[1] |
Aluru N R. 1999. A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics, 23: 324-338.
|
[2] |
Anderson J D. 1995. Computational Fluid Dynamics, the Basics with Applications. McGraw-Hill.
|
[3] |
Antoci C, Gallati M, Sibilla S. 2007. Numerical simulation of fluid-structure interaction by SPH. Comput. Struct., 85: 879-890.
|
[4] |
Ataie-Ashtiani B, Shobeyri G, Farhadi L. 2008. Modified incompressible SPH method for simulating free surface problems. Fluid Dynamics Research, 40: 637-661.
|
[5] |
Attawy S W, Heinstein M W, Swegle J W. 1994. Coupling of smoothed particle hydrodynamics with the finite element method. Nuclear Engineering and Design, 150: 199-205.
|
[6] |
Axisa F, Antunes J. 2007. Fluid Structure Interaction. Butterworth-Heinemann.
|
[7] |
Basa M, Quinlan N J, Lastiwka M. 2009. Robustness and accuracy of SPH formulations for viscous flow.International Journal for Numerical Methods in Fluids, 60: 1127-1148.
|
[8] |
Bathe K J. 1996. Finite Element Procedures in Engineering Analysis. Prentice-Hall.
|
[9] |
Bathe K J, Nitikitpaiboon C, Wang X. 1995. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Computers and Structures, 56: 225-237.
|
[10] |
Bazilevs Y, Takizawa K, Tezduyar T E. 2013. Computational Fluid-Structure Interaction: Methods and Applications. Wiley.
|
[11] |
Bedard R, Hagerman G, Previsic M, Siddiqui O, Thresher R, Ram B. 2005. Final summary report of offshore wave power feasibility demonstration project. EPRI Global WP 009-US Rev.
|
[12] |
Belytschko T, Kennedy J M. 1978. Computer models for subassembly simulation. Nuclear Eng Des, 49: 17-38.
|
[13] |
Belytschko T, Flanagan D P, Kennedy J M. 1982. Finite element methods with user-controlled meshes for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 33: 669-688.
|
[14] |
Bishop R E D, Price W G. 1979. Hydroelasticity of Ships. Cambridge University Press, London.
|
[15] |
Bishop R E D, Price W G, Wu Y. 1986. A general linear hydroelasticity theory of floating structures moving in a seaway. Phil. Trans. R. Soc. Lond. A, 316: 375-426.
|
[16] |
Bisplinghoff R L, Ashley H, Halfman R L. 1957. Aeroelasticity. Addison-Wesley Publ. Comp. Inc. Mass.
|
[17] |
Bisplinghoff R L, Ashley H. 1962. Principles of Aeroelasticity. John Wiley & Sons, Inc., New York.
|
[18] |
Bisplinghoff R L. 1958. Aeroelasticity. Appl. Mech. Rev. 11: 99-103.
|
[19] |
Bodnar T, Galdi G P, Necasova S. 2014. Fluid-Structure Interaction and Biomedical Applications. Springer. BOEING webpage www.boeing.com.
|
[20] |
Bonet J, Lok T S L. 1999. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180: 97-115.
|
[21] |
Bonet J, Kulasegaram S, Rodriguez-Paz M X, Profit M. 2004. Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Computer Methods in Applied Mechanics and Engineering, 193: 1245-1256.
|
[22] |
Brebbia C A. 1980. The Boundary Element Method for Engineers. Pentech Press, London.
|
[23] |
Brebbia C A, Rodriguez G R. 2013. Fluid Structure Interaction VII. WIT Press.
|
[24] |
Bui H H, Sako K, Fukagawa R. 2007. Numerical simulation of soil-water interaction using smoothed particle hydrodynamcis (SPH) method. Journal of Terramechanics, 44: 339-346.
|
[25] |
Cao Q, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T. 2006. Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E , 74: 046218.
|
[26] |
Cao Q, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T. 2008a. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int J. Non Mech, 43: 462-473.
|
[27] |
Cao Q, Wiercigroch M, Pavlovskaia E E, Thompson J M T, Grebogi C. 2008b. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Phil Trans R Soc A, 366: 635-652.
|
[28] |
Capuzzo-Dolcetta R, Robert D L. 2000. A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics. Appl. Numer. Math., 34: 363-371.
|
[29] |
Caughey D A. 2001. Implicit multigrid computation of unsteady flows past cylinders of square cross-section. Computers & Fluids, 30: 939-960.
|
[30] |
Chan R K-C. 1975. A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces. Journal of Computational Physics, 17: 311-331.
|
[31] |
Chen J K, Beraun J E, Carney T C. 1999. A corrective smoothed particle method for boundary value problems in heat conduction. International Journal for Numerical Methods in Engineering, 46: 231-252.
|
[32] |
Chen J K, Beraun J E. 2000. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Computer Methods in Applied Mechanics and Engineering, 190: 225-239.
|
[33] |
Chen X. 2013. Fluid-structure Interaction Modelling Cell Deformation Airways. Lambert Academic Pub-lishing.
|
[34] |
Colagrossi A, Antuono M, Touze D L. 2009. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics. Physical Revire E, 79: 056701.
