martinac B. Mechanosensitive ion channels: biophysics and physiology. In: Jackson M B, ed. Thermodynamics of Membrane Receptors and Channels. Boca Raton: CRC Press, 1993. 327-351
    13 Hamill O P, Marty A D, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. P ugers Arch. Eur. J. Physiol, 1981, 391: 85-100
    14 Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J. Physiol, 1984, 352: 685-701
    15 Brehm P, Kullberg R, Moody-Corbet F. Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol, 1984, 350: 631-648
    16 Hamill O P. Potassium and chloride channels in red blood cells. In: Sakmann B, Neher E, eds. Single-Channel Recording. New York: Plenum, 1983. 451-471
    17 Martinac B, Buechner M, Delcour A, et al. Pressuresensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA, 1987, 84: 2297-2301
    18 Delcour A H, Martinac B, Adler J, et al. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J, 1989, 56: 631-636
    19 Berrier C, Coulombe A, Houssin C, et al. A patchclamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett, 1989, 259: 27-32
    20 Sukharev S I, Blount P, Martinac B, et al. A large mechanosensitive channel in E. coli encoded by mscL alone. Nature, 1994, 368: 265-268
    21 Levina N, Totemeyer S, Stokes N R, et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J, 1999,18: 1730-1737
    22 Chang G, Spencer R H, Lee A T, et al. Structure of the MscL homologue from Mycobacterium tuberculosis, a gated mechanosensitive ion channel. Science, 1998, 282:2220-2226
    23 Kloda A, Martinac B. Molecular identification of a mechanosensitive ion channel in Archaea. Biophys J2001a, 80: 229-240
    24 Kloda A, Martinac B. Structural and functional similarities and differences between MscMJLR and MscMJ, two homologous MS channels of M. jannashii. EMBO J,2001b, 20: 1888-1896
    25 Betanzos M, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol, 2002, 9: 704-710
    26 Perozo E, Kloda A, Marien C D, et al. Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature, 2002a, 418: 942-948
    27 Perozo E, Kloda A, Cortes D M, et al. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol, 2002, 9: 696-703
    28 Bass R B, Strop P, Barclay M, et al. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 2002, 298: 1582-1587
    29 Tavernarakis N and Driscoll M. Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol, 1997, 59: 659-689
    30 Colbert H A, Smith T L, Bargmann C I. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adapation in Caenorhabditis elegans. J. Neurosci, 1997, 17: 8259-8269
    31 Alvarez de la Rosa D, Canessa C M, Fyfe G K, et al. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol, 2000, 62: 573-594
    32 Liedtke W, Choe Y, Marti-Renom M A, et al. Vanilloid receptor-related osmotically activated channel (VROAC), a candidate vertebrate osmoreceptor. Cell, 2000,103: 525-535
    33 Walker R G, Willingham A T, Zuker C S. A Drosophilia mechanosensory transduction channel. Science, 2000, 287:2229-2234
    34 Di Palma F, Belyantseva I A, Kim H J, et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA, 2002, 99: 14994-14999
    35 Kim J, Chung Y D, Park D, et al. A TRPV family ion channel required for hearing in Drosophila. Nature, 2003,424: 81-84
    36 Sidi S, Friedrich R W, Nicolson T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 2003, 301: 96-99
    37 Martinac B, Delcour A H, Minorsky P V, et al. Mechanosensitive ion channels in bacteria. In: Ito F, ed. In Comparative Aspects of Mechanoreceptor Systems. New York: Springer Verlag, 1992. 3-18
    38 Sukharev S I, Martinac B, Arshavsky V Y, et al. Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Bio- phys J, 1993, 65: 177-183
    39 Sukharev S I, Blount P, Martinac B, et al. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Ann. Rev. Physiol, 1997, 59: 633-657
    40 Zoratti M, Ghazi A. Stretch activated channels in prokaryotes. In: Bakker E P, ed. Alkali Transport Systems in Prokaryotes. Boca Raton: CRC Press, 1993. 349-358
    41 Berrier C, Besnard M, Ajouz B, et al. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol, 1996, 151: 175-187
