首页 > 欢迎您访问力学进展网站! English

力学进展 ›› 2013, Vol. 43 ›› Issue (4): 415-447.doi: 10.6052/1000-0992-13-044

• 论文 • 上一篇    

空间激光干涉引力波探测

罗子人1, 白姗2, 边星3, 陈葛瑞4, 董鹏2, 董玉辉1, 高伟2, 龚雪飞2, 贺建武3, 李洪银5, 李向前4, 李玉琼1, 刘河山1, 邵明学2, 宋同消3, 孙保三5, 唐文林2, 徐鹏2, 徐生年2, 杨然2, 靳刚1   

  1. 1 中国科学院力学研究所,北京100190
    2 中国科学院数学与系统科学研究院,北京100190
    3 首都师范大学物理系,北京100048
    4 北京工业大学应用数理学院,北京100022
    5 华中科技大学物理学院,武汉430074
  • 收稿日期:2013-06-17 出版日期:2013-07-25 发布日期:2013-08-10
  • 通讯作者: 靳刚 E-mail:gajin@imech.ac.cn
  • 作者简介:罗子人,1980 年出生,2010 年获中国科学院数学与系统科学研究院理学博士,现任中国科学院力学研究所助理研究员,参与了中国短臂长空间引力波探测器的可行性研究和中国先进重力卫星关键技术论证工作,主要从事引力波探测的空间激光干涉测距技术的理论分析和方案设计.
  • 基金资助:

    中国科学院科研装备研制项目(Y231411YB1);中国科学院战略性先导科技专项:空间科学预先研究项目(XDA04070400);理论物理国家重点实验室(中国科学院理论物理研究所) 开放课题基金(Y3KF281CJ1) 资助.

Gravitational wave detection by space laser interferometry

LUO Ziren1, BAI Shan2, BIAN Xing3, CHEN Gerui4, DONG Peng2, DONG Yuhui1, GAO Wei2, GONG Xuefei2, HE Jianwu3, LI Hongyin5, LI Xiangqian4, LI Yuqiong1, LIU Heshan1, SHAO Mingxue2, SONG Tongxiao3, SUN Baoshan5, TANG Wenlin2, XU Peng2, XU Shengnian2, YANG Ran2, JIN Gang1   

  1. 1 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
    3 Department of Physics, Capital Normal University, Beijing 100048, China
    4 College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
    5 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2013-06-17 Online:2013-07-25 Published:2013-08-10
  • Contact: JIN Gang E-mail:gajin@imech.ac.cn

摘要:

为印证广义相对论和开拓引力波天文学窗口,引力波探测是当前国际研究热点. 本文围绕空间激光干涉引力波探测,对其科学意义、发展状况、关键技术等进行了回顾. 与地面激光干涉引力波探测相比,空间探测的工作频段更低,从10-4»10 Hz,在工作距离为百万公里量级上,预计能探测到双致密星系统、超大质量比双黑洞绕转系统、中等质量比双黑洞绕转系统,以及星系合并引起的超大质量黑洞并合等波源. 为此,测距精度须达到皮米的量级,并且保证测距技术有效工作的无拖曳航天技术亦有很高的要求. 本文以欧洲的空间激光引力波探测计划为例,主要对上述两项技术进行分析和阐述,并展望了空间引力波探测在我国的发展趋势和前景.

关键词:

引力波探测|激光干涉测距系统|无拖曳航天技术|惯性传感器|微推进器|引力波天文学

Abstract:

Gravitational wave detection is now more than a mere veri¯cation of Einstein's relativity. It opens a brand-new window to explore gravitational wave astronomy, therefore attracts increasing attention of scientists from all over the world. Focusing on space laser interferometer gravitational wave detection, we give a comprehensive review on its scienti¯c objectives, recent status and key technologies. With arm-length being of million kilometers, a space detector works within a frequency band from 0.1mHz to 10Hz. Its possible sources include compact binary star system, extreme mass ratio inspiral, intermediate mass ratio inspiral, super mass black hole merge, etc. The success of space gravitational wave detection mission requires a pico-meter precision laser interferometer, and a state-of-the-art drag- free control system. Taking European space gravitational wave detector as an example, we analyze space laser interferometer and drag-free control system in detail. The trend and perspective of Chinese space gravitational wave detection mission are also discussed.

Key words:

gravitational wave detection| laser interferometer ranging system|drag-free technology| inertial sensor| micro-thruster| gravitational wave astronomy

中图分类号: 

  • O431.2