留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性结构气弹效应在流动控制中的应用及进展

张家忠 刘雁 孙旭 陈嘉辉 王乐

张家忠, 刘雁, 孙旭, 陈嘉辉, 王乐. 柔性结构气弹效应在流动控制中的应用及进展[J]. 力学进展, 2018, 48(1): 1806. doi: 10.6052/1000-0992-16-034
引用本文: 张家忠, 刘雁, 孙旭, 陈嘉辉, 王乐. 柔性结构气弹效应在流动控制中的应用及进展[J]. 力学进展, 2018, 48(1): 1806. doi: 10.6052/1000-0992-16-034
ZHANG Jiazhong, LIU Yan, SUN Xu, CHEN Jiahui, WANG Le. Applications and developments of aeroelasticity of flexible structure in flow controls[J]. Advances in Mechanics, 2018, 48(1): 1806. doi: 10.6052/1000-0992-16-034
Citation: ZHANG Jiazhong, LIU Yan, SUN Xu, CHEN Jiahui, WANG Le. Applications and developments of aeroelasticity of flexible structure in flow controls[J]. Advances in Mechanics, 2018, 48(1): 1806. doi: 10.6052/1000-0992-16-034

柔性结构气弹效应在流动控制中的应用及进展

doi: 10.6052/1000-0992-16-034
基金项目: 国家973计划项目(2012CB026002)、国家自然科学基金(51305355)资助.
详细信息
    作者简介:

    张家忠,教授,博导.研究方向:在基础研究方面,一直致力于力学(流体力学、固体及流--固耦合)方面的动力系统的运动稳定性、分岔、混沌理论、动力学数值方法的研究;在应用研究方面,主要围绕国家能源动力装备、飞行器、大气及海洋动力学等领域开展了相应的基础和应用研究工作.

  • 中图分类号: O368

Applications and developments of aeroelasticity of flexible structure in flow controls

  • 摘要: 柔性结构与空气动力耦合形成的系统呈现出丰富的非定常、非线性流动和结构动力学行为,对其气动弹性效应合理地控制和利用,能够大幅度提高飞机机翼、风力机叶片等结构的气动性能,并使其具有气动自适应能力.本文总结了近年来与气弹效应应用相关的研究进展及存在的问题,具体介绍了薄膜翼型的流动控制特性、柔性壁面减阻技术以及Sinha扰流装置的发展过程、主要成果以及未来发展趋势,着重对相关试验、流固耦合数值分析、Lagrangian拟序结构动力学等理论分析方法进行总结,展示了气弹效应在流动控制方面的巨大潜力和深远的学术意义,以便更多的研究人员开展该领域的研究工作.

     

  • [1] 陈桂彬, 邹丛青, 杨超. 2004. 气动弹性设计基础. 北京:北京航空航天大学出版社

    (Chen G B, Zou C Q, Yang C.2004. Design Fundamentals of Aeroelasticity. Beijing: Beihang University Press).
    [2] 康伟, 张家忠. 2011. 翼型局部弹性自激振动的增升减阻效应研究. 西安交通大学学报, 45: 94-101

    (Kang W, Zhang J Z.2011. Numerical analysis of lift enhancement and drag reduction by self-induced vibration of localized elastic airfoil. Journal of Xi'an Jiaotong University, 45: 94-101).
    [3] 康伟, 张家忠, 李凯伦. 2011. 利用本征正交分解的非线性Galerkin 降维方法. 西安交通大学学报, 45: 58-62

    (Kang W, Zhang J Z, Li K L.2011. Nonlinear Galerkin method for dimension reduction using proper orthogonal decomposition. Journal of Xi'an Jiaotong University, 45: 58-62).
    [4] 李凯伦, 张家忠, 周振堂. 2011. 传热时间迟滞影响的薄板热气动弹性耦合振荡模型. 航空动力学报, 26: 1-8

    (Li K L, Zhang J Z, Zhou Z T.2011. Aerothermoelastic coupling dynamic model of panel flutter with time delay of heat transfer. Journal of Aerospace Power, 26: 1-8).
    [5] 雷鹏飞, 张家忠, 孙旭, 康伟, 苏哲. 2008. 机翼绕流边界层分离的分岔特性研究//第八届全国动力学与控制学术会议, 哈尔滨

    (Lei P F, Zhang J Z, Sun X, Kang W, Su Z.2008. Bifurcation in the separation flow near the wall of wing//The 8th National Conference on Dynamics & Control, Harbin).
    [6] 雷鹏飞, 张家忠, 陈嘉辉. 2012.局部弹性翼型非定常分离的动力学特性. 力学学报, 44: 13-22

