首页 > 欢迎您访问力学进展网站! English

力学进展 ›› 2017, Vol. 47 ›› Issue (1): 201701-201701.doi: 10.6052/1000-0992-16-017

• 综述评论 •    下一篇

Sloshing(晃荡)

O. M. Faltinsen   

  1. Centre for Autonomous Marine Operations and Systems(AMOS), Department of Marine Technology, Norwegian University of Science and Technology(NTNU), NO-7491 Trondheim, Norway
  • 收稿日期:2016-05-11 修回日期:2016-08-11 出版日期:2017-01-01 发布日期:2016-08-25
  • 通讯作者: O. M. FALTINSEN, Odd Magnus Faltinsen was born in 1944 in Stavanger,Norway,and obtained a cand. E-mail:odd.faltinsen@ntnu.no

Sloshing

O. M. FALTINSEN   

  1. Centre for Autonomous Marine Operations and Systems(AMOS), Department of Marine Technology, Norwegian University of Science and Technology(NTNU), NO-7491 Trondheim, Norway
  • Received:2016-05-11 Revised:2016-08-11 Online:2017-01-01 Published:2016-08-25
  • Contact: 10.6052/1000-0992-16-017 E-mail:odd.faltinsen@ntnu.no
  • Supported by:

    The Research Council of Norway through the Centres of Excellence funding scheme AMOS, project number 223254, supported this work.

摘要:

本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.

关键词:

多模态方法|晃荡|波动分区|砰击|水弹性|模型实验缩比

Abstract:

Resonant liquid motions in various engineering fields are exemplified. Sloshing in ship tanks associated with violent flow are discussed in detail. A nonlinear analytically based multimodal method that facilitates investigations of wave regimes, multi-branched solutions and physical stability is described. The importance of 3D flow with, for instance, swirling and chaos in nearly square-base tanks as well as in vertical cylindrical and spherical tanks is emphasized. Sloshinginduced slamming involves a broad variety of inflow conditions that depend on the liquid depth-to-tank length ratio. The many physical phenomena involving fluid mechanic and thermodynamic parameters as well as hydroelasticity effecting slamming load effects and associated scaling from model to full scale for prismatic liquefied natural gas (LNG) tanks are discussed.

Key words:

multimodal method|sloshing|wave regimes|slamming|hydroelasticity|model test scaling

中图分类号: 

  • O35