|
[35] |
Colagrossi A, Landrini M. 2003. Numerical simulation of interfacial flows by smoothed particle hydrody-namics. Journal of Computational Physics, 191: 448-475.
|
[36] |
Courant R, Hilbert D. 1962. Methods of Mathematical Physics. Interscience, New York.
|
[37] |
Craig R R, Bampton M C C. 1968. Coupling of substructures for dynamical analysis. AIAA. Jl, 6: 1313-1319.
|
[38] |
Craig R R, Chang C J. 1977. On the use of attachment modes in substructure coupling for dynamical analysis//AIAA/ASME 18th Struc. Dyn. & Matls. Conf., San Diego, Paper 77-405.
|
[39] |
Crespo A J C, Gomez-Gesteira M, Dalrymple R A. 2007. Boundary conditions generated by dynamic paticles in SPH methods. CMC, 5: 173-184.
|
[40] |
Crolet J M, Ohayon R. 1994. Computational Methods for Fluid-Structure Interaction. Taylor & Francis,London.
|
[41] |
Cummins S J, Rudman M. 1999. An SPH projection method. J. Comput. Phys., 152: 584-607.
|
[42] |
Dalrymple R A, Knio O. 2010. SPH Modelling of Water Waves//Hans H, Magnus L eds. ASCE: Conference Proceedings Sweden, 80.
|
[43] |
Dahl J, Hover F, Triantafyllou M, Oakley O. 2010. Dual resonance in vortes-induced vibrations ar subcritical and supercritical reynolds numbers. Journal of Fluid Mechanics, 643: 395-424.
|
[44] |
Department of the Navy. 2003. Environmental Assessment, Proposed Wave Energy Technology Project. M. Corps Base Hawaii, Hawaii.
|
[45] |
Dervieux A. 2003. Fluid-Structure Interaction. Kogan Page Limited, London.
|
[46] |
Dominguez J M, Crespo A J C, Gomez-Gesteria M, Marongiu J C. 2010. Neighbour lists in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 67: 2026-2042.
|
[47] |
Donea J. 1980. Finite element analysis of transient dynamic fluid-structure interaction//Donea J. ed. Ad-vanced Structural Dynamics, Chapter 8, 255-290, Applied Science.
|
[48] |
Donea J. 1983. An arbitrary Lagrangian-Eulerian finite element method//Belytschko T, Hughes T J R eds. Computational Methods for Transient Analysis, Chapter 10, 473-516, Elsevier.
|
[49] |
Donea J, Fasoli-Stella P, Giuliani S. 1977. Lagrangian-Eulerian finite element techniques for transient fluid-structure interaction problems. Paper B1/2//Transactions of 4th SMIRT Conference, San Francisco, 15-19 August 1977.
|
[50] |
Donea J, Giuliani S, Halleux J P. 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33: 689-723.
|
[51] |
Durao D F G, Heitor M V, Pereira J C F. 1988. Measurements of turbulent and periodic flows around a square cross-section cylinder. Experiments in Fluids, 6: 298-304.
|
[52] |
Ellero M, Serrano M, Espanol P. 2007. Incompressible smoothed particle hydrodynamics. J. Comput. Phys., 226: 1731-1752.
|
[53] |
Endo H, Yago K. 1998. Time history response of a large floating structure subjected to dynamic load. J. Soc. Naval Arch. Japan, 186: 369-376.
|
[54] |
Falnes J. 2002. Ocean Waves and Oscillating Systems, Linear Interactions Including Wave-Energy Extrac-tion. Cam. Univ. Press, London.
|
[55] |
Floryan J M, Rasmussen H. 1989. Numerical methods for viscous flows with moving boundaries. Applied Mechanics Reviews, 42: 323-341.
|
[56] |
Franke R, Rodi W. 1991. Calculation of vortex shedding past a square cylinder with various turbulence models//Proceedings of the Eighth Symposium on Turbulent Shear Flows, pp. 20.1.1-20.1.6, Tech. Univ. of Munich.
|
[57] |
Freitas C J, Runnels S R. 1999. Simulation of fluid-structure interaction using patched-overset grids. J. F. & Structures, 13: 191-207.
|
[58] |
Fung Y C. 1955. An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Inc., New York.
|
[59] |
Galdi G P, Rannacher R. 2010. Fundamental Trends in Fluid-Structure Interaction. World Scientific.
|
[60] |
Gingold R A, Monaghan J J. 1977. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181: 375-389.
|
[61] |
Grenier N, Antuono M, Colagrossi A, Touze D L, Alessandrini B. 2009. An hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, 228: 8380-8393.
|
[62] |
Grenier N, Touze D L. 2008. An improved SPH method for multi-phase simulations//Proceedings of the 8nd International Conference on Hydrodynamics, 11.
|
[63] |
Hirsch C. 1988. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization. John Wiley & Sons.
|
[64] |
Hirsch C. 1990. Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons.
|
[65] |
Hirt C W, Amsden A A, Cook J L. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14: 227-253.
|
[66] |
Horton B, Sieber J, Thompson J M T, Wiercigroch M. 2011. Dynamics of the nearly parametric pendulum. Int J. Non Mech, 46: 436-442.