    (Lei P F, Zhang J Z, Chen J H.2012. Unsteady separation of flow around airfoil with local elastic structure. Chinese Journal of Theoretical and Applied Mechanics,44: 13-22 ).
    [7] 梅冠华, 张家忠. 2011. 时滞惯性流形在三维壁板颤振数值分析中的应用. 西安交通大学学报, 45: 40-45

    (Mei G H, Zhang J Z.2011. Numerical analysis of 3-D panel flutter by inertial manifolds with delay. Journal of Xi'an Jiaotong University, 45: 40-45).
    [8] 孙旭, 张家忠, 周志宏, 徐忠. 2010.不可压黏性流动的CBS有限元解法. 计算力学学报, 27: 862-867

    (Sun X, Zhang J Z. Zhou Z H, Xu Z.2010. On the application of the CBS finite element method to the incompressible flow. Chinese Journal of Computational Mechanics, 27: 862-867).
    [9] 孙旭, 张家忠. 2011. 具有运动边界不可压缩黏性流动的CBS有限元解法. 西安交通大学学报, 45: 97-104

    (Sun X, Zhang J Z.2011. A characteristic based Split-FEM scheme for incompressible viscous flow with moving boundaries. Journal of Xi'an Jiaotong University, 45: 97-104).
    [10] 童秉纲, 陆夕云. 2004. 关于飞行和游动的生物力学研究. 力学进展, 34: 1-8

    (Tong B G, Lu X Y.2004. A review on biomechanics of animal flight and swimming. Advances in Mechanics,34: 1-8).
    [11] 张兴伟, 周超英, 谢鹏. 2012.扑翼柔性变形对悬停气动特性影响的数值研究. 哈尔滨工业大学学报, 44: 115-119

    (Zhang X W, Zhou C Y, Xie P. 2012. Numerical study on the effect of flapping wing deformation on aerodynamic performance in hovering flight. Journal of Harbin Institute of Technology, 44: 115-119).
    [12] 张家忠, 陈丽莺, 梅冠华, 周志宏, 苏哲. 2008. 基于时滞惯性流形的浅拱动力屈曲研究//第八届全国动力学与控制学术会议, 哈尔滨

    (Zhang J Z, Chen L Y, Mei G H, Zhou Z H, Su Z.2008. Dynamic bucking analysis of shallow parabolic arch based on the method of inertial manifolds with time delay//The 8th National Conference on Dynamics & Control, Harbin).
    [13] 张家忠, 李凯伦, 陈丽莺. 2011. 翼型失速的非线性动力学特性及其控制. 航空学报, 32: 2163-2173