    42 Martinac B. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem, 2001, 11: 61-76
    43 Strop P, Bass R, Rees D C. Prokaryotic mechanosensitive channels. In: Rees D C, ed. Advances in Protein Chemistry. Amsterdam: Academic Press, 2003, 63: 177-209
    44 Le Dain A C, Saint N, Kloda A, et al. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem, 1998, 273: 12116-12119
    45 Kloda A, Martinac B. Mechanosensitive channels of Bacteria and Archaea share a common ancestral origin. Eur. Biophys J, 2002, 31: 14-25
    46 Minke B, Cook B. TRP channel proteins and signal transduction. Physiol. Rev, 2002, 82: 429-472
    47 Ajouz B, Berrier C, Garrigues A, et al. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem,1998, 273: 26670-26674
    48 Moe P C, Levin G, Blount P. Correlating a protein structure with function of a bacterial mechanosensitive channel. J. Biol. Chem, 2000, 275: 31121-31127
    49 Sukharev S, Blount P, Martinac B, et al. MscL: a mechanosensitive channel in Escherichia coli. Soc. Gen. Physiol. Ser, 1996, 51: 133-141
    50 Sukharev S, Betanzos M, Chiang C S, et al. The gating mechanism of the large mechanosensitive channel MscL. Nature, 2001, 409: 720-724
    51 Perozo E, Cortes D M, Sompornpisut P, et al. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 2002, 418: 942-948
    52 Moe P, Blount P. Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry, 2005, 44:12239-12244
    53 Sukharev S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Bio- phys J, 2002, 83: 290-298
    54 Akitake B, Anishkin A, Sukharev, S. The dashpot mechanism of stretch-dependent gating in MscS. J. Gen. Phys- iol, 2005, 125: 143-154
    55 Edwards M D, Booth I R, Miller S. Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol, 2004, 7: 163-167
    56 Edwards M D, Li Y, Kim S, et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol, 2005, 12: 113-119
    57 Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci, 2004, 117: 2449-2460
    58 Perozo E, Rees D. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol,2003, 13: 432-442
    59 Gustin M C, Zhou X L, Martinac B, et al. A mechanosensitive ion channel in the yeast plasma membrane. Science,1988, 242: 762-765
    60 Perozo E. Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol, 2006, 7: 109-119
    61 Kung C. A possible unifying principle for mechanosensation. Nature, 2005, 436: 647-654
    62 Sukharev S, Sigurdson W J, Kung C, et al. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol,1999, 113: 525-539
    63 Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neu- rosci, 2004, 27: 345-351
    64 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I: structure of the molecular complex. Biophys J, 1999a, 76: 1929 -1938
    65 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II: rates and mechanisms of water transport. Biophys J, 1999b, 76: 1939 -1950
    66 Tang Y Z, Chen W Z, Wang C X, et al. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur. Biophys J, 1999, 28: 478-488
    67 Woolf T B, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin a channel in a DMPC bilayer. Proteins Struct. Funct. Genet, 1996, 24: 92-114
    68 Capener C E, Shrivastava I H, Ranatunga K M, et al. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J, 2000, 78: 2929-2942
    69 Fischer W B, Pitkeathly M, Wallace B A, et al. Transmembrane peptide NB of influenza B: a simulation, structure and conductance study. Biochemistry, 2000, 39:12708-12716
    70 Forrest L R, Kukol A, Arkin I T, et al. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J, 2000, 78: 55-69
    71 Law R J, Forrest L R, Ranatunga K M, et al. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins Struct. Funct. Genet, 2000, 39:47-55
    72 Lin J H, Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J,2000, 78: 1714-1724
    73 Schweighofer K J, Pohorille A. Computer simulation of ion channel gating: the M2 channel of influenza A virus in a lipid bilayer. Biophys J, 2000, 78: 150-163
    74 Gullingsrud J, Kosztin D, Schulten K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J, 2001, 80: 2074-2081
    75 Bilston L, Mylvaganam K. Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett, 2002, 512: 185-190