|
[67] |
Hosseini S M, Manzari M T, Hannani S K. 2007. A fully explicit three-step SPH algorithm for simulation of non-newtonian fluid flow. International Journal for Numerical Methods for Heat & Fluid Flow, 17: 715-735.
|
[68] |
Hou S N. 1969. Review of modal synthesis techniques and a new approach. Shock and Vib. Bull., 40: 25-29.
|
[69] |
Howe M S. 1998. Acoustics of Fluid-Structure Interactions. Cambridge University Press.
|
[70] |
Hu X Y, Adams N A. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213: 844-861.
|
[71] |
Hu X Y, Adams N A. 2007. An incompressible multi-phase SPH method. J. Comput. Phys., 227: 264-278.
|
[72] |
Hughes T J R, Liu W K, Zimmermann T K. 1981. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29: 329-349.
|
[73] |
Hunn B A. 1955. A method of calculating normal modes of an aircraft. Quart. Jl. Mech. Appl. Math., 8: 38-58.
|
[74] |
Hurty W C. 1960. Vibration of structural systems by component mode synthesis. Proc. ASCE. J. E. M. Div., 8: 51-69.
|
[75] |
Hurty W C. 1965. Dynamic analysis of structural systems using component modes. AIAA. Jl., 3: 678-685.
|
[76] |
Ibrahim R A. 2005. Liquid Sloshing Dynamics, Theory and Applications. Cambridge University Press, London.
|
[77] |
JAMSTEC. 2006. Wave Energy Research and Development at JAMSTEC, Offshore Floating Wave Energy Device, Mighty Whale.
|
[78] |
Javed A. 2015. Investigation on meshfree particle methods for fluid-structure interaction problems. [PhD
|
[79] |
Thesis], Faculty of Engineering & Environments, University of Southampton, Southampton, UK.
|
[80] |
Javed A, Djidjeli K, Xing J T. 2013a. Adaptive shape parameter (ASP) technique for local radial basis functions (RBFs) and their application for solution of Navier-Strokes equations. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 7: 771-780.
|
[81] |
Javed A, Djidjeli K, Xing J T, Cox S J. 2013b. A hybrid mesh free local RBF-Cartesian FD scheme for incompressible flow around solid bodies. International Journal of Mathematical, Computational, Natural and Physical Engineering, 7: 957-966.
|
[82] |
Javed A, Djidjeli K, Xing J T. 2014a. Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier-Stokes equations. Computer & Fluids, 89: 38-52.
|
[83] |
Javed A, Djidjeli K, Xing J T. 2014b. An ALE based hybrid meshfree local RBF-Cartesian FD scheme for incompressible flow around moving boundaries. AIAA Aviation, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2014-2312.
|
[84] |
Jiang F, Oliveira M S A, Sousa A C M. 2007. Mesoscale SPH modeling of fluid flow in isotropic porous media. Computer Physics Communications, 176: 471-480.
|
[85] |
Jin J. 2007. A mixed mode function-boundary element method for very large floating structure-water Interaction systems excited by airplane landing impacts. [PhD Thesis], School of Engineering Sciences, University of Southampton, Southampton, UK.
|
[86] |
Jin J, Xing J T. 2007. Transient dynamic analysis of a floating beam-water interaction system excited by the impact of a landing beam. Journal of Sound & Vibration, 303: 371-390.
|
[87] |
Jin J, Xing J T. 2009. A convergence study on mixed mode function-boundary element method for aircraft- VLFS-water interaction system subject to aircraft landing impacts//Proceedings of the ASME 28th In-ternational Conference on Offshore Mechanics and Arctic Engineering-OMAE2009, 31 May-5 June, 2009, Honolulu, Hawaii.
|
[88] |
Johnson G R. 1994. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nuclear Engineering and Design, 150: 265-274.
|
[89] |
Johnson G R., Stryk R A, Beissel S R. 1996a. SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, 139: 347-373.
|
[90] |
Johnson G R, Stryk R A, Beissel S R. 1996b. Interface effects for SPH impact computations. Structures under shock and impact, IV: 285-294.
|
[91] |
Johnson G R, Beissel S R. 1996c. Normalized smoothing functions for SPH impact computations. Interna-tional Journal for Numerical Methods in Engineering, 39: 2725-2541.
|
[92] |
Jun S, Liu W K, Belytschko T. 1998. Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 41: 137-166.
|
[93] |
Khodabakhshi G. 2011. Computational Modelling Fluid-porous Solid Interaction Systems. LAMBERT Academic Publ.
|
[94] |
Khabakhpasheva T I, Korobkin A A. 2003. Approximate models of elastic wedge impact//18th Int. Work. Water Waves & Floating Bodies, Le Croisic, France.
|
[95] |
Khabakhpasheva T I, Korobkin A A. 2013. Elastic wedge impact onto a liquid surface: Wagner's solution and approximate models. Journal of Fluids and Structures, 36: 32-49.
|
[96] |
Kock E, Olson L. 1991. Fluid-solid interaction analysis by the finite element method-a variational approach. Int. Jl. Numer. Methods Eng., 31: 463-491.
|
[97] |
Koobus B, Farhat C, Tran H. 2000. Computation of unsteady viscous flows around moving bodies using the k-" turbulence model on unstructured dynamic grids. Com Meth Appl Mech & Eng, 190: 1441-1466.