    (Zhang J Z, Li K L, Chen L Y.2011. Nonlinear dynamics of static stall of airfoil and its control. Acta Aeronautica ET Astronautica Sinica, 32: 2163-2173).
    [14] Al Musleh A, Frendi A.2011. On the effects of a flexible structure on boundary layer stability and transition. Journal of Fluids Engineering, 133: 071103.
    [15] Benjamin T B.1960. Effects of a flexible boundary on hydrodynamic stability. Journal of Fluid Mechanics, 9: 513-532.
    [16] Carpenter P W, Garrad A D.1985. Hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1: Tollmien-Schlichting instabilities. Journal of Fluid Mechanics, 155: 465-510.
    [17] Carpenter P W, Garrad A D.1986. Hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2: Flow-induced surface instabilities. Journal of Fluid Mechanics, 170: 199-232.
    [18] Carpenter P W.1993. Optimization of multiple-panel compliant walls for delay of laminar-turbulent transition. AIAA Journal, 31: 1187-1188.
    [19] Carpenter P W, Lucey A D, Davies C.2001. Progress on the use of compliant walls for laminar-flow control. Journal of aircraft, 38: 504-512.
    [20] Davies C, Carpenter P W.1997. Instabilities in a plane channel flow between compliant walls. Journal of Fluid Mechanics, 352: 205-243.
    [21] Davies C, Carpenter P W.1997. Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics, 335: 361-392.
    [22] Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J.2010. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures, 88: 446-457.
    [23] Dickinson M H, Lehmann F O, Sane S P.1999. Wing rotation and the aerodynamic basis of insect flight. Science, 284: 1954-1960.
    [24] Domaradzki J A, Metcalfe R W.1987. Stabilization of laminar boundary layers by compliant membranes. Physics of Fluids, 30: 695-705.
    [25] Du G, Sun M.2010. Effects of wing deformation on aerodynamic forces in hovering hoverflies. Journal of Experimental Biology, 213: 2273-2283.
    [26] Duncan J, Waxman A, Tulin M.1985. The dynamics of waves at the interface between a viscoelastic coating and a fluid flow.Journal of Fluid Mechanics, 158: 177-197.
    [27] Ellington C P, Van Den Berg C, Willmott A P, Thomas A L R.1996. Leading-edge vortices in insect flight. Nature, 384: 626-30.
    [28] Eldredge J D, Toomey J, Medina A.2010. On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. Journal of Fluid Mechanics, 659: 94-115.
    [29] Galvao R, Israeli E, Song A, Tian X D, Bishop K, Swartz S, Breuer K.2006. The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. AIAA Paper, 2006-2866.
    [30] Gad-el-Hak M.2002. Compliant coatings for drag reduction.Progress in Aerospace Sciences, 38: 77-99.
    [31] Gordnier R E.2009. High fidelity computational simulation of a membrane wing airfoil. Journal of Fluids and Structures, 25: 897-917.
    [32] Gordnier R E, Attar P J.2009. Implicit les simulations of a low Reynolds number flexible Membrane Wing Airfoil. AIAA Paper, 2009-579.
    [33] Greenblatt D, Wygnanski I J.2000. The control of flow separation by periodic excitation. Progress in Aerospace Sciences, 36: 487-545.
    [34] Mei G H, Zhang J Z, Sun X.2014. Analysis of supersonic and transonic panel flutter using a fluid-structure coupling algorithm. ASME Journal of Vibration and Acoustics, 136: 031013-031013-11.
    [35] Mei G H, Zhang J Z, Wang Z P.2013. Numerical analysis of panel flutter on inertial manifolds with delay. ASME Journal of Computational and Nonlinear Dynamics, 8: 1-11.
    [36] Hübner B, Walhorn E, Dinkler D.2004. A monolithic approach to fluid--structure interaction using space--time finite elements. Computer Methods in Applied Mechanics and Engineering, 193: 2087-2104.
    [37] Jahanmiri M.2011. Aircraft drag reduction: An overview. Chalmers University of Technology, Research Report, 02.
    [38] Jog C, Pal R.2011. A monolithic strategy for fluid--structure interaction problems. International Journal for Numerical Methods in Engineering, 85: 429-460.
    [39] Kang C, Aono H, Cesnik C, Shyy W.2011. Effects of flexibility on the aerodynamic performance of flapping wings. Journal of Fluid Mechanics, 689: 32-74.
    [40] Kang W, Zhang J Z, Feng P H.2012. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers. Communications in Computational Physics, 11: 1300-1310.
    [41] Kang W, Zhang J Z, Lei P F, Min Xu.2015. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number. Journal of Fluid and Structure, 57: 49-65.
    [42] Kang W, Zhang J Z, Lei P F, Min X.2014. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluid and Structure, 46: 42-58.
    [43] Kramer M O.1960. Boundary layer stabilization by distributed damping. Journal of the American Society for Naval Engineers, 72: 25-34.