    76 Colombo G, Marrink S J, Mark A E. Simulation of MscL gating in a bilayer under stress. Biophys J, 2003, 84: 2331-2337
    77 Gullingsrud J, Schulten K. Gating of MscL studied by steered molecular dynamics. Biophys J, 2003, 85: 2087-2099
    78 Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J, 2004,86: 3496-3509
    79 Elmore D E, Dougherty D A. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J, 2003, 85: 1512-1524
    80 Meyer G R, Gullingsrud J, Martinac B, et al. Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys J, 2006, 91: 1630-1637
    81 Debret G, Valadie H, Stadler A M, et al. New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins, 2008, 71:1183-1196
    82 Yoo J, Cui Q. Curvature generation and pressure profile modulation in membrane by lysolipids: insights from Coarse-Grained simulations. Biophys J, 2009, 97: 2267-2276
    83 Louhivuori M, Risselada H J, Giessen V D, et al. Release of content through mechano-sensitive gates in pressurized liposomes. Proc. Natl. Acad. Sci, 2010, 107: 19856-19860
    84 Ollila O H S, Louhivuori M, Marrink S J, et al. Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J, 2011, 100: 1651-1659
    85 Rui H, Kumar R, Im W. Membrane tension, lipid adaptation, conformational changes, and energetic in MscL gating. Biophys J, 2011, 101: 671-679
    86 Elmore D E, Dougherty D A. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J, 2001, 81:1345-1359
    87 Kong Y, Shen Y, Warth T E, et al. Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2002, 99: 5999-6004
    88 Yefimov S, Van Der Giessen E, Onck P R, et al. Mechanosensitive membrane channels in action. Biophys J, 2008, 94: 2994-3002
    89 Jonggu J, Gregory A V. Gating of the Mechanosensitive Channel Protein MscL: The Interplay of Membrane and Protein. Biophys J, 2008, 94: 3497-3511
    90 Sukharev S, Durell S R, Guy H R. Structural models of the MscL gating mechanism. Biophys J, 2001, 81, 917-936
    91 Monica B, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol, 2002, 9: 704-710
    92 Go N, Noguti T, Nishikawa T. Dynamics of a small globular proteins in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA, 1983, 80: 3696-3700
    93 Brooks B, Karplus M. Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl Acad. Sci. USA, 1983, 80, 6571-6575
    94 Levitt M, Sander C, Stern P S. Protein normal-mode dynamics: trypsin inhibitor, crambin, tibonuclease and lysozyme. J. Mol. Biol, 1985, 181, 423-447
    95 Valadie H, Lacapcre JJ, Sanejounand Y H, et al. Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J. Mol. Biol, 2003, 332: 656-674
    96 Wiggins P, Philips R. Analytical models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2004, 101: 4071-4076
    97 Wiggins P, Philips R. Membrane-protein interactions in mechanosensitive channels. Biophys J, 2005, 88: 880-902
    98 Markin V S, Sachs F. Thermodynamics of mechanosensitivity. Phys. Biol, 2004, 1: 110-124
    99 Turner M S, Sens P. Gating-by-tilt of mechanically sensitive membrane channels. Phys. Rev. Lett, 2004, 93:118103
    100 Andrei L L, Pogozheva I D, Lomize M A, et al. Positioning of proteins in membranes: a computational approach. Protein Sci, 2006, 15: 1318-1333
    101 Tang Y, Cao G, Chen X, et al. A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J, 2006, 91: 1248-1263
    102 Chen X, Cui Q, Tang Y, et al. Gating mechanisms of mechanosensitive channels of large conductance, I: a continuum mechanics-based hierarchical framework. Biophys J, 2008, 95: 563-580
    103 Tang Y, Yoo J, Yethiraj A, et al. Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions. Biophys J,2008, 95: 581-596
    104 Tang Y, Yoo J, Yethiraj A, et al. Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem. Biophys, 2008, 52: 1-18
    105 Ursell T, Huang K C, Peterson E, et al. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol, 2007,3: 803-812
    106 Boucher P A, Catherine E M, Bela J. Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J, 2009, 97:2761-2770
    107 Grage S L, Keleshian A M, Turdzeladze T, et al. Bilayermediated clustering and functional interaction of mscl channels. Biophys J, 2011, 100: 1252-1260
