留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器全频域力学环境预示技术研究进展

邹元杰 韩增尧 张瑾

邹元杰, 韩增尧, 张瑾. 航天器全频域力学环境预示技术研究进展[J]. 力学进展, 2012, 42(4): 445-454. doi: 10.6052/1000-0992-11-075
引用本文: 邹元杰, 韩增尧, 张瑾. 航天器全频域力学环境预示技术研究进展[J]. 力学进展, 2012, 42(4): 445-454. doi: 10.6052/1000-0992-11-075
ZOU Yuanjie, HAN Zengyao, ZHANG Jin. RESEARCH PROGRESS ON FULL-FREQUENCY PREDICTION TECHNIQUES OF SPACECRAFT'S MECHANICAL ENVIRONMENT[J]. Advances in Mechanics, 2012, 42(4): 445-454. doi: 10.6052/1000-0992-11-075
Citation: ZOU Yuanjie, HAN Zengyao, ZHANG Jin. RESEARCH PROGRESS ON FULL-FREQUENCY PREDICTION TECHNIQUES OF SPACECRAFT'S MECHANICAL ENVIRONMENT[J]. Advances in Mechanics, 2012, 42(4): 445-454. doi: 10.6052/1000-0992-11-075

航天器全频域力学环境预示技术研究进展

doi: 10.6052/1000-0992-11-075
详细信息
    通讯作者:

    邹元杰

RESEARCH PROGRESS ON FULL-FREQUENCY PREDICTION TECHNIQUES OF SPACECRAFT'S MECHANICAL ENVIRONMENT

More Information
    Corresponding author: ZOU Yuanjie
  • 摘要: 航天器力学环境预示对于总体设计、结构与机构分系统设计是至关重要的, 特别是对于首发型号, 往往缺乏相似型号的遥测数据参考, 使得有效的预示成为地面试验方案和试验条件确定的主要依据. 航天器在发射段需要承受覆盖全频域的动态载荷, 不同频段的载荷和结构振动响应特性差异很大, 很难用单一的分析方法进行准确预示. 本文分别针对航天器发射力学环境的低频、高频、中频3 个频段, 介绍了国内外航天器全频域力学环境预示的主要方法及其工程应用的研究进展, 并提出了我国在该领域亟需解决的关键技术.

     