|
[98] |
Lee E S, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. 2008. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys., 227: 8417-8436.
|
[99] |
Lee E S, Violeau D, Issa R. 2010. Application of weakly compressible and truly incompressible SPH to 3-d water collapse in waterworks. Journal of Hydraulic Research, 48: 50-60.
|
[100] |
Lencia S, Pavlovskaiab E, Regac G, Wiercigroch M. 2008. Rotating solutions and stability of parametric pendulum by perturbation method. Journal of Sound & Vibration, 310: 243-259.
|
[101] |
Libersky L D, Petschek A G. 1991. Smoothed particle hydrodynamics with strength of materials//Trease H, Fritts J, Crowley W eds. Proceeding of The Next Free Lagrange Confrence, pp. 248-257, Springer Berlin.
|
[102] |
Litaka G, Borowieca M, Wiercigroch M. 2008. Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions. Dynamical Systems, 23: 259-265.
|
[103] |
Litaka G, Wiercigroch M, Horton B, Xu X. 2010. Transient chaotic behaviour versus periodic motion of a parametric pendulum by recurrence plots. ZAMM. Z. Angew. Math. Mech., 90: 33-41.
|
[104] |
Liu G R. 2003. Mesh free methods: Moving beyond the finite element method. Chemical Rubber Boca Raton, FL.
|
[105] |
Liu G R, Liu M B. 2003a. Smoothed Particle Hydrodynamics. World Scientific Publishing Co. Pte. Ltd.
|
[106] |
Liu M B, Liu G R, Lam K Y. 2003b. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 155: 263-284.
|
[107] |
Liu W K, Ma D C. 1982. Computer implementation aspects for fluid-structure interaction problems. Com-puter Methods in Applied Mechanics and Engineering, 31: 129-148.
|
[108] |
Liu W K, Uras R A. 1988. Variational approach to fluid-structure interaction with sloshing. N. E. Des., 106: 69-85.
|
[109] |
Liu W K, Jun S, Zhang Y F. 1995a. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20: 1081-1106.
|
[110] |
Liu W K, Jun S, Li S, Adee J, Belytschko T. 1995b. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38: 1655-1679.
|
[111] |
Lobovský L, Vimmr J. 2007. Smoothed particle hydrodynamics and finite volume modelling of incompress-ible fluid flow. Mathematics and Computers in Simulation, 76: 124-131.
|
[112] |
Lucy L B. 1977. Numerical approach to testing the fission hypothesis. Astronomical Journal, 82: 1013-1024.
|
[113] |
MacNeal R H. 1977. A hybrid method of component mode synthesis. Comp. Strs, 1: 581-601.
|
[114] |
Magnus W, Oberhettinger F. 1949. Formulas and Theorems for the Special Functions of Mathematical Physics. Chelsea Publishing Co., New York.
|
[115] |
Monaghan J J. 1982. Why particle methods work. SIAM J. on Scientific and Statistical Computing, 3: 422-433.
|
[116] |
Monaghan J J. 1987. SPH meets the Shocks of Noh. Monash University Paper.
|
[117] |
Monaghan J J. 1988. An introduction to SPH. Computer Physics Communications, 48: 89-96.
|
[118] |
Monaghan J J. 1989. On the problem of penetration in particle methods. Journal of Comp. Physics, 82: 1-15.
|
[119] |
Monaghan J J. 1992. Smoothed particle hydrodynamics. Annual Review of Astr. and Astrophysics, 30: 543-574.
|
[120] |
Monaghan J J. 1994. Simulating free surface flows with SPH. J. Comput. Phys., 110: 399-406.
|
[121] |
Monaghan J J. 1996. Gravity currents and solitary waves. Physica D: Nonlinear Phenomena, 98: 523-533.
|
[122] |
Monaghan J J. 2002. SPH compressible turbulence. Monthly Notices of the Royal Astro Society, 335: 843-852.
|
[123] |
Monaghan J J, Gingold R A. 1983. Shock simulation by the particle method SPH. Journal of Computational Physics, 52: 374-389.
|
[124] |
Monaghan J J, Lattanzio J C. 1985a. A refined particle method for astrophysical problems. Astro & Astrophy, 149: 135-143.
|
[125] |
Monaghan J J, Poinracic J. 1985b. Artificial viscosity for particle methods. Applied Numerical Math., 1: 187-194.
|
[126] |
Monaghan J J, Kocharyan A. 1995c. SPH simulation of multi-phase flow. Com Phys Comms, 87: 225-235.
|
[127] |
Monaghan J J, Kos A. 1999. Solitary waves on a cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125: 145-155.
|
[128] |
Morand H J P, Ohayon R. 1995. Fluid Structure Interaction. John Wiley and Sons, Chichester.
|
[129] |
Morris J P, Fox P J, Zhu Y. 1997. Modeling low reynolds number incompressible flows using SPH. Journal of Computational Physics, 136: 214-226.
|
[130] |
Nandakumar K, Wiercigroch M, Chatterjee A. 2012. Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43: 7-14.
|
[131] |
Newman J N. 1977. Marine Hydrodynamics. MIT press.