    [44] Küttler U, Wall W A.2008. Fixed-point fluid-- structure interaction solvers with dynamic relaxation. Computational Mechanics, 43: 61-72.
    [45] Landahl M T.1962. On the stability of a laminar incompressible boundary layer over a flexible surface. Journal of Fluid Mechanics, 13: 609-362.
    [46] Lei P F, Zhang J Z, Kang W, Ren S, Wang L.2014. Unsteady flow separation and high performance of airfoil with local flexible structure at low Reynolds number. Communications in Computational Physics, 16: 699-717.
    [47] Lei P F, Zhang J Z, Li K L, Wei D.2015. Study on the transports in transient flow over impulsively started circular cylinder using Lagrangian coherent structures. Communications in Nonlinear Science and Numerical Simulation, 22: 953-963.
    [48] Li K L, Zhang J Z, Ren J H, Yan Y.2015. Investigation of aerothermoelastic behaviors of functionally graded panels in supersonic flows. Journal of Thermal Stresses, 38: 882-903.
    [49] Liu Y, Li K L, Wang H, Liu L.2012. Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation. Communications in Nonlinear Science and Numerical Simulation, 17: 3427-3434.
    [50] Lucey A, Carpenter P.1995. Boundary layer instability over compliant walls: Comparison between theory and experiment. Physics of Fluids, 7: 2355-2363.
    [51] Lee T, Fisher M, Schwarz W.1995. Investigation of the effects of a compliant surface on boundary-layer stability. Journal of Fluid Mechanics, 288: 37-58.
    [52] Lucey A D, Carpenter P M, Werle J.2006. Numerical simulation of the interaction of a uniform mean flow and a compliant boundary//1st International Conference on Computational Methods, 189-193.
    [53] Mani R, Lagoudas D C, Rediniotis O K.2008. Active skin for turbulent drag reduction. Smart Materials and Structures, 17: 035004.
    [54] Mangla N L, Sinha S K.2004. Controlling dynamic stall with an active flexible wall. AIAA Paper, 2004-2325.
    [55] Molki M, Breuer K.2010. Oscillatory motions of a prestrained compliant membrane caused by fluid-membrane interaction. Journal of Fluids and Structures, 26: 339-358.
    [56] Munday D, Jacob J, Hauser T, Huang G.2002 . Experimental and numerical investigation of aerodynamic flow control using oscillating adaptive surfaces. AIAA Paper, 2002-2837.
    [57] Munday D, Jacob J.2002. Active control of separation on a wing with oscillating camber. Journal of aircraft, 39: 187-189.
    [58] Nakata T, Liu H.2012. A fluid-structure interaction model of insect flight with flexible wings. Journal of Computational Physics, 233: 1822-1847.
    [59] Nisewanger C.1964. Flow noise and drag measurements of vehicle with compliant coating. US Naval Ordnance Test Station Report No. 8518, NOTS No. TP-3510, China Lake, California.
    [60] Osborn R, Kota S, Hetrick J A, Geister D E, Tilmann C P, Joo J Y.2004. Active flow control using high-frequency compliant structures. Journal of Aircraft, 41: 603-609.
    [61] Pal D, Sinha S K.1998. Controlling unsteady separation on a cylinder with a driven flexible wall. AIAA Journal, 36: 1023-1028.
    [62] Percin M, Hu Y, Van Oudheusden B, Remes B, Scarano F.2011. Wing flexibility effects in clap-and-fling. International Journal of Micro Air Vehicles, 3: 217-228.
    [63] Persson P O, Peraire J, Bonet J.2007. A high order discontinuous Galerkin method for fluid-structure interaction. AIAA Paper, 2007-4327.
    [64] Puryear F.1962. Boundary layer control: Drag reduction by use of compliant coatings. David Taylor Model Basin Report No. 1668, Bethesda, MD.
    [65] Rojratsirikul P, Wang Z, Gursul I.2009. Unsteady fluid--structure interactions of membrane airfoils at low Reynolds numbers. Experiments in Fluids, 46: 859-872.
    [66] Rojratsirikul P, Wang Z, Gursul I.2010. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils. Journal of Fluids and Structures, 26: 359-376.
    [67] Rojratsirikul P, Genc M, Wang Z, Gursul.2011. Flow-induced vibrations of low aspect ratio rectangular membrane wings. Journal of Fluids and Structures, 27: 1296-1309.
    [68] Ritter H, Messum L T.1964. Water tunnel measurements of turbulent skin friction on six different compliant surfaces of 1 Ft length. British Admiralty Research Laboratory Report No. ARL/N4/GHY/9/7, London, Great Britain.
    [69] Ritter H, Porteous J S.1964. Water tunnel measurements of skin friction on a compliant coating. British Admiralty Research Laboratory Report No. ARL/N3/G/HY/9/7, London, Great Britain.
    [70] Ren S, Zhang J Z, Li K L.2012. Mechanisms for oscillations in volume of single spherical bubble due to sound excitation in water. Chinese Physics Letters, 29: 020504-1-020504-3.
    [71] Sinha S K.1999. Active flexible walls for efficient aerodynamic flow separation control. AIAA Paper, 99-3132.