  • 1 马兴瑞, 于登云, 韩增尧, 等.星箭力学环境分析与试验技术 研究进展.宇航学报, 2006, 27(3): 323-330
    2 Shorter P J, Gardner B K, Bremner P G. A hybrid method for full spectrum noise and vibration prediction. Journal of Computational Acoustics, 2003, 11(2): 323-338
    3 Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problem. Journal of Sound and Vibration, 1966,3(3): 233-241
    4 Smith R R, Hunt J T, Barach D. Finite element analysis of acoustically radiating structures with applications to sonar transducers. Journal of Sound and Vibration,1973, 54(5): 1277-1288
    5 Astley R J, Eversman W. Finite element formulation for acoustical radiation. Journal of Sound and Vibration,1983, 88: 47-64
    6 Everstine G C. Finite element formulatons of structural acoustics problems. Computers & Structures, 1997, 65(3):307-321
    7 Leung A Y T, Wu G R, Zhong W F. Exterior problems of acoustics by fractal finite element mesh. Journal of Sound and Vibration, 2004, 272: 125-135
    8 Astley R J. Wave envelope and infinite element scheme for acoustical radiation. International Journal for Numerical Methods in Fluids, 1983, 3(5): 507-526
    9 Zienkiewicz O C, Bando K, et al. Mapped infinite elements for exterior wave problems. International Journal for Numerical Methods in Engineering, 1985, 21(7): 1229-1251
    10 Coyette J P, Lielens G, Ploumhans P, et al. Random vibrations and finite elements for modeling spacecraft and launch vehicles dynamic environment. The 2003 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2003
    11 Blelloch P. FEM based methods for vibro-acoustic response predictions. The 2006 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2006
    12 Maahs G. Acoustic test and analysis. The 2007 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2007
    13 Cordioli J, Gardner B, Pattison G. Prediction of dynamic stresses and forces in space structures from random acoustic excitations. The 2008 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2008
    14 Kolaini A R, Michael O, Tsoi W B. Acoustically induced vibration of structures: acoustic/structural coupling phenomenon. The 2009 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2009
    15 Beltman W M, Van D H, Spiering R M, et al. Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems. Jour- nal of Sound and Vibration, 1998, 216(1): 159-185
    16 Faust M, Lundqvist T, G¨oransson P. Vibro-acoustic analyses of a spacecraft solar-array stack in a reverberant chamber. In: Proceedings of European Conference on Spacecraft Structures, Materials and Mechanical Testing, Braunschweig, Germany, 1998.455-460
    17 Burton A J, Miller G F. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. In: Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, London,1971. 201-210
    18 Ciskowski R D, Brebbia C A. Boundary element methods in acoustics. Southampton: Computational Mechanics Publications, 1991.1-76
    19 姚振汉, 杜庆华. 边界元法应用的若干近期研究及国际新进 展. 清华大学学报(自然科学版), 2001, 41(4/5): 89-93
    20 邹元杰. 水中阻尼复合壳体结构声振特性的数值分析: [博士 论文]. 大连: 大连理工大学, 2004.3-5
    21 Estorff O V. Boundary Element in Acoustics (Advances and Applications). Southampton: Wessex Institute of Technology, 2000.1-40
    22 Wu T W. Boundary Element Acoustics, Fundamentals and Computer Codes. Southampton: WIT press, 2000.1-67
    23 Raveendra S T. An efficient indirect boundary element technique for multi-frequency acoustic analysis. Int. J. Num. Meth. Eng., 1999, 44: 59-76
    24 Zhang Z, Vlahopoulos N, Raveerdra S T, et al. A computational acoustic field reconstruction process based on an indirect boundary element formulation. J. Acoust. Soc. Am., 2000, 108(5): 2167-2178
    25 Greengrad L, Rokhlin V. A fast algorithm for particle simulations. J. Comput. Phys., 1987, 73: 325-348
    26 Amini S, Profit A. Analysis of the truncation errors in the fast multipole method for scattering problems. Journal of Computational and Applied Mathematics, 2000, 115:23-33
    27 Fischer M, Gauger U, Gaul L. A multipole Galerkin boundary element method for acoustics. Engineering Analysis with Boundary Elements, 2004, 28: 155-162