|
[132] |
Newman J N. 1978. The theory of ship motions. Advances in Applied Mechanics, 18: 221-283.
|
[133] |
Newman J N. 1994. Wave effects on deformable bodies. J. Appl. Ocean Res., 16: 47-59.
|
[134] |
Nitikitpaiboon C, Bathe K J. 1993. An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Computers and Structures, 47: 871-891.
|
[135] |
Noh W F. 1964. A time-dependent, two-space dimensional, coupled Eulerian-Lagrangian code//Alder et al. eds. Methods in Computational Physics, vol. 3, pp. 117, Academic Press.
|
[136] |
Ocean Power Delivery Ltd. 2006. World's First Wave Farm-Shipping of First Machine to Portugal. Press Release.
|
[137] |
Ocean Power Technologies. 2006. Making Waves in Power. http://www.oceanwavetechnologies.com.
|
[138] |
Oger G, Doring M, Alessandrini B, Ferrant P. 2006. Two-dimensional SPH simmulations of wedge water entries. Journal of Computational Physics, 213: 803-822.
|
[139] |
Panahi K K. ed. 1997. Advances in Analytical, Experimental and Computational Technologies in Fluids, Structures, Transients and Natural Hazards. PVP-Vol. 355, ASME, New York.
|
[140] |
Panciroli R. 2003. Hydroelastic impacts of deformable wedges. Solid Mechanics and its Applications, 192: 1-45.
|
[141] |
Panciroli R, Abrate S, Minak G, Zucchelli A. 2012. Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Composite Structures, 94: 532-539.
|
[142] |
Païdoussis M P. 2013. Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press.
|
[143] |
Païdoussis M P, Price S J, Langre E D. 2011. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University, Cambridge.
|
[144] |
Pavlovskaia E, Horton B, Wiercigroch M, Lenci S, Rega G. 2012. Approximate rotational solutions of pendulum under combined vertical and horizontal excitation. International Journal of Bifurcation and Chaos, 22: 1250100.
|
[145] |
Pozorski J, Wawrenczuk A. 2002. SPH computation of incompressible viscous flows. J. T. Appl Mech, 40: 917.
|
[146] |
Pracht W E. 1975. Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh. Journal of Computational Physics, 17: 132-159.
|
[147] |
Quinlan N J, Basa M, Lastiwka M. 2006. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 66: 2064-2085.
|
[148] |
Rabczuk T, Xiao S P, Sauer M. 2006. Coupling of meshfree methods with finite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering, 22: 1031-1065.
|
[149] |
Rafiee A, Thiagarajan K P. 2008. Fluid-structure interaction imulation using an incompressible SPH method//ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, 485-496.
|
[150] |
Rafiee A, Thiagarajan K P. 2009. An SPH projection method for simulating fluid-hypoelastic structure interaction. Computer Methods in Applied Mechanics and Engineering, 198: 2785-2795.
|
[151] |
Ramaswamy B, Kawahara M. 1987. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flows. Int. Journal for Numerical Methods in Fluids, 7: 1053-1075.
|
[152] |
Randles P W, Libersky L D. 1996. Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 139: 375-408.
|
[153] |
Rellich F. 1943. Uber das asymptotische verhalten der losungen von Δu + λu = 0 in unendlichen gebieten.Jahr. D. Math Verein, 53: 57-65.
|
[154] |
Rhinefrank K. 2005. Wave energy research development and demonstration at Oregon State Univer-sity//Energy Ocean 2005, Washington.
|
[155] |
Ritchie B W, Thomas P A. 2001. Multiphase smoothed-particle hydrodynamics. Mon. Not. R. Astron. Soc, 323: 743-756.
|
[156] |
Schussler M, Schmitt D. 1981. Comments on smoothed particle hydrodynamics. Astro. Astrophys., 97: 373-379.
|
[157] |
Shao S. 2009. Incompressible SPH simulation of water entry of a free-falling object. International Journal for Numerical Methods in Fluids, 59: 91-115.
|
[158] |
Shao S, Edmond Y M L. 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26: 787-800.
|
[159] |
Sommerfeld A. 1912. Die greensche funktionen der schwingungsgleichung. Jahr. D. Math Verein, 21: 309-353.
|
[160] |
Somerfield A. 1949. Partial Differential Equations in Physics. Academic Press, New York.
|
[161] |
Souli M, Benson D J. 2010. Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical
|
[162] |
Simulation. Wiley.
|
[163] |
Stellingwerf R F, Wingate C. 1994. Impact modelling with SPH. Memorie della societa astro italiana, 65: 1117.
|
[164] |
Sun F. 2013. Investigations of smoothed particle hydrodynamics method for nonlinear fluid-rigid body interaction dynamics. [PhD Thesis]. FEE, University of Southampton, UK.
|
[165] |
Sun F, Tan M, Xing J T. 2011. Investigations of boundary treatments in incompressible smoothed particle hydrodynamics for fluid-structural interactions. Paper number 303-241//The 2nd International Confer-ence of Fluid Mechanics and Heat & Mass Transfer, Corfu, Greece, 14-17 July 2011, Recent Research in Mechanics, 92-97.