    108 Gumbart J, Wang Y, Aksimentiev A, et al. Molecular dynamics simulations of proteins in lipid bilayers.Curr. Opin. Struct. Biol, 2005, 15: 423-431
    109 Anishkin A, Sukharev S. Explicit channel conductance: can it be computed? Biophys J, 2005, 88: 3745-3761
    110 Nomura T, Sokabe M, Yoshimura K. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J, 2006, 91: 2874-2881
    111 Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J, 2004, 86:2883-2895
    112 Sotomayor M, Schulten K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys J, 2004, 87: 3050-3065
    113 Spronk S A, Elmore D E, Dougherty D A. Voltage dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophys J, 2006, 90: 3555-3569
    114 Sotomayor M, Vasquez V, Perozo E, et al. Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J, 2007, 92: 886-902
    115 Christine P, Gerhard H. Ion transport through membranespanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J, 2005, 89: 2222-2234
    116 Straaten V D, Kathawala G, Trellakis A, et al. BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Sim, 2005, 31: 151-171
    117 Sotomayor M, Van Der Straaten T A, Ravaioli U, et al. Electrostatic properties of the mechanosensitive channel of small conductance MscS. Biophys J, 2006, 90: 3496-3510
    118 Vora T, CorryB, Chung S H. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochim. Biophys. Acta, 2006, 1758:730-737
    119 Akitake B, Anishkin A, Sukharev S. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat. Struct. Mol. Biol, 2007, 14:1141-1149
    120 Anishkin A, Akitake B, Sukharev S. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J, 2008, 94: 1252-1266
    121 Anishkin A, Kamaraju K, Sukharev S. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol, 2008, 132: 67-83
    122 Belyy V, Anishkin A, Liu N, et al. The tensiontransmitting ‘clutch’ in the Mechanosensitive channel MscS.Nat. Struct. Mol. Biol, 2010, 17: 451-459
    123 Vasquez V, Sotomayor M, Cortes D M, et al. Three dimensional architecture of membrane embedded MscS in the closed conformation. J Mol Biol, 2008, 378: 55-70
    124 Vasquez V, Sotomayor M, Morales J C, et al. A structural mechanism for MscS gating in lipid bilayers. Sci- ence, 2008, 321: 1210-1214
    125 Wang W, Black S S, Edwards M D, et al. The structure of an open form of an E. coli mechanosensitive channel at3.45 ?A resolution. Science, 2008, 321: 1179-1183
    126 Zhong W, Guo W, Ma S. Intrinsic aqueduct orifices facilitate K+ channel gating. FEBS Letters, 2008, 582: 3320-3324
    127 Zhong W, Guo W. Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Biochem Biophys Res Commun, 2009, 388(1): 86-90
    128 Shi N, Ye S, Alam A, et al. Atomic structure of a Na+- and K+-conducting channel. Nature 2006, 440: 570-574
    129 Shen R, Guo W. Ion binding properties and structure stability of the NaK channel. Biochim Biophys Acta, 2009,1788: 1024-1032
    130 Alam A, Jiang Y. High-resolution structure of the open NaK channel. Nat Struct Mol Biol, 2009, 16: 30-34
    131 Alam A, Jiang Y. Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 2009, 16: 35-41
    132 Shen R, Guo W, Zhong W. Dynamic hydration valve controlled ion permeability and stability of NaK channel. Nature Precedings, 2008 http://hdl.handle.net/10101/npre.2008.2045.1
    133 Shen R, Guo W, Zhong W. Hydration valve controlled non-selective conduction of Na+ and K+ in the NaK channel. Biochimica et Biophysica Acta { Biomembranes,2010, 1798: 1474
    134 Qiu H, Ma S, Shen R, et al. Dynamic and Energetic Mechanisms for the Distinct Permeation Rate in AQP1 and AQP0. Biochimica et Biophysica Acta { Biomembranes2010, 179: 318
    135 Zuo G, Shen R, Ma S, et al. Transport properties of singlefile water molecules inside a carbon nanotube biomimicking water channel. ACS Nano, 2010, 4: 205
    136 Zuo G, Shen R, Guo W. Self-adjusted sustaining oscillation of confined water chain in carbon nanotubes. Nano Lett, 2011, 11(12): 5297
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1631) PDF downloads(1681) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return