    28 Grigoriev M M, Dargush G F. A fast multi-level boundary element method for the Helmholtz equation. Comput. Methods Appl. Mech. Engrg., 2004, 193: 165-203
    29 Bapat M S, Shen L, Liu Y J. Adaptive fast multipole boundary element method for three-dimensional halfspace acoustic wave problems. Engineering Analysis with Boundary Elements, 2009, 33: 1113-1123
    30 Bebendorf M, Rjasanow S. Adaptive low-rank approximation of collocation matrices. Computing, 2003, 70(1): 1-24
    31 Alestra S, Sithammavanh V, Sylvand G, et al. Characterization of the low frequency acoustic field in reverberation chambers. The 2008 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2008
    32 沈飞翔, 解妙霞. 基于YSNOISE 软件的飞行器气动噪声 数值计算, 见: 2008 年LMS 中国用户大会论文集, 西安,2008.1-4
    33 娄文忠, 乔杰. 军用飞机近场噪声特性的测试与仿真. 北京 理工大学学报, 2007, 27(4): 295-298, 317
    34 Coyette J P. The use of finite-element and boundaryelement models for predicting the vibro-acoustic behaviour of layered structures. Advances in Engineering Software, 1999, 30(2): 133-139
    35 Ali R K, Andrew K, Brian W C. Vibro-acoustic analysis of lightweight structures, The 2009 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2009
    36 Tsoi W B, Ali R K, Brian W C. Acoustic induced vibration on composite reflector: test versus prediction. The
    2008 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2008
    37 Yarza A, Castro O, Santiago-Prowald J, et al. Reflector vibroacoustic response to launch acoustic excitation. European Conference on Antennas and Propagation 2010, Barcelona, 2010.1-4
    38 Jeffrey M L, Mark E M, Bryce G. Boundary element method (bem) data analysis processing: comparison of analysis bandwidth reduction methods. The 2010 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2010
    39 Wijker J J, Faillet J P, Prowald J S. Linear and nonlinear solar array structural vibrations in fluid structure environment a FEM/BEM approach. European Conference on Spacecraft structures, materials and mechanical testing 2005,Noordwijk, The Netherlands, 2005
    40 Nagahama K, Ando S, Shi Q, et al. Vibro-acoustic analysis of narrow cavity effect of satellite at launch. European Conference on Spacecraft structures, materials and mechanical testing 2005, Noordwijk, The Netherlands, 2005
    41 沙云东, 苏志敏. 薄壁柱壳结构在随机噪声激励下的响应估 算. 见: 2006 LMS 首届用户大会论文集, 苏州, 2006.1-5
    42 韩峰, 胡迪科, 闫桂荣. 圆锥壳结构声振耦合特性分析. 噪声 与振动控制, 2009, 29(5): 30-33
    43 Vlahopoulos N. Energy finite element analysis for computing the high frequency vibration of the aluminum testbed cylinder and correlating the results to test data. NASA/CR-2005-213760, 2005
    44 Nefske D J, Sung S H. Power flow finite element analysis of dynamic systems: basic theory and application to beams. J. of Vib., Acoustics, Stress, and Reliability in Design, 1989, 111: 94-100
    45 Vlahopoulos N, Zhao X, Allen T. An approach for evaluating power transfer coefficients for spot-welded joints in an energy finite element formulation. Journal of Sound and Vibration, 1999, 220(1): 135-154
    46 Vlahopoulos N, Zhao X. Basic development of hybrid finite element method for midfrequency structural vibrations. AIAA Journal, 1999, 37(11): 1495-1505
    47 Hong S B, Wang A, Vlahopoulos N. A hybrid finite element formulation for a beam-plate system. Journal of Sound and Vibration, 2006, 298(1-2): 233-256
    48 Cotoni V, Shorter P J, Langley R S. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method. Journal of the Acoustical Society of America, 2007, 122(1): 259-270
    49 姚德源, 王其政. 统计能量分析原理及其应用. 北京: 北京 理工大学出版社, 1995.1-16
    50 廖庆斌, 李舜酩. 统计能量分析中的响应统计估计及其研究 进展. 力学进展, 2007, 37(3): 337-345
    51 Tengler N. Auto SEA comparisons with booster acoustic test results. The 2002 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2002
    52 Valerio F, Antonio C, Andrea P. High frequency vibroacoustic analyses on vega launch vehicle. AIAA 2007-3585,2007
    53 Betts J F. SEA analysis and acoustic test correlation. The Vibro-Acoustic Users Conference - Europe, Leuven, Belgium,2003
    54 Hwang H J. Prediction and validation of high frequency vibration responses of nasa mars pathfinder spacecraft due to acoustic launch load using statistical energy analysis. NASA2001-3585, 2001