|
[166] |
Sun F, Tan M, Xing J T. 2012. Air-water two phase flow simulation using smoothed particle hydrodynam-ics//David Le Touze D L, Grenier N, Barcarolo D A eds. 2nd International Conference on Violent Flows, pp.58-63, Nantes, France.
|
[167] |
Sun F, Tan M, Xing J T. 2013. Application of incompressible smoothed particle hydrodynamics method for 3D fluid solid interaction problem//Liu G, Zabala D eds. Recent Researches in Mechanical Engineering, pp144-149, Milan: WSEAS Press, ISSN: 2227-4596, ISBN: 978-1-61804-153-1.
|
[168] |
Sun Z, Djidjeli K, Xing J T, Cheng F, Javed A. 2014. Some modifications of MPS method for incompressible free surface flow//O~nate E, Oliver J and Huerta A eds. 11th World Congress On Computational Me-chanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European conference on computational fluid dynamics (ECFD VI).
|
[169] |
Sun Z, Djidjeli K, Xing J T, Cheng F. 2015a. Coupling MPS and modal superposition method for flexible wedge dropping simulation. ISOPE 2015, 21-26 June, 2015, Hawaii, USA, Paper ID: TPC-1208.
|
[170] |
Sun Z, Djidjeli K, Xing J T, Cheng F. 2015b. Modified MPS method for the 2D fluid structure interaction problem with free surface. Computer & Fluids, 122: 47-65.
|
[171] |
Swegle J W, Hicks D L, Attaway S W. 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys., 116: 123-134.
|
[172] |
Tan M, Xiong Y P, Xing J T, Toyoda M. 2006. A numerical investigation of natural characteristics of a partially filled tank using a substructure method//Proceedings of Hydroelasticity' 2006: Hydroelasticity in Marine Technology, pp.181-190, National Defence Industry Press, Beijing.
|
[173] |
Thorpe T W. 1999. A brief review of wave energy. ETSU Report R-122, presented for UKDTI.
|
[174] |
Trulio J G. 1966. Theory and structure of the AFTON codes, Report ASWL-TR-66-19, Air Force W. Laboratory.
|
[175] |
Unruh, J.F. 1979. A finite-element sub-volume technique for structure-borne interior noise prediction//5th Aero. Acous. Conf. Seattle, WA, AIAA 79-585.
|
[176] |
U.S. Department of the Interior. 2006. Technology White Paper on Wave Energy Potential on the U.S.
|
[177] |
Outer Continental Shelf. Minerals Management Service, Renewable Energy and Alternate Use Program.
|
[178] |
Wang X S. 2008. Fundamentals of Fluid-solid Interactions: Analytical and Computational Approaches. Elsevier.
|
[179] |
Ward P, Desai R, Kebede W, Ecer A. 1988. A variational finite-element formulation for 3-dimensional incompressible flows//Morton K W, Baines M T eds. Num. Meth. Fluid Dyn. III, 46: 403-409, Oxford
|
[180] |
UniversityWave Dragon, Technology. 2005. http: //www/wavedragon.net.
|
[181] |
Wave Plane Production A/S=WPP A/S. 2006. http: //www.waveplane.com.
|
[182] |
Wróblewski P, Marius Z K, Krzysztof B. 2007. SPH-A comparison of neighbor search methods based on constant number of neighbours and constant cut-off radius. Task Quarterly, 11: 273-283.
|
[183] |
Xiao Q, Zhu Q. 2014. A review on flow energy harvesters based on flapping foils. Journal of Fluids & Structures, 46: 174-191.
|
[184] |
Xing J T. 1981. Variational principles for elastodynamics and study upon the theory of mode synthesis methods. [Master Thesis]. Dept. of Engineering Mechanics, Qinghua University, Beijing, China (in Chinese).
|
[185] |
Xing J T. 1984. Some theoretical and computational aspects of finite element method and substructure-subdomain technique for dynamic analysis of the coupled fluid-solid interaction problems-variational prin-ciples elastodynamics and linear theory of micropolar elasticity with their applications to dynamic analysis. [PhD Thesis], Department of Engineering Mechanics, Qinghua University, Beijing, China (in Chinese).
|
[186] |
Xing J T. 1986a. A study on finite element method and substructure-subdomain technique for dynamic analysis of coupled fluid-solid interaction problems. Acta Mechanica Solida Sinica, 4: 329-337.
|
[187] |
Xing J T. 1986b. Mode synthesis method with displacement compatibility for dynamic analysis of fluid-solid interaction problems. Acta Aeronautica et Astronautica Sinica, 7: 148-156.
|
[188] |
Xing J T, 1988. Two variational formulations for dynamics analysis of coupled fluid-solid interaction prob-lems with linearised free surface wave considered. Acta Aero Astro Sin, 9: A568-571.
|
[189] |
Xing J T. 1992a/1995a. Theoretical Manual of Fluid-Structure Interaction Analysis Program-FSIAP. Chi-nese version, BUAA (1992); English version (1995), SES, University of Southampton.
|
[190] |
Xing J T. 1992b/1995b. User Manual Fluid-Structure Interaction Analysis Program-FSIAP. Chinese version, BUAA (1992), English version (1995), SES, University of Southampton.
