首页 > 欢迎您访问力学进展网站! English

力学进展 ›› 2016, Vol. 46 ›› Issue (1): 201602-201602.doi: 10.6052/1000-0992-15-038

• 综述 • 上一篇    下一篇

Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications(线性与非线性流固耦合动力学数值方法的进展及应用)

邢景棠   

  1. Fluid-Structure Interaction Research Group, Faculty of Engineering & the Environment, University of Southampton, Southampton SO17 1BJ, UK
  • 收稿日期:2015-10-08 修回日期:2015-11-17 出版日期:2016-01-01 发布日期:2015-11-17
  • 通讯作者: 邢景棠 E-mail:jtxing@soton.ac.uk

Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications

Jing Tang XING   

  1. Fluid-Structure Interaction Research Group, Faculty of Engineering & the Environment, University of Southampton, Southampton SO17 1BJ, UK
  • Received:2015-10-08 Revised:2015-11-17 Online:2016-01-01 Published:2015-11-17

摘要:

本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用. 讨论了四种数值分析方法: (1) 混合有限元-子结构-子区域数值模型, 以求解有限域线性流固耦合问题, 如流体晃动, 声腔-结构耦合, 流体中的压力波, 化工容器的地震响应,坝水耦合等; (2) 混合有限元-边界元数值模型, 以求解涉及无限域的线性流固耦合问题, 如大型浮体承受飞机降落冲击, 船舰的炮击回应等; (3) 混合有限元-有限差分(体积) 数值模型, 以求解不涉及破浪和两相分离的非线性流固耦合问题; (4) 混合有限元-光滑粒子数值模型, 以求解涉及破浪和两相分离的非线性流固耦合问题. 文中推荐分区迭代求解过程, 以便应用现有的固体及流体求解器, 于毎一时间步长分别求解固体及流体的方程, 通过耦合迭代收敛, 向前推进以达问题求解. 文中选用的工程应用例子包含气-液-壳三相耦合, 液化天然气船水晃动, 人体步行冲击引起的声腔-建筑结构耦合, 大型浮体承受飞机降落冲击的瞬态动力回应, 涉及破浪和两相分离的气-翼耦合及结构于水上降落的冲击. 数值分析结果与可用的实验或计算结果作了比较, 以说明所述方法的精度及工程应用价值. 文中列出了基于流固耦合的波能采积装置模型, 以应用线性系统的共振及非线性系统的周期解原理, 有效地采积波能. 本文列出了231 篇参考文献, 以便读者进一步研讨所感兴趣方法.

关键词:

线性与非线性流固耦合|混合有限元-子结构法|混合有限元-边界元法|混合有限元-有限差分法|混合有限元-光滑粒子法|流体晃动|声腔-结构耦合|破浪模拟|流体中的压力波|液化天然气船/超大浮体-水耦合|波能采积

Abstract:

This paper presents a review on some developments of numerical methods for linear and nonlinear fluid-solid interaction (FSI) problems with their applications in engineering. The discussion covers the four types of numerical methods: (1) mixed finite element (FE)-substructure-subdomain model to deal with linear FSI in a finite domain, such as sloshing, acoustic-structure interac-tions, pressure waves in fluids, earthquake responses of chemical vessels, dam-water couplings, etc.; (2) mixed FE-boundary element (BE) model to solve linear FSI with infinite domains, for example, very large floating structure (VLFS) subject to airplane landing impacts, ship dynamic response caused by cannon/missile fire im-pacts, etc.; (3) mixed FE-finite difference (FD)/volume (FV) model for nonlinear FSI problems with no separations between fluids and solids and breaking waves; (4) mixed FE-smooth particle (SP) method to simulate nonlinear FSI problems with F-S separations as well as breaking waves. The partitioned iteration approach is suggested in base of available fluid and solid codes to separately solve their gov-erning equations in a time step, and then through reaching its convergence in coupling iteration to forward until the problem solved. The selected application examples include air-liquid-shell three phases interactions, liquefield natural gas (LNG) ship-water sloshing; acoustic analysis of air-building interaction system excited by human foot impacts; transient dynamic response of an airplane-VLFS-water interaction system excited by airplane landing impacts; turbulence flow-body interactions; structure dropping down on the water surface with breaking waves, etc. The numerical results are compared with the available experiment or numeri-cal data to demonstrate the accuracy of the discussed approaches and their values for engineering applications. Based on FSI analysis, linear and nonlinear wave energy harvesting devices are listed to use the resonance in a linear system and the periodical solution in a nonlinear system, such as flutter, to effectively harvest wave energy. There are 231 references are given in the paper, which provides very useful resources for readers to further investigate their interesting approaches.

Key words:

linear and nonlinear fluid-solid interactions|mixed FE-substructure method|mixed FE-BE method|mixed FE-FD method|mixed FE-SP method|fluid sloshing|acoustic volume-structure coupling|breaking wave simulations|pressure waves in fluids|LNG ship/VLFS-water