    55 Larko J M, McNelis M E, Hughes W O. Vibroacoustic analysis of large heat rejection radiators for future spacecraft. The 2005 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2005
    56 Hackel J. Prediction and test comparison of the nextsat spacecraft random vibration responses due to acoustic testing. The 2007 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2007
    57 Borello G, Bricout J N, Pradines A. Vibroacoustic response of calipso spacecraft using sea. The Vibro-Acoustic Users Conference-Europe, Leuven, Belgium, 2003
    58 Iglesia F, Gil M A, Bajo J M. Vibro-acoustic analises of the smos satellite using AutoSEA2 to generate the units random test levels. 2nd Vibro-Acoustic Users Conference- Europe, Paris, France, 2004
    59 孙目, 王小军, 潘忠文, 等. 统计能量分析在飞行器动力学环 境预示中的应用. 导弹与航天运载技术, 2009, 3: 11-14
    60 孙目, 潘忠文. 卫星整流罩噪声环境预示与降噪设计. 导弹 与航天运载技术, 2008, 4: 6-10
    61 韩增尧, 曲广吉. 航天器宽带随机振动响应分析. 中国空间 科学技术, 2002, 22(1): 24-30
    62 韩增尧, 曲广吉. 统计能量分析在太阳翼噪声分析上的应用. 中国空间科学技术, 2001, 21(2): 52-56
    63 向树红, 王大钧, 于丹, 等. 统计能量分析参数的综合确定方 法及应用. 振动工程学报, 2004, 17(4): 477-482
    64 赵家宣, 孔宪仁, 王舒楠, 等. 铝蜂窝夹层板模态密度参数实 验辨识. 哈尔滨工业大学学报, 2007, 39(5): 807-810
    65 雷烨, 盛美萍. 复杂耦合系统SEA 求解方法研究. 振动与冲 击, 2010, 29(7): 159-161, 168
    66 邹元杰, 韩增尧. 复杂结构中频振动分析方法研究综述. 中 国航天结构强度与环境工程专业信息网2006 年度技术信息 交流会论文集, 西宁, 2006. 340-348
    67 张瑾, 韩增尧, 邹元杰. 中频力学环境下航天器结构动力学 分析技术研究. 航天器工程, 2009, 18(5): 87-94
    68 Peng W, He Z,Wang J. Application of domain decomposition in acoustic and structural acoustic analysis. Chinese Journal of Mechanical Engineering, 2007, 20(6): 87-93
    69 Bennighof J K, Kim C K. An adaptive multilevel substructuring method for efficient modeling of complex structures. In: Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston,1992. 1631-1639
    70 Canstanier M P, Tan Y C, Pierre C. Characteristic constraint modes for component mode synthesis. AIAA -2001-39, 2001
    71 Lore K F, Smith S W. Efficient computation of dynamic response of large flexible spacecraft. In: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Austin,2005. 1-8
    72 Desmet W. A wave based prediction technique for coupled vibro-acoustic analysis: [Dissertation]. Leuven: Department of Mechanical Engineering Katholieke Universiteit1998.1-2
    73 彭伟才, 何锃. WB 法分析声腔的中频响应. 噪声与振动控 制, 2006, 26(6): 58-61
    74 Langley R S, Bremner P. A hybrid method for the vibration analysis of complex structural-acoustic systems. The Journal of the Acoustical Society of America, 1999,105(3): 1657-1671
    75 Shorter P J, Langley R S. On the reciprocity relationship between direct field radiation and diffuse reverberant loading. Journal of the Acoustical Society of America, 2005,117(1): 85-95
    76 Shorter P J, Langley R S. Vibro-acoustic analysis of complex systems. Journal of Sound and Vibration, 2005,288(3): 669-699
    77 Cotoni V, Shorter P. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method. J. of the Acoust.Soc.of Ame., 2007, 122(1):259-270
    78 Prock B. Vibro-acoustic hybrid modeling and analysis of the ares ix roll control system. The 2008 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2008
    79 Larko J M, Cotoni V. Vibroacoustic response of the NASA ACTS spacecraft antenna to launch acoustic excitation NASA/TM-2008-215168, 2008
    80 Shorter P, Cotoni V. Modeling the response of stacked solar arrays at low/mid/high frequencies. The 2009 S/C & L/V Dynamic Environments Workshop, El Segundo, USA, 2009
    81 张瑾. FE-SEA 方法在航天器力学环境预示中的应用研究: [博士论文]. 北京: 中国空间技术研究院, 2011.66-103
    82 张瑾, 邹元杰, 韩增尧. 声振力学环境预示的FE-SEA 混合 方法研究. 强度与环境, 2010, 37(3): 14-20
    83 邹元杰, 韩增尧. 宽频声激励作用下的卫星结构响应分析.2007 年全国结构动力学学术研讨会, 南昌, 2007.1-11
    84 邹元杰, 韩增尧.张瑾.应用VAOne 软件分析卫星结构的中 低频响应. 见: 第七届ESI 中国用户年会暨ChinaPAM2008 论文集, 北京, 2008. 247-254
    85 刘时秀. 应用Hybrid FE-SEA 预示仪器舱动力学环境. 强 度与环境, 2011, 38(3): 14-18
    86 邹元杰, 张瑾, 韩增尧. 基于FE-SEA 方法的卫星部组件随 机振动条件研究. 航天器环境工程, 2010, 27(4): 456-461
  • 加载中
计量
  • 文章访问数:  1641
  • HTML全文浏览量:  101
  • PDF下载量:  2096
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-26
  • 修回日期:  2011-08-31
  • 刊出日期:  2012-07-25

目录

    /

    返回文章
    返回