|
[191] |
Xing J T. 2007. Natural vibration of two-dimensional slender structure-water interaction systems subject to Sommerfeld radiation condition. Journal of Sound and Vibration, 308: 67-79.
|
[192] |
Xing J T. 2008. An investigation into natural vibrations of fluid-structure interaction systems subject to Sommerfeld radiation condition. Acta Mech Sin, 24: 69-82.
|
[193] |
Xing J T. 2015. Energy Flow Theory of Nonlinear Dynamical Systems with Applications. Springer, Berlin.
|
[194] |
Xing J T, Jin J. 2004. A mixed mode function-boundary element method for the transient impact analysis of an aircraft landing on a floating structure//Harald K, Eike L eds. Proc. 9th Int. Symposium on
|
[195] |
Practical Design of Ships and Other Floating Structures, Luebeck-Travemuende, Germany, 819-826.
|
[196] |
Xing J T, Jin, J. 2005a. A dynamic analysis of an integrated aircraft-floating structure-water interaction sys-tem excited by the impact of an aircraft landing. International Journal of Offshore & Polar Engineering, 15: 1-7.
|
[197] |
Xing J T, Jin J. 2005b. A dynamic analysis of an integrated aircraft-floating structure-water interaction system excited by the impact of an aircraft landing//Proc. 15th Int. Offshore Polar Eng. Conf., Seoul, 1: 182-189.
|
[198] |
Xing J T, Price W G. 1991. A mixed finite element method for the dynamic analysis of coupled fluid-solid interaction problems. Proc R Soc Lond A, 433: 235-255.
|
[199] |
Xing J T, PriceWG, Du Q H. 1996 Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems. Phil Trans R Soc Lond A, 354: 259-295.
|
[200] |
Xing J T, Price W G. 1997. Variational principles of nonlinear fluid-solid interaction systems. Phil. Trans. R. Soc. Lond. A, 335: 1063-1095.
|
[201] |
Xing J T, Price W G. 1998. A variational solution method applied to a nonlinear water-structure interaction system//Wen B C ed. Proceedings of the International Conference on Vibration Engineering, vol.1, 219-224, August 6-8, 1998, Dalian, China, Northeastern University Press.
|
[202] |
Xing J T, Price W G. 2000. The theory of non-linear elastic ship-water interaction dynamics. Journal of Sound & Vibration, 230: 877-914.
|
[203] |
Xing J T, Price W G, Chen Y G. 2002. A numerical simulation of nonlinear fluid-rigid structure interaction problems//Proceedings of the ASME International Mechanical Engineering Congress & Exposition, Vol-ume 3 (7.CD-ROM), Session AMD-12A, Paper IMECE2002-32534, November 17-22, 2002, New Orleans,USA.
|
[204] |
Xing J T, Price W G, Chen Y G. 2003. A mixed finite element -finite difference method for nonlinear fluid-structure interaction dynamics, Part I: rigid structure-fluid interaction. Proc. Royal Soc A, 459: 2399-2430.
|
[205] |
Xing J T, Price W G, Chen Y G. 2005. A numerical method for simulating nonlinear fluid-rigid structure interaction problems. Acta Mechanica Solida Sinica, 18: 95-109.
|
[206] |
Xing J T, Zheng Z C. 1983. A study upon mode synthesis methods based on variational principles for elastodynamics. Acta Mechanica Solida Sinica, 2: 250-257.
|
[207] |
Xing J T, Zhou S, Cui E J. 1997a. A general survey of the fluid-solid interaction mechanics. Advances in Mechanics, 27: 19-38 (in Chinese).
|
[208] |
Xing J T, Xiong Y P, Tan M. 2009. Developments of a mixed finite element substructure-subdomain method for fluid-structure interaction dynamics with applications in maritime engineering. Proc IMechE Part M: J Engineering for the Maritime Environment, 223: 399-418.
|
[209] |
Xing J T, Price W G, Wang A. 1997b. Transient analysis of the ship-water interaction system excited by a pressure water wave. Marine Structures, 10: 305-321.
|
[210] |
Xing J T, Xiong Y P, Tan M. 2007a. The natural vibration characteristics of a water-shell tank interaction system//Advancements in Marine Structures. Proceedings of Marstruct 2007, 1st International Confer-ence on Marine Structures, pp.305-312, Glasgow, UK, 12-14 March 2007, Taylor and Francis, London.
|
[211] |
Xing J T, Xiong Y P, Tan M. 2007b.The dynamic analysis of a building structure-acoustic volume interaction system excited by human footfall impacts//Proceedings of Fourteenth International Congress on Sound and Vibration, Cairns, Australia, 9-12 July 2007, Paper number 147, IIAV, Cairns.
|
[212] |
Xing J T, Xiong Y P. 2008a. Numerical simulations of a building-acoustic volume interaction system excited by multiple human footfall impacts//Proceedings of 2008 ASME Pressure Vessels and Piping Division Conference, Chicago, Illinois, July 27-31, 2008, PVP2008-61813, pp.1-10, ASME, New York.