    [72] Sinha S K.1999. System for efficient control of flow separation using a driven flexible wall. U. S. Patents 5 961 080.
    [73] Sinha S K.2001. Flow separation control with microflexural wall vibrations. Journal of Aircraft, 38: 496-503.
    [74] Sinha S K, Zou J.2000. On controlling flows with micro-vibratory wall motion. AIAA Paper, 2000-4413.
    [75] Sinha S K.2004. Aircraft drag reduction with flexible composite surface boundary layer control. AIAA Paper, 2004-2121.
    [76] Sinha S K, Ravande S V.2006. Sailplane performance improvement using a flexible composite surface deturbulator. AIAA Paper, 2006-447.
    [77] Sinha S K, Ravande S V.2006. Drag reduction of natural laminar flow airfoils with a flexible surface deturbulator. AIAA Paper, 2006-3030.
    [78] Sinha S K.2007. Optimizing Wing lift to drag ratio enhancement with flexible-wall turbulence control. AIAA Paper, 2007-4425.
    [79] Sinha S K, Hyv\"{a}rinen J.2008. Flexible-wall turbulence control for drag reduction on streamlined and bluff bodies. AIAA Paper, 2008-4207.
    [80] Sinha S K, Hendrix J.2009. Obtaining extremely high lift to drag ratios with flexible-wall turbulence control. AIAA Paper, 2009-896.
    [81] Sinha S K, Sinha S.2009. Method of reducing drag and increasing lift due to flow of a fluid over solid objects. U. S. Patents 2009/0294596.
    [82] Sinha S K.2008. System and method for using a flexible composite surface for pressure-drop free heat transfer enhancement and flow drag reduction. U. S. Patents 7 422 051.
    [83] Sinha S K.2010. Deturbulator fuel economy Enhancement for trucks. U. S. Patents 2010/0194144.
    [84] Smith R, Shyy W.1995. Computation of unsteady laminar flow over a flexible two-dimensional membrane wing. Physics of Fluids, 7: 2175-2184.
    [85] Smith R, Shyy W.1996. Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory. Physics of Fluids, 8: 3346-3353.
    [86] Song A, Breuer K.2007. Dynamics of a compliant membrane as related to mammalian flight. AIAA Paper, 2007-665.
    [87] Sun M, Tang J.2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205: 55-70.
    [88] Sun X, Zhang J Z, Ren X L.2012. Characteristic-Based Split (CBS) finite element method for incompressible viscous flow with moving boundaries. Engineering Applications of Computational Fluid Mechanics, 6: 461-474.
    [89] Tong B G, Lu X Y.2004. A review on biomechanics of animal fight and swimming. Advances in Mechanics, 34: 1-8.
    [90] Thiria B, Godoy-Diana R.2010. How wing compliance drives the efficiency of self-propelled flapping flyers. Physical Review E, 82: 015303.
    [91] Visbal M R, Gordnier R E, Galbraith M C.2009. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers. Experiments in Fluids, 46: 903-922.
    [92] Weis-Fogh T.1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production.Journal of Experimental Biology, 59: 169-230.
    [93] Wang Z, Yeo K, Khoo B.2005. Spatial direct numerical simulation of transitional boundary layer over compliant surfaces.Computers and Fluids, 34: 1062-1095.
    [94] Wang X, Walters K, Coley L, Barton M, Sinha S.2012. Modeling turbulence control effect of the Sinha flexible composite surface deturbulator. AIAA Paper, 2012-3204.
    [95] Wang Y T, Zhang J Z.2011. An improved ALE and CBS-based finite element algorithm for analyzing flows around forced oscillating bodies. Finite Elements in Analysis and Design, 47: 1058-10659.
    [96] Yeo K.1988. The stability of boundary-layer flow over single- and multi-layer viscoelastic walls. Journal of Fluid Mechanics, 196: 259-408.
    [97] Yeo K.1990. The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls. Journal of Fluid Mechanics, 220: 125-160.
    [98] Zhang J Z, Ren S, Mei G H.2011. Model reduction on inertial manifolds for~N-S equations approached by multilevel finite element method. Communications in Nonlinear Science and Numerical Simulation, 16: 195-205.
    [99] Zhang J Z, Liu Y, Lei P F, Sun X.2007. Dynamic snap-through buckling analysis of shallow arches under impact load based on approximate inertial manifolds. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 14: 287-291.
    [100] Zhang J Z, Liu Y, Feng P H.2011. Approximate inertial manifolds of burgers equation approached by nonlinear Galerkin's procedure and its application. Communications in Nonlinear Science and Numerical Simulation, 16: 4666-4670.
    [101] Zhang J Z, Liu Y, Cheng D M.2005. Error estimate for the influence of model reduction of nonlinear dissipative autonomous dynamical system on the long-term behaviors. Journal of Applied Mathematics and Mechanics( English Edition), 26: 938-943.
  • 加载中
计量
  • 文章访问数:  1963
  • HTML全文浏览量:  254
  • PDF下载量:  1195
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 刊出日期:  2018-02-08

目录

    /

    返回文章
    返回