|
[213] |
Xing J T, Xiong Y P. 2008b. Mixed finite element method and applications to dynamic analysis of fluid-structure interaction systems subject to earthquake, explosion and impact loads//Proceedings of ISMA 2008 International Conference on Noise and Vibration Engineering, Leuven, Belgium, September 15-17, 2008, Paper ID-562, pp.1-15, Katholieke Universiteit, Leuven.
|
[214] |
Xing J T, Xiong Y P, Tan M, An H. 2009a. A numerical investigation of a wave energy harness device-water interaction system subject to the wave maker excitation in a towing tank//Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, (OMAE2009), New York, USA, ASME, 1-10.
|
[215] |
Xing J T, Xiong Y P, Wiercigroch M, Cao Q. 2011. Mathematical modelling of an integrated converter for wave energy harvesting//ENOC 2011, 24-29 July 2011, Rome, Italy.
|
[216] |
Xiong Y P, Xing J T, Tan, M. 2006a. Transient dynamic responses of an internal liquid-LNG tank-sea water interaction system excited by waves and earthquake loads//Proceedings of the 14th International Congress on Sound and Vibration, Cairns, Australia, 9-12, July 2006, Paper number 566, pp.1-8 (IIAV, Cairns).
|
[217] |
Xiong Y P, Xing J T, Price W G. 2006b. The interactive dynamic behaviour of an air-liquid-elastic spherical tank system//Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference, Vancouver, BC, Canada, July 23-27, 2006, PVP2006-ICPVT11-93922, pp.1-8, ASME, New York.
|
[218] |
Xiong Y P, Xing J T. 2007. Natural dynamic characteristics of an integrated liquid-LNG tank-water inter-action system//Advancements in Marine Structures//Proceedings of Marstruct 2007, 1st International Conference on Marine Structures, Glasgow, UK, 12-14 March 2007, pp.313-321, Taylor and Francis, Lon-don.
|
[219] |
Xiong Y P, Xing J T. 2008a. Dynamic analysis and design of LNG tanks considering fluid structure in-teractions//Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, June 15-20, 2008, OMAE2008-57937, pp. 1-8 ASME, New York.
|
[220] |
Xiong Y P, Xing J T. 2008b. Transient dynamic responses of an integrated air-liquid-elastic tank interaction system subject to earthquake excitations//2008 ASME Pressure Vessels and Piping Division Conference- PVP2008, Chicago, Illinois, July 27-31, 2008, PVP2008-61815, pp.1-10, ASME, New York.
|
[221] |
Xu X, Pavlovskaia1 E, Wiercigroch M, Romeo F, Lenci S. 2007. Dynamic Interactions between Parametric Pendulum and Electro-Dynamical Shaker. ZAMM Z. Angew Math Mech, 87: 172-186.
|
[222] |
Xu X, Wiercigroch M, Cartel M P. 2005. Rotating orbits of a parametrically-excited pendulum. Chaos, S. and Fractals, 23: 1537-1548.
|
[223] |
Yang J, Xiong Y P, Xing J T. 2011. Investigations on a nonlinear energy harvesting system consisting of a flapping foil and an electro-magnetic generator using power flow analysis. Paper number DETC2011-48445//Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Com-puters and Information in Engineering Conference IDETC/CIE 2011, August 29-31, 2011, Washington, DC, USA.
|
[224] |
Young J, Lai J, Platzer M F. 2014a. A review of progress and challenges in flapping foil power generation. Progress in Aerospace Sciences, 67: 2-28.
|
[225] |
Young J, Lai J, Platzer M F. 2014b. Addendum to a review of progress and challenges in flapping foil power generation. Progress in Aerospace Sciences, 67: 1.
|
[226] |
Zhang G M, Batra R C. 2004. Modified smoothed particle hydrodynamics method and its application to transient problems. Computational Mechanics, 34: 137-146.
|
[227] |
Zhang X, Lu M, Wang J. 1997. Research progress in arbitrary Lagrangian-Eulerian method (In Chinese). Chinese Journal of Computational Mechanics, 17: 91-102.
|
[228] |
Zhao R, Faltinsen O, Aarsnes J. 1997. Water entry of arbitrary two-dimensional sections with and without flow separation.//21st Symposium on Naval Hydrodynamics. Trondheim, Norway, National Academy Press, Washington, DC, USA, 408-423.
|
[229] |
Zhuo C, Wang D, Shen S, Xing J T. 2013. Nonlinear low-frequency gravity waves in a water-filled cylindrical vessel subjected to high-frequency excitations. Proc. R. Soc. Lond. A, 469: 20120536.
|
[230] |
Zhou D, Tu J. 2012. Two degrees of freedom flow-induced vibrations on a cylinder//7th Int. Colloq. Bluff Body Aerodyn. Appl. BBAA7, International Association for Wind Engineering, AIAA.
|
[231] |
Zienkiewicz O C, Bettess P. 1978. Fluid-structure dynamic interaction and wave forces, an introduction to numerical treatment. International Journal for Numerical Methods in Engineering, 13: 1-16.
|
[232] |
Zienkiewicz O C, Taylor R L. 1989. The Finite Element Method. 4th ed., Vol.1. McGraw-Hill.
|
[233] |
Zienkiewicz O C, Taylor R L. 1991. The Finite Element Method. 4th ed., Vol.2. McGraw-Hill.
|